首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
成年大鼠海马CA1区锥体神经元外向整流氯离子单通道特性   总被引:3,自引:0,他引:3  
采用膜片钳内面向外式技术,在急性分离成年大鼠海马CAl区锥体细胞上记录到了外向整流氯离子通道(outwardly rectifying chloride channel,ORCC).长时间去极化(≥60 mV)刺激后,在30%的游离膜片上记录到有外向整流特性的单通道氯电流,膜电位在-60 mV到0 mV之间的单通道电导为(16.58±1.54) pS(n=10),而在0 mV到+60 mV之间电导为(40.92±3.17) pS.通道开放概率有明显的电压依赖性(膜电位-60 mV时,Po=0.44±0.12;膜电位为+60 mV时,Po=0.86±0.06, n=10).在对称Cl浓度(150 mmol/L)时,通道翻转电位为(-4.17±1.84) mV.当溶液中部分NaCl被葡萄糖酸钠替代后,翻转电位为:(-34.23±4.86) mV ([Cli/[Clo=(30 mmol/L)/(150 mmol/L)),接近氯离子通道的理论值,这表明通道具有氯离子选择性.浴槽液中分别加入氯通道阻断剂DIDS和SITS可以使+40 mV的通道开放概率从(0.83±0.06)和(0.86±0.06)分别降低到(0.12±0.05)和(0.13±0.04)(n=5),冲洗后可使开放概率基本恢复.上述研究结果显示,在成年大鼠海马CA1神经元上存在外向整流氯离子通道.  相似文献   

2.
已有研究表明在脑缺血期间及再灌流后早期,海马CA1锥体神经元细胞内钙浓度明显升高,这一钙超载被认为是缺血性脑损伤的重要机制之一.电压依赖性钙通道是介导正常CA1神经元钙内流的主要途径.实验观察了脑缺血再灌流后早期海马CA1锥体神经元电压依赖性L型钙通道的变化.以改良的四血管闭塞法制作大鼠15 min前脑缺血模型,在急性分离的海马CA1神经元上,采用膜片钳细胞贴附式记录L型电压依赖性钙通道电流.脑缺血后CA1神经元L型钙通道的总体平均电流明显增大,这是由于通道的开放概率增加所致.进一步分析单通道动力学显示,脑缺血后通道的开放时间变长,通道的开放频率增大.研究结果提示L型钙通道功能活动增强可能参与了缺血后海马CA1锥体神经元的细胞内钙浓度升高.  相似文献   

3.
已有研究表明在脑缺血期间及再灌流后早期,海马CA1锥体神经元细胞内钙浓度明显升高,这一钙超载被认为是缺血性脑损伤的重要机制之一.电压依赖性钙通道是介导正常CA1神经元钙内流的主要途径.实验观察了脑缺血再灌流后早期海马CA1锥体神经元电压依赖性L型钙通道的变化.以改良的四血管闭塞法制作大鼠 15min前脑缺血模型,在急性分离的海马CA1神经元上,采用膜片钳细胞贴附式记录L型电压依赖性钙通道电流.脑缺血后CA1神经元L型钙通道的总体平均电流明显增大,这是由于通道的开放概率增加所致.进一步分析单通道动力学显示,脑缺血后通道的开放时间变长,通道的开放频率增大.研究结果提示L型钙通道功能活动增强可能参与了缺血后海马CA1锥体神经元的细胞内钙浓度升高  相似文献   

4.
The effects of lanthanum (III) (La3+) on voltage-gated sodium channel currents (I Na) in freshly dissociated rat hippocampal CA1 neurons were studied using the whole-cell patch clamp techniques. La3+ reversibly enhanced I Na in a concentration- and voltage-dependent manner. The 50% enhancement concentration (EC50) of La3+ on I Na was 9.93 μM. In addition, 10 μM La3+ shifted the steady state activation curve of I Na towards positive potential and the steady state inactivation curve towards negative potential without changing the slope factor. These results indicated that La3+ could increase the amplitudes of I Na and change the activation and inactivation courses of I Na even in very low concentration.  相似文献   

