首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundMyeloid leukemia is associated with reduced serum zinc and increased intracellular zinc. Our previous studies found that zinc depletion by TPEN induced apoptosis with PML-RARα oncoprotein degradation in acute promyelocytic NB4 cells. The effect of zinc homeostasis on intracellular signaling pathways in myeloid leukemia cells remains unclear.ObjectiveThis study examined how zinc homeostasis affected MAPK and Akt/mTOR pathways in NB4 cells.MethodsWe used western blotting to detect the activation of p38 MAPK, JNK, ERK1/2, and Akt/mTOR pathways in NB4 cells stimulated with the zinc chelator TPEN. Whether the effects of TPEN on these pathways could be reversed by zinc or the nitric oxide donor sodium nitroprusside (SNP) was further explored by western blotting. We used Zinpyr-1 staining to assess the role of SNP on labile zinc levels in NB4 cells treated with TPEN. In additional, we evaluated expressional correlations between the zinc-binding protein Metallothionein-2A (MT2A) and genes related to MAPKs and Akt/mTOR pathways in acute myeloid leukemia (AML) based on the TCGA database.ResultsZinc depletion by TPEN activated p38 and JNK phosphorylation in NB4 cells, whereas ERK1/2 phosphorylation was increased first and then decreased. The protein expression levels of Akt and mTOR were downregulated by TPEN. The nitric oxide donor SNP promotes zinc release in NB4 cells under zinc depletion conditions. We further found that the effects of zinc depletion on MAPK and Akt/mTOR pathways in NB4 cells can be reversed by exogenous zinc supplementation or treatment with the nitric oxide donor SNP. By bioinformatics analyses based on the TCGA database, we demonstrated that MT2A expression was negatively correlated with the expression of JNK, and was positively correlated with the expression of ERK1 and Akt in AML.ConclusionOur findings indicate that zinc plays a critical role in leukemia cells and help understanding how zinc depletion induces apoptosis.  相似文献   

2.
3.
《Cancer epidemiology》2014,38(6):765-772
In breast cancer cells, overexpression of human epidermal growth factor receptor 2 (HER2) increases the translation of fatty acid synthase (FASN) by altering the activity of PI3K/Akt signaling pathways. Cancer chemotherapy causes major side effects and is not effective enough in slowing down the progression of the disease. Earlier studies showed a role for resveratrol in the inhibition of FASN, but the molecular mechanisms of resveratrol-induced inhibition are not known. In the present study, we examined the novel mechanism of resveratrol on Her2-overexpressed breast cancer cells.The effect of resveratrol on the growth of breast cancer cells was assessed as percent cell viability by cytotoxicity-based MTT assay and the induction of apoptosis was determined by cell-death detection ELISA and flow cytometric analysis of Annexin-V–PI binding. Western immunobloting was used to detect signaling events in human breast cancer (SKBR-3) cells.Data showed that resveratrol-mediated down-regulation of FASN and HER2 genes synergistically induced apoptotic death in SKBR-3 cells. This concurrently caused a prominent up-regulation of PEA3, leads to down-regulation of HER2 genes. Resveratrol also alleviated the PI3K/Akt/mTOR signaling by down-regulation of Akt phosphorylation and up-regulation of PTEN expression.These findings suggest that resveratrol alters the cell cycle progression and induce cell death via FASN inhibition in HER2 positive breast cancer.  相似文献   

4.
Insulin receptor substrate (IRS) proteins are important docking proteins in mediating the insulin signaling cascade. We have investigated the effect of short interfering RNA (siRNA) mediated knockdown of IRS-1 on insulin signaling cascade in primary human hepatocellular carcinoma HepG2 cell line and HepG2 cells overexpressing Akt1/PKB-alpha (HepG2-CA-Akt/PKB). IRS-1 knockdown in both cell lines resulted in reduction of insulin stimulated Akt1 phosphorylation at Ser 473. In parental HepG2 cells, IRS-1 knockdown resulted in reduction (ca. 50%) in the basal level of phosphorylated mTOR (Ser 2448) irrespective of insulin treatment. In contrast, HepG2-CA-Akt/PKB cells showed an upregulation in the basal level of phosphorylated mTOR (Ser 2448) (ca. 40%). Insulin mediated phosphorylation of mTOR was reduced. IRS-1 knockdown also reduced the cell proliferation of parental HepG2 cells by ca. 30% in the presence/absence of insulin, whereas in HepG2-CA-Akt/PKB the cell proliferation was reduced by 15% and treatment of insulin further reduced it to ca. 50% (vs. control). IRS-1 knockdown also reduced the glycogen synthase (GS) activity in parental HepG2 cells, however, it was upregulated in HepG2-CA-Akt/PKB cells. These results suggest that knockdown of IRS-1 abolished basal as well as insulin mediated phosphorylation/activity of proteins involved in cell proliferation or glycogen metabolism in the parental Hep2 cells. IRS-1 knockdown in cells overexpressing constitutively active Akt1/PKB-alpha either did not change or upregulated the basal levels of phosphorylated/active proteins. However, insulin mediated response was either not altered or downregulated in these cells.  相似文献   

