首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
已有研究表明在脑缺血期间及再灌流后早期,海马CA1锥体神经元细胞内钙浓度明显升高,这一钙超载被认为是缺血性脑损伤的重要机制之一.电压依赖性钙通道是介导正常CA1神经元钙内流的主要途径.实验观察了脑缺血再灌流后早期海马CA1锥体神经元电压依赖性L型钙通道的变化.以改良的四血管闭塞法制作大鼠 15min前脑缺血模型,在急性分离的海马CA1神经元上,采用膜片钳细胞贴附式记录L型电压依赖性钙通道电流.脑缺血后CA1神经元L型钙通道的总体平均电流明显增大,这是由于通道的开放概率增加所致.进一步分析单通道动力学显示,脑缺血后通道的开放时间变长,通道的开放频率增大.研究结果提示L型钙通道功能活动增强可能参与了缺血后海马CA1锥体神经元的细胞内钙浓度升高  相似文献   

2.
The effects of lanthanum (III) (La3+) on voltage-gated sodium channel currents (I Na) in freshly dissociated rat hippocampal CA1 neurons were studied using the whole-cell patch clamp techniques. La3+ reversibly enhanced I Na in a concentration- and voltage-dependent manner. The 50% enhancement concentration (EC50) of La3+ on I Na was 9.93 μM. In addition, 10 μM La3+ shifted the steady state activation curve of I Na towards positive potential and the steady state inactivation curve towards negative potential without changing the slope factor. These results indicated that La3+ could increase the amplitudes of I Na and change the activation and inactivation courses of I Na even in very low concentration.  相似文献   

3.
短暂脑缺血可对随后的损伤性脑缺血表现出明显的耐受.有研究表明大电导Ca2+依赖K+(BKCa)通道活动增强参与了缺血性脑损伤.采用膜片钳的内面向外式,观察了3 min短暂脑缺血后6 h、24 h以及48 h大鼠海马CA1区锥体细胞上BKCa通道活动的动态变化.短暂脑缺血后BKCa通道的单通道电导和翻转电位均未见明显变化,但通道的开放概率则在缺血预处理后的前24 h内显著降低.通道动力学分析显示通道关闭时间变长是短暂脑缺血后通道活动降低的主要原因,因为通道的开放时间未发生明显变化.结果提示短暂脑缺血所致的BKCa通道活动降低可能与缺血耐受的产生有关.  相似文献   

4.
采用膜片钳内面向外式记录技术,研究急性分离成年大鼠海马CAl区锥体神经元外向整流氯离子通道的氧化还原调控。发现细胞内侧给予氧化剂DTNB(5,5'-dithiobis-2-nitrobenzoic acid),可显著减弱氯通道的活动,IC50值为(28.05±2.42)μmol/L;还原剂DTT(dithiothreitol)对氯通道没有明显影响,但可逆转DTNB引起的抑制效应。说明DTNB不改变通道电导,其引起的通道活动减弱是由氯通道关闭时间延长而开放时间缩短所致。研究还发现,另一对氧化型和还原型谷胱甘肽具有与DTNB和DTT同样的效应。本研究结果显示,成年大鼠海马CA1区锥体神经元外向整流氯通道可以被细胞内氧化还原剂所调控。  相似文献   

5.
The combination of two precipitating factors appears to be more and more recognized in patients with temporal lobe epilepsy. Using a two-hit rat model, with a neonatal freeze lesion mimicking a focal cortical malformation combined with hyperthermia-induced seizures mimicking febrile seizures, we have previously reported an increase of inhibition in CA1 pyramidal cells at P20. Here, we investigated the changes affecting excitatory and inhibitory drive onto CA1 interneurons to better define the changes in CA1 inhibitory networks and their paradoxical role in epileptogenesis, using electrophysiological recordings in CA1 hippocampus from rat pups (16–20 d old). We investigated interneurons in CA1 hippocampal area located in stratum oriens (Or) and at the border of strata lacunosum and moleculare (L-M). Our results revealed an increase of the excitatory drive to both types of interneurons with no change in the inhibitory drive. The mechanisms underlying the increase of excitatory synaptic currents (EPSCs) in both types of interneurons are different. In Or interneurons, the amplitude of spontaneous and miniature EPSCs increased, while their frequency was not affected suggesting changes at the post-synaptic level. In L-M interneurons, the frequency of spontaneous EPSCs increases, but the amplitude is not affected. Analyses of miniature EPSCs showed no changes in both their frequency and amplitude. We concluded that L-M interneurons increase in excitatory drive is due to a change in Shaffer collateral axon excitability. The changes described here in CA1 inhibitory network may actually contribute to the epileptogenicity observed in this dual pathology model by increasing pyramidal cell synchronization.  相似文献   