5.
短暂脑缺血可对随后的损伤性脑缺血表现出明显的耐受.有研究表明大电导Ca2+依赖K+(BKCa)通道活动增强参与了缺血性脑损伤.采用膜片钳的内面向外式,观察了3 min短暂脑缺血后6 h、24 h以及48 h大鼠海马CA1区锥体细胞上BKCa通道活动的动态变化.短暂脑缺血后BKCa通道的单通道电导和翻转电位均未见明显变化,但通道的开放概率则在缺血预处理后的前24 h内显著降低.通道动力学分析显示通道关闭时间变长是短暂脑缺血后通道活动降低的主要原因,因为通道的开放时间未发生明显变化.结果提示短暂脑缺血所致的BKCa通道活动降低可能与缺血耐受的产生有关.  相似文献   

6.
过氧亚硝酸阴离子(ONOO-)是一种性质活泼的自由基,可引起强的氧化性损伤,介导了一氧化氮(NO)的大部分毒性作用.应用全细胞膜片钳技术,探讨ONOO-对脑片海马神经元电压门控钠通道电流(INa)和神经元兴奋性的影响.结果表明,ONOO-供体SIN-1(10,500,2000μmol/L)可浓度依赖性抑制INa电流峰值.SIN-1与ONOO-清除剂尿酸共处理,并不影响INa.500μmol/L的SIN-1可使INa的I-V曲线上移,并可抑制其失活后恢复过程,但对INa的激活和失活过程无影响.SIN-1还可抑制动作电位发放频率和幅值.脑片预处理腺苷酸环化酶(adenylate cyclase,AC)抑制剂MDL-12,330A(25μmol/L)和NEM(50μmol/L)对SIN-1的作用无影响.然而,预处理鸟苷酸环化酶(CG)抑制剂ODQ可抑制SIN-1对INa的作用.以上结果提示,ONOO-通过cGMP-INa-AP信号级联系统作用于海马神经元,与PKA和蛋白巯基亚硝化途径无关,这可能是ONOO-神经毒性的机制之一.  相似文献   

7.
短暂脑缺血可对随后的损伤性脑缺血表现出明显的耐受.有研究表明大电导Ca2+依赖K+(BKCa)通道活动增强参与了缺血性脑损伤.采用膜片钳的内面向外式,观察了3 min短暂脑缺血后6 h、24 h以及48 h大鼠海马CA1区锥体细胞上BKCa通道活动的动态变化.短暂脑缺血后BKCa通道的单通道电导和翻转电位均未见明显变化,但通道的开放概率则在缺血预处理后的前24 h内显著降低.通道动力学分析显示通道关闭时间变长是短暂脑缺血后通道活动降低的主要原因,因为通道的开放时间未发生明显变化.结果提示短暂脑缺血所致的BKCa通道活动降低可能与缺血耐受的产生有关.  相似文献   

8.
弱激光对大鼠海马神经元钠通道特性的影响   总被引:6,自引:0,他引:6  
利用波长670nm、功率5mW的半导体激光器照射急性分离的大鼠海马CA3区锥体神经元,应用全细胞膜片钳技术研究其电压门控Na 通道的特性.实验发现:弱激光作用5min时,Na 通道激活电位和峰值电位开始向负电位方向移动,7min激光作用达稳定;激光照射对Na 通道电流峰值无影响,对照组和激光照射组峰值电流密度分别为(-383.51±26.93)pA/pF和(-368.36±33.14)pA/pF(n=8,P>0.05);激光作用降低了Na 通道的激活阈值电位和峰值电位,对照组通道电流在-40mV激活,-30mV达峰值,激光照射组通道电流在-60mV激活,-40mV达峰值;激光照射改变了Na 通道半数激活电压和斜率因子,对照组和激光照射组的半数激活电压分别为(-42.091±1.537)mV和(-54.971±1.846)mV(n=8,P<0.01),斜率因子分别为(1.529±0.667)mV和(2.634±0.519)mV(n=8,P<0.05).结果表明,弱激光照射海马神经元可改变Na 通道的激活特性,从而影响动作电位的去激化过程,进而会引起神经元细胞生理功能发生变化.  相似文献   