5.
In 3T3-L1 adipocytes, insulin or anisomycin stimulated phosphorylation of IRS-1 at Ser(307) and Ser(636/639), both of which were partially reduced by the mTOR inhibitor, rapamycin, or the JNK inhibitor, SP600125, and were further inhibited by a combination of them. Interestingly, anisomycin-induced p70(S6K) phosphorylation was reduced by SP600125, while insulin-induced p70(S6K) phosphorylation was not. Furthermore, unlike insulin, anisomycin failed to elicit translocation or degradation of IRS-1. These results indicate that mTOR and JNK play roles in phosphorylating IRS-1 serine residues, and that insulin and anisomycin are different in terms of the relationship of activation between mTOR and JNK, and the effects on IRS-1 localization and stability.  相似文献   

6.
7.
We have reported that nordihydroguaiaretic acid (NDGA) inhibits the tyrosine kinase activities of the IGF-1 receptor (IGF-1R) and the HER2 receptor in breast cancer cells. Herein, we studied the effects of NDGA on the growth of estrogen receptor (ER) positive MCF-7 cells engineered to overexpress HER2 (MCF-7/HER2-18). These cells are an in vitro model of HER2-driven, ER positive, tamoxifen resistant breast cancer. NDGA was equally effective at inhibiting the growth of both parental MCF-7 and MCF-7/HER2-18 cells. Half maximal effects for both cell lines were in the 10-15 microM range. The growth inhibitory effects of NDGA were associated with an S phase arrest in the cell cycle and the induction of apoptosis. NDGA inhibited both IGF-1R and HER2 kinase activities in these breast cancer cells. In contrast, Gefitinib, an epidermal growth factor receptor inhibitor but not an IGF-1R inhibitor, was more effective in MCF-7/HER2-18 cells than in the parental MCF-7 cells and IGF binding protein-3 (IGFBP-3) was more effective against MCF-7 cells compared to MCF-7/HER2-18. MCF-7/HER2-18 cells are known to be resistant to the effects of the estrogen receptor inhibitor, tamoxifen. Interestingly, NDGA not only inhibited the growth of MCF-7/HER2-18 on its own, but it also demonstrated additive growth inhibitory effects when combined with tamoxifen. These studies suggest that NDGA may have therapeutic benefits in HER2-positive, tamoxifen resistant, breast cancers in humans.  相似文献   

8.
Ikenoue T  Inoki K  Yang Q  Zhou X  Guan KL 《The EMBO journal》2008,27(14):1919-1931
Protein kinase C (PKC) is involved in a wide array of cellular processes such as cell proliferation, differentiation and apoptosis. Phosphorylation of both turn motif (TM) and hydrophobic motif (HM) are important for PKC function. Here, we show that the mammalian target of rapamycin complex 2 (mTORC2) has an important function in phosphorylation of both TM and HM in all conventional PKCs, novel PKCepsilon as well as Akt. Ablation of mTORC2 components (Rictor, Sin1 or mTOR) abolished phosphorylation on the TM of both PKCalpha and Akt and HM of Akt and decreased HM phosphorylation of PKCalpha. Interestingly, the mTORC2-dependent TM phosphorylation is essential for PKCalpha maturation, stability and signalling. Our study demonstrates that mTORC2 is involved in post-translational processing of PKC by facilitating TM and HM phosphorylation and reveals a novel function of mTORC2 in cellular regulation.  相似文献   