6.
Oligodendrocyte (OL) plays a critical role in myelination and axon maintenance in central nervous system. Recent studies show that OL can also express NMDA receptors in development and pathological situations in white matter. There is still lack of studies about OL properties and function in gray matter of brain. Here we reported that some glial cells in CA1 region of rat hippocampal slices (P15-23) had distinct electrophysiological characteristics from the other glia cells in this region, while they displayed uniform properties with OL from white matter in previous report; therefore, they were considered as OL in hippocampus. By loading dye in recording pipette and imaging with two-photon laser scanning microscopy, we acquired the high spatial resolution, three-dimension images of these special cells in live slices. The OL in hippocampus shows a complex process-bearing shape and the distribution of several processes is parallel to Schaffer fiber in CA1 region. When stimulating Schaffer fiber, OL displays a long duration depolarization mediated by inward rectifier potassium channel. This suggested that the OL in CA1 region could sense the neuronal activity and contribute to potassium clearance.  相似文献   

7.
Electrophysiological recording techniques were used to study the Na+ dependence of currents through amiloride-sensitive sodium channels (ASSCs) in rat taste cells from the fungiform and vallate papillae. Perforated patch voltage clamp recordings were made from isolated fungiform and vallate taste receptor cells (TRCs) and Na+ transport was measured across lingual epithelia containing fungiform or vallate taste buds in a modified Ussing chamber. In isolated fungiform TRCs that contain Na+ currents sensitive to the diuretic amiloride, Na+ ions inhibit their own influx through ASSCs, a process known as sodium self-inhibition. Due to the interaction between self-inhibition and the driving force for Na+ entry, self-inhibition is most evident in whole-cell recordings at Na+ concentrations from 50 to 75 mM. In amiloride-sensitive cells, the Na permeability is significantly higher in extracellular solutions containing 35 mM Na+ than in 70 or 140 mM Na+. Compared with the block by amiloride, the development of self-inhibition is slow, taking up to 15 s to become maximally inhibited. Approximately one third of fungiform TRCs and all vallate TRCs lack functional ASSCs. These amiloride-insensitive TRCs show no signs of self-inhibition, tying this phenomenon to the presence of ASSCs. The sulfhydryl reagent, p-hydroxymercuribenzoate (p-HMB; 200 μM), reversibly removed self-inhibition from amiloride-sensitive Na+ currents, apparently by modifying cysteine residues in the ASSC. Na+ currents in amiloride-insensitive TRCs were unaffected by p-HMB. In sodium transport studies in fungiform taste bud–containing lingual epithelia, ∼40% of the change in short-circuit current (Isc) after addition of 500 mM NaCl to the mucosal chamber is amiloride sensitive (0.5 mM). p-HMB significantly enhanced mucosal NaCl-induced changes in these epithelia at mucosal Na+ concentrations of 50 mM and above. In contrast, the vallate-containing epithelia, which are insensitive to amiloride, showed no enhancement of Isc during p-HMB treatment. These findings suggest that sodium self-inhibition is present in ASSCs in taste receptor cells where it may play a crucial role in performance of salt-sensitive pathways in taste tissue during sodium stimulation. This phenomenon may be important in the process of TRC adaptation, in the conservation of cellular resources during chronic sodium exposure, or in the gustatory response to water.  相似文献   

8.
目的:在体视显微镜下分割Wistar大鼠海马CA1区、CA3区和齿状回(DG)区。方法:24只健康Wistar大鼠,分组如下:①6只大鼠取脑后硫堇染色,观察海马各区细胞形态;②6只大鼠分离出海马,体视显微镜下观察海马形态并分割CA1区、CA3区和DG区,各区分别切片后硫堇染色;③12只大鼠检测海马各区HSP 70的表达。结果:①大脑冠状切片硫堇染色清晰显示出海马CA1区、CA3区和DG区;②体视显微镜下,在海马腹侧面,沿着CA1区和DG区之间的海马沟可分割开CA1区和DG区,沿着CA3区和DG区之间的裂隙可分割开CA3区和DG区;分割后的海马各区细胞形态结构与整体大脑冠状切片上相对应区域的细胞形态结构一致;③Western blot结果显示:与对照组相比,脑缺血组HSP 70的表达在海马CA3+DG区明显上调、而在CA1无明显变化,这一结果与免疫组织化学结果一致。结论:上述方法可比较明确地分割Wistar大鼠海马CA1区、CA3区和DG区,分割得到的各区组织可用于蛋白质表达的检测。  相似文献   