9.
采用膜片钳内面向外式记录技术,研究急性分离成年大鼠海马CAl区锥体神经元外向整流氯离子通道的氧化还原调控。发现细胞内侧给予氧化剂DTNB(5,5'-dithiobis-2-nitrobenzoic acid),可显著减弱氯通道的活动,IC50值为(28.05±2.42)μmol/L;还原剂DTT(dithiothreitol)对氯通道没有明显影响,但可逆转DTNB引起的抑制效应。说明DTNB不改变通道电导,其引起的通道活动减弱是由氯通道关闭时间延长而开放时间缩短所致。研究还发现,另一对氧化型和还原型谷胱甘肽具有与DTNB和DTT同样的效应。本研究结果显示,成年大鼠海马CA1区锥体神经元外向整流氯通道可以被细胞内氧化还原剂所调控。  相似文献   

10.
The combination of two precipitating factors appears to be more and more recognized in patients with temporal lobe epilepsy. Using a two-hit rat model, with a neonatal freeze lesion mimicking a focal cortical malformation combined with hyperthermia-induced seizures mimicking febrile seizures, we have previously reported an increase of inhibition in CA1 pyramidal cells at P20. Here, we investigated the changes affecting excitatory and inhibitory drive onto CA1 interneurons to better define the changes in CA1 inhibitory networks and their paradoxical role in epileptogenesis, using electrophysiological recordings in CA1 hippocampus from rat pups (16–20 d old). We investigated interneurons in CA1 hippocampal area located in stratum oriens (Or) and at the border of strata lacunosum and moleculare (L-M). Our results revealed an increase of the excitatory drive to both types of interneurons with no change in the inhibitory drive. The mechanisms underlying the increase of excitatory synaptic currents (EPSCs) in both types of interneurons are different. In Or interneurons, the amplitude of spontaneous and miniature EPSCs increased, while their frequency was not affected suggesting changes at the post-synaptic level. In L-M interneurons, the frequency of spontaneous EPSCs increases, but the amplitude is not affected. Analyses of miniature EPSCs showed no changes in both their frequency and amplitude. We concluded that L-M interneurons increase in excitatory drive is due to a change in Shaffer collateral axon excitability. The changes described here in CA1 inhibitory network may actually contribute to the epileptogenicity observed in this dual pathology model by increasing pyramidal cell synchronization.  相似文献   

11.
Oligodendrocyte (OL) plays a critical role in myelination and axon maintenance in central nervous system. Recent studies show that OL can also express NMDA receptors in development and pathological situations in white matter. There is still lack of studies about OL properties and function in gray matter of brain. Here we reported that some glial cells in CA1 region of rat hippocampal slices (P15-23) had distinct electrophysiological characteristics from the other glia cells in this region, while they displayed uniform properties with OL from white matter in previous report; therefore, they were considered as OL in hippocampus. By loading dye in recording pipette and imaging with two-photon laser scanning microscopy, we acquired the high spatial resolution, three-dimension images of these special cells in live slices. The OL in hippocampus shows a complex process-bearing shape and the distribution of several processes is parallel to Schaffer fiber in CA1 region. When stimulating Schaffer fiber, OL displays a long duration depolarization mediated by inward rectifier potassium channel. This suggested that the OL in CA1 region could sense the neuronal activity and contribute to potassium clearance.  相似文献   