9.
10.
《Phytomedicine》2014,21(12):1717-1724
BackgroundThe lichen compound (+)-protolichesterinic acid (+)-PA, isolated from Iceland moss, has anti-proliferative effects on several cancer cell lines. The chemical structure of (+)-PA is similar to a known fatty acid synthase (FASN) inhibitor C75.AimsTo test whether the anti-proliferative activity of (+)-PA is associated with effects on FASN and HER2 (human epidermal growth factor receptor 2) and major signalling pathways. Synergism between (+)-PA and lapatinib, a HER2 active drug, was also evaluated.Materials and methodsPure compound was isolated by preparative high-performance liquid chromatography (HPLC) and purity of (+)-PA analyzed by analytical HPLC. Cell viability was assessed using Crystal violet staining. FASN and HER2 expression was estimated by immunofluorescence. The Meso Scale Discovery (MSD)® assay was used to measure activation of ERK1/2 and AKT. Synergism was estimated by the CalcuSyn software.ResultsTreatment with (+)-PA increased FASN expression in SK-BR-3 cells, which overexpress FASN and HER2, implying a compensatory response to inhibition of FASN activity. HER2 expression was decreased suggesting secondary downregulation. ERK1/2 and AKT signalling pathways were inhibited, probably due to reduced levels of HER2. No effects were observed in T-47D cells. Synergism between (+)-PA and lapatinib was observed in the SK-BR-3 cells.ConclusionResults suggest that the primary effect of (+)-PA is inhibition of FASN activity. Synergistic effects with lapatinib were seen only in SK-BR-3 cells, and not T-47D cells, further supporting the notion that (+)-PA acts by inhibiting FASN with secondary effects on HER2 expression and signalling. (+)-PA could therefore be a suitable agent for further testing, alone or in combination treatment against HER2-overexpressing breast cancer.  相似文献   

11.
目的探讨肿瘤转移相关因子RhoGDI2与PI3K/Akt/mTOR信号通路在肺癌侵袭转移过程中的作用及相关机制。方法利用PI3K/Akt/mTOR信号通路上特异性的抑制剂,采用MTT法,伤口愈合实验及侵袭实验观察不同浓度药物对肺癌95D细胞生长侵袭转移能力的影响,通过Western Blot方法观察RhoGDI2蛋白水平的变化。结果PI3K抑制剂LY294002及mTOR抑制剂Rapamycin都能抑制肺癌细胞95D的侵袭转移能力,联合应用抑制作用更强。PI3K抑制剂LY294002处理组RhoGDI2蛋白的表达量增加,且随浓度增加RhoGDI2蛋白表达也增加。mTOR抑制剂Rapamycin组,在低浓度时增加RhoGDI2蛋白的表达,但增大Rapamycin的浓度,RhoGDI2蛋白的表达反而降低。低浓度LY294002组和Rapa-mycin组联合应用可以明显增加RhoGDI2蛋白的表达。结论PI3K/Akt/mTOR信号通路中Akt的活化与RhoGDI2密切相关,RhoGDI2可能直接或间接通过与Akt的相互作用参与调节肺癌的侵袭转移的过程。  相似文献   

12.
The molecular mechanisms by which arsenic (As3+) causes human cancers remain to be fully elucidated. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb-repressive complexes 2 (PRC2) that promotes trimethylation of lysine 27 of histone H3, leading to altered expression of tumor suppressors or oncogenes. In the present study, we determined the effect of As3+ on EZH2 phosphorylation and the signaling pathways important for As3+-induced EZH2 phosphorylation in human bronchial epithelial cell line BEAS-2B. The involvement of kinases in As3+-induced EZH2 phosphorylation was validated by siRNA-based gene silencing. The data showed that As3+ can induce phosphorylation of EZH2 at serine 21 in human bronchial epithelial cells and that the phosphorylation of EZH2 requires an As3+-activated signaling cascade from JNK and STAT3 to Akt. Transfection of the cells with siRNA specific for JNK1 revealed that JNK silencing reduced serine727 phosphorylation of STAT3, Akt activation and EZH2 phosphorylation, suggesting that JNK is the upstream kinase involved in As3+-induced EZH2 phosphorylation. Because As3+ is capable of inducing miRNA-21 (miR-21), a STAT3-regulated miRNA that represses protein translation of PTEN or Spry2, we also tested the role of STAT3 and miR-21 in As3+-induced EZH2 phosphorylation. Ectopic overexpression of miR-21 promoted Akt activation and phosphorylation of EZH2, whereas inhibiting miR-21 by transfecting the cells with anti-miR-21 inhibited Akt activation and EZH2 phosphorylation. Taken together, these results demonstrate a contribution of the JNK, STAT3 and Akt signaling axis to As3+-induced EZH2 phosphorylation. Importantly, these findings may reveal new molecular mechanisms underlying As3+-induced carcinogenesis.  相似文献   