9.
丛红群  岳旺 《生物磁学》2009,(3):444-447
目的:观察不同浓度的琥珀酸对大鼠海马CA1区神经元电压依赖性钙通道(voltage—dependent calcium channels,VDCC)电流的作用,初步探讨琥珀酸对神经元保护的电生理学基础。方法:采用传统全细胞膜片钳技术和制霉菌素(nystatin)穿孔膜片钳技术观察琥珀酸对海马CA1区神经元VDCC电流的影响。结果:不同浓度的琥珀酸(10^-6、10^-5、10^-4、10^-3、10^-2和10^-1mol·L^-1)在海马CA1区对低电压激活(low—voltage activated,LVA)钙通道电流未见任何影响,而对高电压激活(high—voltage activated,HVA)钙通道电流的抑制呈浓度依赖性。对照组HVA钙电流为580.05±17.32pA,分别给予10^-6、10^-5、10^-4、10^-3、10^-2和10^-1mol·L^-1。的琥珀酸后,HVA钙电流依次为563.74±16.65,517.99±15.24,444.66±13.26,405.32±19.11,269.03±9.96和86.41±3.25pA,同对照组相比差异有统计学意义(n=8,P〈0.01)。结论:琥珀酸能浓度依赖性地抑制HVA钙电流,而对LVA钙电流无影响。由此推测琥珀酸可能通过抑制HVA钙电流减少Ca^2+内流而影响海马CA1区神经元的兴奋性,从而抑制癫痫的形成,其脑保护作用可能与此有关。  相似文献   

10.
Multi-photon fluorescence microscopy has enabled the analysis of morphological and physiological parameters of brain cells in the intact tissue with high spatial and temporal resolution. Combined with electrophysiology, it is widely used to study activity-related calcium signals in small subcellular compartments such as dendrites and dendritic spines. In addition to calcium transients, synaptic activity also induces postsynaptic sodium signals, the properties of which are only marginally understood. Here, we describe a method for combined whole-cell patch-clamp and multi-photon sodium imaging in cellular micro domains of central neurons. Furthermore, we introduce a modified procedure for ultra-violet (UV)-light-induced uncaging of glutamate, which allows reliable and focal activation of glutamate receptors in the tissue. To this end, whole-cell recordings were performed on Cornu Ammonis subdivision 1 (CA1) pyramidal neurons in acute tissue slices of the mouse hippocampus. Neurons were filled with the sodium-sensitive fluorescent dye SBFI through the patch-pipette, and multi-photon excitation of SBFI enabled the visualization of dendrites and adjacent spines. To establish UV-induced focal uncaging, several parameters including light intensity, volume affected by the UV uncaging beam, positioning of the beam as well as concentration of the caged compound were tested and optimized. Our results show that local perfusion with caged glutamate (MNI-Glutamate) and its focal UV-uncaging result in inward currents and sodium transients in dendrites and spines. Time course and amplitude of both inward currents and sodium signals correlate with the duration of the uncaging pulse. Furthermore, our results show that intracellular sodium signals are blocked in the presence of blockers for ionotropic glutamate receptors, demonstrating that they are mediated by sodium influx though this pathway. In summary, our method provides a reliable tool for the investigation of intracellular sodium signals induced by focal receptor activation in intact brain tissue.  相似文献   

11.
目的: 采用全细胞膜片钳技术记录大鼠脑片实验中NMDA电流,并介绍诱发NMDA电流的自制刺激电极制作方法。方法: 在大鼠目标脑区快速取材并获取活性良好的脑片,分别通过含受体激动剂NMDA的孵育液灌流和电刺激诱发NMDA电流两种方式进行膜片钳记录;利用针灸针自制刺激电极。结果: 通过记录到大鼠脑片神经元的EPSC和AP可判断神经元的状态,比较两种方法诱导的NMDA电流幅度,即直接灌流受体激动剂NMDA(282.0±24.3) pA和自制刺激电极诱发(261.4±40.1)pA,二者电流幅度无明显差异(P>0.05,n=4);自制刺激电极与进口刺激电极诱发的NMDA电流幅度分别为(267.2±36.5)pA vs (239.2±41.0)pA,二者电流幅度无明显差异(P>0.05,n=4),证明自制刺激电极成功。结论: 大鼠脑片实验中,通过直接灌流激动剂与电刺激两种方式均可诱导NMDA电流,自制刺激电极为在脑片上记录诱发电流提供了一种经济、可靠的实验手段,便于各实验室应用。  相似文献   

12.
Neurotrophins are molecules that regulate neuronal survival, nervous system plasticity, and many other physiological functions of neuronal and glial cells. Here we studied the physiological action of a novel neurosecretory polypeptide proline-rich polypeptide (PRP), isolated from bovine neurohypophysis neurosecretory granules, on voltage-gated Ca currents and spike firing activity of retinal ganglion cells. PRP reversibly increased high voltage–activated L-type Ca current, but was without effect on low voltage–activated T-type current. PRP also increased the spike after hyperpolarization and reduced the frequency of spike firing, most likely by affecting a Ca-dependent potassium current.  相似文献   