12.
KATP通道在细胞的新陈代谢与膜兴奋性的耦联中起重要作用.采用膜片钳的内面向外式记录方法,在成年大鼠海马CA1区锥体细胞上记录到一种被胞浆侧ATP和甲糖宁(tolbutamide,一种KATP通道阻断剂)抑制的Ca2+依赖性钾离子通道.在细胞膜内外的K+浓度均为140 mmol/L时,通道的电导为(204±21) pS,翻转电位为(3.57±1.13) mV,通道无整流性.通道开放概率及ATP对通道的抑制作用均呈现电压依赖性.该KATP通道与以往报道的“经典”KATP通道有显著不同,其活动受膜电位、胞内Ca2+和ATP三重调节,表明这是一种新型的KATP通道.上述结果表明在海马神经元上至少有两种性质不同的KATP通道,提示神经元可能通过不同性质的KATP通道感受细胞内的代谢状态,进而调节细胞膜的兴奋性.  相似文献   

13.
Electrophysiological recording techniques were used to study the Na+ dependence of currents through amiloride-sensitive sodium channels (ASSCs) in rat taste cells from the fungiform and vallate papillae. Perforated patch voltage clamp recordings were made from isolated fungiform and vallate taste receptor cells (TRCs) and Na+ transport was measured across lingual epithelia containing fungiform or vallate taste buds in a modified Ussing chamber. In isolated fungiform TRCs that contain Na+ currents sensitive to the diuretic amiloride, Na+ ions inhibit their own influx through ASSCs, a process known as sodium self-inhibition. Due to the interaction between self-inhibition and the driving force for Na+ entry, self-inhibition is most evident in whole-cell recordings at Na+ concentrations from 50 to 75 mM. In amiloride-sensitive cells, the Na permeability is significantly higher in extracellular solutions containing 35 mM Na+ than in 70 or 140 mM Na+. Compared with the block by amiloride, the development of self-inhibition is slow, taking up to 15 s to become maximally inhibited. Approximately one third of fungiform TRCs and all vallate TRCs lack functional ASSCs. These amiloride-insensitive TRCs show no signs of self-inhibition, tying this phenomenon to the presence of ASSCs. The sulfhydryl reagent, p-hydroxymercuribenzoate (p-HMB; 200 μM), reversibly removed self-inhibition from amiloride-sensitive Na+ currents, apparently by modifying cysteine residues in the ASSC. Na+ currents in amiloride-insensitive TRCs were unaffected by p-HMB. In sodium transport studies in fungiform taste bud–containing lingual epithelia, ∼40% of the change in short-circuit current (Isc) after addition of 500 mM NaCl to the mucosal chamber is amiloride sensitive (0.5 mM). p-HMB significantly enhanced mucosal NaCl-induced changes in these epithelia at mucosal Na+ concentrations of 50 mM and above. In contrast, the vallate-containing epithelia, which are insensitive to amiloride, showed no enhancement of Isc during p-HMB treatment. These findings suggest that sodium self-inhibition is present in ASSCs in taste receptor cells where it may play a crucial role in performance of salt-sensitive pathways in taste tissue during sodium stimulation. This phenomenon may be important in the process of TRC adaptation, in the conservation of cellular resources during chronic sodium exposure, or in the gustatory response to water.  相似文献   

14.
应用膜片钳全细胞记录模式研究了内源性一氧化氮(NO)对培养海马神经元延迟整流型钾电流的调控作用及其机制.给予NO合成酶的底物L-精氨酸(L-Arg,2mmol/L)可显著抑制海马神经元上的延迟整流型钾电流,但其同分异构体D-精氨酸(2mmol/L)对钾电流则无明显影响.并且,经一氧化氮合成酶抑制剂L-NAME(nomega-nitro-L-argininemethylester,0.5mmol/L)预处理后,L-Arg对钾电流的抑制作用消失,表明L-Arg抑制钾电流是通过产生NO而不是精氨酸本身.特异性鸟苷酸环化酶抑制剂ODQ(1H-[1,2,4]oxadiazolo[4,3-a]-quinoxalin-1-one,10!mol/L)预处理不影响L-Arg对钾电流的抑制作用,但巯基烷化剂NEM(N-ethylmaleimide,1mmol/L)预处理可完全阻断L-Arg的抑制效应.以上结果表明,内源性NO主要通过巯基亚硝化途径抑制海马神经元的延迟整流型钾电流.  相似文献   