13.
The receptor tyrosine kinase HER2 is known to play a central role in mitogenic signaling, motivating the development of targeted, HER2-specific therapies. However, despite the longstanding use of antibodies to target HER2, controversies remain concerning antibody/HER2 trafficking behavior in cancer cells. Understanding this behavior has direct relevance to the mechanism of action and effective design of such antibodies. In the current study, we analyzed the intracellular dynamics of trastuzumab, a marketed HER2-targeting antibody, in a panel of breast and prostate cancer cell lines that have a wide range of HER2 expression levels. Our results reveal distinct post-endocytic trafficking behavior of antibody-HER2 complexes in cells with different HER2 expression levels. In particular, HER2-overexpressing cells exhibit efficient HER2 recycling and limited reductions in HER2 levels upon antibody treatment, and consequently display a high level of antibody persistence on their plasma membrane. By contrast, in cells with low HER2 expression, trastuzumab treatment results in rapid antibody clearance from the plasma membrane combined with substantial decreases in HER2 levels and undetectable levels of recycling. A cell line with intermediate levels of HER2 expression exhibits both antibody recycling and clearance from the cell surface. Significantly, these analyses demonstrate that HER2 expression levels, rather than cell origin (breast or prostate), is a determinant of subcellular trafficking properties. Such studies have relevance to optimizing the design of antibodies to target HER2.  相似文献   

14.
15.
《MABS-AUSTIN》2013,5(5):1211-1219
The receptor tyrosine kinase HER2 is known to play a central role in mitogenic signaling, motivating the development of targeted, HER2-specific therapies. However, despite the longstanding use of antibodies to target HER2, controversies remain concerning antibody/HER2 trafficking behavior in cancer cells. Understanding this behavior has direct relevance to the mechanism of action and effective design of such antibodies. In the current study, we analyzed the intracellular dynamics of trastuzumab, a marketed HER2-targeting antibody, in a panel of breast and prostate cancer cell lines that have a wide range of HER2 expression levels. Our results reveal distinct post-endocytic trafficking behavior of antibody-HER2 complexes in cells with different HER2 expression levels. In particular, HER2-overexpressing cells exhibit efficient HER2 recycling and limited reductions in HER2 levels upon antibody treatment, and consequently display a high level of antibody persistence on their plasma membrane. By contrast, in cells with low HER2 expression, trastuzumab treatment results in rapid antibody clearance from the plasma membrane combined with substantial decreases in HER2 levels and undetectable levels of recycling. A cell line with intermediate levels of HER2 expression exhibits both antibody recycling and clearance from the cell surface. Significantly, these analyses demonstrate that HER2 expression levels, rather than cell origin (breast or prostate), is a determinant of subcellular trafficking properties. Such studies have relevance to optimizing the design of antibodies to target HER2.  相似文献   

16.
Wang J  Wan W  Sun R  Liu Y  Sun X  Ma D  Zhang N 《Cellular signalling》2008,20(6):1025-1034
Protein kinase Cζ PKCζ mediates cancer cell chemotaxis by regulating cytoskeleton rearrangement and cell adhesion. In the research for its upstream regulator, we investigated the role of Akt2 in chemotaxis and metastasis of human breast cancer cells. Reduction of Akt2 expression by siRNA inhibited chemotaxis of MDA-MB-231, T47D, and MCF7 cells, three representative human breast cancer cells. Expression of a wild type Akt2 in siRNA transfected cells rescued the phenotype. EGF-induced integrin β1 phosphorylation was dampened, consistent with defects in adhesion. Phosphorylation of LIMK and cofilin, a critical step of cofilin recycle and actin polymerization, was also impaired. Thus, Akt2 regulates both cell adhesion and cytoskeleton rearrangement during chemotaxis. Depletion of Akt2 by siRNA impaired the activation of PKCζ while inhibition of PKCζ did not interfere with EGF induced phosphorylation of Akt. Furthermore, EGF induced co-immunoprecipitation between PKCζ and Akt2, but not Akt1, suggesting that a direct interaction between PKCζ and Akt2 in chemotaxis. Protein levels of integrin β1, LIMK, cofilin, and PKCζ didn't alter, suggesting that Akt2 does not regulate the expression of these signaling molecules. In a Severe Combine Immunodeficiency mouse model, Akt2 depleted MDA-MB-231 cells showed a marked reduction in metastasis to mouse lungs, demonstrating the biological relevancy of Akt2 in cancer metastasis in vivo. Taken together, our results suggest that Akt2 directly mediates EGF-induced chemotactic signaling pathways through PKCζ and its expression is critical during the extravasation of circulating cancer cells.  相似文献   