15.
丛红群  岳旺 《生物磁学》2009,(3):444-447
目的:观察不同浓度的琥珀酸对大鼠海马CA1区神经元电压依赖性钙通道(voltage—dependent calcium channels,VDCC)电流的作用,初步探讨琥珀酸对神经元保护的电生理学基础。方法:采用传统全细胞膜片钳技术和制霉菌素(nystatin)穿孔膜片钳技术观察琥珀酸对海马CA1区神经元VDCC电流的影响。结果:不同浓度的琥珀酸(10^-6、10^-5、10^-4、10^-3、10^-2和10^-1mol·L^-1)在海马CA1区对低电压激活(low—voltage activated,LVA)钙通道电流未见任何影响,而对高电压激活(high—voltage activated,HVA)钙通道电流的抑制呈浓度依赖性。对照组HVA钙电流为580.05±17.32pA,分别给予10^-6、10^-5、10^-4、10^-3、10^-2和10^-1mol·L^-1。的琥珀酸后,HVA钙电流依次为563.74±16.65,517.99±15.24,444.66±13.26,405.32±19.11,269.03±9.96和86.41±3.25pA,同对照组相比差异有统计学意义(n=8,P〈0.01)。结论:琥珀酸能浓度依赖性地抑制HVA钙电流,而对LVA钙电流无影响。由此推测琥珀酸可能通过抑制HVA钙电流减少Ca^2+内流而影响海马CA1区神经元的兴奋性,从而抑制癫痫的形成,其脑保护作用可能与此有关。  相似文献   

16.
目的:在体视显微镜下分割Wistar大鼠海马CA1区、CA3区和齿状回(DG)区。方法:24只健康Wistar大鼠,分组如下:①6只大鼠取脑后硫堇染色,观察海马各区细胞形态;②6只大鼠分离出海马,体视显微镜下观察海马形态并分割CA1区、CA3区和DG区,各区分别切片后硫堇染色;③12只大鼠检测海马各区HSP 70的表达。结果:①大脑冠状切片硫堇染色清晰显示出海马CA1区、CA3区和DG区;②体视显微镜下,在海马腹侧面,沿着CA1区和DG区之间的海马沟可分割开CA1区和DG区,沿着CA3区和DG区之间的裂隙可分割开CA3区和DG区;分割后的海马各区细胞形态结构与整体大脑冠状切片上相对应区域的细胞形态结构一致;③Western blot结果显示:与对照组相比,脑缺血组HSP 70的表达在海马CA3+DG区明显上调、而在CA1无明显变化,这一结果与免疫组织化学结果一致。结论:上述方法可比较明确地分割Wistar大鼠海马CA1区、CA3区和DG区,分割得到的各区组织可用于蛋白质表达的检测。  相似文献   

17.
成年大鼠海马CA1区锥体细胞K_(ATP)通道的特性   总被引:1,自引:0,他引:1  
为了解成年大鼠海马CA1区锥体细胞KATP 通道的特性 ,实验采用膜片钳技术的内面向外式记录法 ,在急性分离的CA1区锥体神经元上 ,研究了可被胞浆侧ATP所抑制的钾离子单通道的特性。当细胞膜内外两侧的K 浓度均为 14 0mmol/L时 ,通道的电导为 63pS ,翻转电位为 1 71mV ,通道呈弱内向整流性。在负钳制电位时 ,通道开放时常被短时程的关闭所打断 ,而在正钳制电位时 ,这种短时程的关闭状态明显少于负钳制电位时。但通道开放概率未见明显的电压依赖性。ATP对通道活动的抑制作用呈浓度依赖性 ,抑制通道活动 5 0 %的ATP浓度为 0 1mmol/L。KATP 通道的特异性阻断剂tolbutamide (甲糖宁 ,1mmol/L)可完全阻断通道的活动 ,而KATP 通道开放剂diazoxide (二氮嗪 ,1mmol/L)则不增强通道的活动。  相似文献   