17.
18.
Absent in melanoma 2 (AIM2) is a critical component in natural immunity system and is closely related to cancer initiation and development. It has been shown that AIM2 inhibited colorectal cancer (CRC) development and cell proliferation. It remains unresolved how AIM2 acts on CRC metastasis. In this study, we assessed migration, invasion ability, and epithelial-mesenchymal transition (EMT) program upon AIM2 overexpression or knockdown in human CRC cells. Transwell assay demonstrated that upregulation of AIM2 reduced cell migration and invasion. Epithelial marker E-cadherin was augmented and mesenchymal markers vimentin, as well as Snail, were examined decreased by Western blot, real-time polymerase chain reaction, and immunofluorescence. Correspondingly, knockdown of AIM2 led to a reverse consequence. In addition, AIM2 regulated Akt phosphorylation and effects of AIM2 on cell invasion and EMT were recovered after administration of Akt inhibitor, suggesting that AIM2 suppressed EMT dependent on Akt pathway. In addition, caspase-1 inhibitor exposure indicated that AIM2 abrogated EMT through the inflammasome pathway as well. In summary, AIM2 suppressed EMT via Akt and inflammasome pathways in human CRC cells.  相似文献   

19.
Monocytes and macrophages play critical roles in innate host defense and are sensitive to mechanical stimuli. Tissue pressure is often altered in association with inflammation or infection. Low pressure (20 mmHg), equivalent to normal tissue pressure, increases phagocytosis by primary monocytes and PMA-differentiated THP-1 macrophages, in part by FAK and ERK inhibition and p38 activation. PI-3K is required for macrophage phagocytosis, but whether PI-3K mediates pressure-stimulated phagocytosis is not known. Furthermore, little is known about the role played by the PI-3K downstream Kinases, Akt, and p70 S6 kinase (p70S6K) in modulating macrophage phagocytosis. Thus, we studied the contribution of PI-3K, Akt, and p70S6K to pressure-increased serum-opsonized bead phagocytosis. Pressure-induced p85 PI-3K translocation from cytosolic to membrane fractions and increased Akt activation by 36.1 +/- 12.0% in THP-1 macrophages. LY294002 or Akt inhibitor IV abrogated pressure-stimulated but not basal phagocytosis. Basal Akt activation was inhibited 90% by LY294002 and 70% by Akt inhibitor IV. Each inhibitor prevented Akt activation by pressure. SiRNA targeted to Akt1, Akt2, or Akt3 reduced Akt1, Akt2, and Akt3 expression by 50%, 45%, and 40%, respectively. However, only Akt2SiRNA abrogated the pressure-stimulated phagocytosis without affecting basal. Pressure also activated mTOR and p70S6K. mTORSiRNA and p70S6K inhibition by rapamycin or p70S6KSiRNA blocked pressure-induced, but not basal, phagocytosis. Changes in tissue pressure during inflammation may regulate macrophage phagocytosis by activation of PI-3K, which activates Akt2, mTOR, and p70S6K.  相似文献   

20.
POEM, also called nephronectin, is an extracellular matrix protein that is considered to play a critical role as an adhesion molecule in the development and functioning of various tissues, such as kidneys and bones. In the present study, we examined the molecular mechanism of POEM gene expression, and found that transforming growth factor-beta (TGF-beta) strongly inhibited POEM expression in the mouse osteoblastic cell line, MC3T3-E1. TGF-beta-induced decrease of POEM expression occurred in both time- and dose-dependent manners through the activation of TGF-beta receptor I and extracellular signal-regulated kinase/c-Jun N-terminal kinase pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号