18.
目的: 采用全细胞膜片钳技术记录大鼠脑片实验中NMDA电流,并介绍诱发NMDA电流的自制刺激电极制作方法。方法: 在大鼠目标脑区快速取材并获取活性良好的脑片,分别通过含受体激动剂NMDA的孵育液灌流和电刺激诱发NMDA电流两种方式进行膜片钳记录;利用针灸针自制刺激电极。结果: 通过记录到大鼠脑片神经元的EPSC和AP可判断神经元的状态,比较两种方法诱导的NMDA电流幅度,即直接灌流受体激动剂NMDA(282.0±24.3) pA和自制刺激电极诱发(261.4±40.1)pA,二者电流幅度无明显差异(P>0.05,n=4);自制刺激电极与进口刺激电极诱发的NMDA电流幅度分别为(267.2±36.5)pA vs (239.2±41.0)pA,二者电流幅度无明显差异(P>0.05,n=4),证明自制刺激电极成功。结论: 大鼠脑片实验中,通过直接灌流激动剂与电刺激两种方式均可诱导NMDA电流,自制刺激电极为在脑片上记录诱发电流提供了一种经济、可靠的实验手段,便于各实验室应用。  相似文献   

19.
Multi-photon fluorescence microscopy has enabled the analysis of morphological and physiological parameters of brain cells in the intact tissue with high spatial and temporal resolution. Combined with electrophysiology, it is widely used to study activity-related calcium signals in small subcellular compartments such as dendrites and dendritic spines. In addition to calcium transients, synaptic activity also induces postsynaptic sodium signals, the properties of which are only marginally understood. Here, we describe a method for combined whole-cell patch-clamp and multi-photon sodium imaging in cellular micro domains of central neurons. Furthermore, we introduce a modified procedure for ultra-violet (UV)-light-induced uncaging of glutamate, which allows reliable and focal activation of glutamate receptors in the tissue. To this end, whole-cell recordings were performed on Cornu Ammonis subdivision 1 (CA1) pyramidal neurons in acute tissue slices of the mouse hippocampus. Neurons were filled with the sodium-sensitive fluorescent dye SBFI through the patch-pipette, and multi-photon excitation of SBFI enabled the visualization of dendrites and adjacent spines. To establish UV-induced focal uncaging, several parameters including light intensity, volume affected by the UV uncaging beam, positioning of the beam as well as concentration of the caged compound were tested and optimized. Our results show that local perfusion with caged glutamate (MNI-Glutamate) and its focal UV-uncaging result in inward currents and sodium transients in dendrites and spines. Time course and amplitude of both inward currents and sodium signals correlate with the duration of the uncaging pulse. Furthermore, our results show that intracellular sodium signals are blocked in the presence of blockers for ionotropic glutamate receptors, demonstrating that they are mediated by sodium influx though this pathway. In summary, our method provides a reliable tool for the investigation of intracellular sodium signals induced by focal receptor activation in intact brain tissue.  相似文献   

20.
Neurotrophins are molecules that regulate neuronal survival, nervous system plasticity, and many other physiological functions of neuronal and glial cells. Here we studied the physiological action of a novel neurosecretory polypeptide proline-rich polypeptide (PRP), isolated from bovine neurohypophysis neurosecretory granules, on voltage-gated Ca currents and spike firing activity of retinal ganglion cells. PRP reversibly increased high voltage–activated L-type Ca current, but was without effect on low voltage–activated T-type current. PRP also increased the spike after hyperpolarization and reduced the frequency of spike firing, most likely by affecting a Ca-dependent potassium current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号