13.
Abstract: In fetal rat brain neurons, activation of voltage-dependent Na+ channels induced their own internalization, probably triggered by an increase in intracellular Na+ level. To investigate the role of phosphorylation in internalization, neurons were exposed to either activators or inhibitors of cyclic AMP- and cyclic GMP-dependent protein kinases, protein kinase C, and tyrosine kinase. None of the tested compounds mimicked or inhibited the effect of Na+ channel activation. An increase in intracellular Ca2+ concentration induced either by thapsigargin, a Ca2+-ATPase blocker, or by A23187, a Ca2+ ionophore, was unable to provoke Na+ channel internalization. However, Ca2+ seems to be necessary because both neurotoxin- and amphotericin B-induced Na+ channel internalizations were partially inhibited by BAPTA-AM. The selective inhibitor of Ca2+/calmodulin-dependent protein kinase II, KN-62, caused a dose-dependent inhibition of neurotoxin-induced internalization due to a blockade of channel activity but did not prevent amphotericin B-induced internalization. The rate of increase in Na+ channel density at the neuronal cell surface was similar before and after channel internalization, suggesting that recycling of internalized Na+ channels back to the cell surface was almost negligible. Pretreatment of the cells with an acidotropic agent such as chloroquine prevented Na+ channel internalization, indicating that an acidic endosomal/lysosomal compartment is involved in Na+ channel internalization in neurons.  相似文献   

14.
Yao XH  Xiong Y 《生理学报》2005,57(3):333-339
本实验采用脑片膜片钳全细胞记录和生物胞素(biocytin)组化染色相结合的技术,研究出生后(postnatalday,P)3~30日龄大鼠(P3~30)内侧膝状体腹侧部(ventralpartitionofmedialgeniculatebody,MGBv)神经元的电生理和形态学特性的发育变化。结果显示:(1)在P3~30的发育过程中,MGBv神经元的静息膜电位自?40mV降至?67mV(P<0.01);输入阻抗由1832M?降至806M?(P<0.01);时间常数由2.55ms降至0.96ms(P<0.01)。同时,动作电位的幅度、阈值和时程也表现出显著差异(P<0.01);(2)K+通道阻断剂4-AP使P6的MGBv神经元诱发动作电位数目减少,幅度降低,时程变宽,并使P16的动作电位幅度逐渐降低至去极化脉冲终末达到平台电位,而Ca2+通道阻断剂CdCl2仅引起P16的MGBv神经元动作电位的幅度降低,时程延长;(3)在用biocytin标记的MGBv神经元观察到,幼稚MGBv蓬丛样神经元(tuftedneuron)胞体呈圆形或椭圆形,而随着出生后日龄的增长,胞体逐渐变成梭形。轴突出现较早,树突的发育相对较晚,但其发育变化更为显著和复杂。以上结果提示,大鼠出生后MGBv神经元电生理和形态学特性仍有显著的发育变化,且两者明显相关。  相似文献   

15.
贺立新  卢大华  蔡海荣 《生物磁学》2011,(17):3255-3257,3269
目的:探究人体海马CA1区神经元锥体细胞胞体发育的过程。方法:取19孕周(19GW)、20GW、26GW、35GW、38GW水囊引产胎儿和8岁(8Y)死亡儿童各1例,所有标本来源符合相关法律法规和伦理要求,采用Golgi染色技术,借助配备有"Neurolu-cida"软件的共聚焦显微镜观察CA1区锥体细胞胞体,分析细胞体的长度和面积。结果:19GW和20GW细胞体形态尚不明显。26Gw、35Gw、38Gw、8Y海马CA1区锥体神经元胞体长度分别为56.5±2.5(μm)、80.8±8.5(μm)、85.9±12.2(μm)、91.3±9.6(μm);胞体面积分别为254.5±13.7(μm^2)、362.5±15.5(μm^2)、380.5±22.8(μm^2)、460.8±25.7(μm^2)。26GW锥体细胞胞体长度和面积与35GW、38GW、8Y相比差异明显(P〈0.05);8岁胞体长度和面积与38GW相比有小幅度增大;细胞形态学:26GW、35GW、38GW锥体细胞胞体切面呈椭圆形或三角形,随胎龄增大,胞体长度和面积逐渐增长增大,特别是细胞基底部增宽。胞体形态由椭圆形逐渐转换为三角形;细胞底部的基树突数量也逐渐增加,到38GW时可以达到4—7个,8Y锥体细胞胞体在切面上基本上都呈三角形,细胞长度和面积与38GW相比稍微增大,相对趋于稳定。结论:人体在发育过程中,锥体细胞长度呈逐渐增长、面积呈逐渐增大趋势,26GW与35GW之间变化最大,38GW与8Y胞体面积差异不明显,整个变化趋势逐渐变慢并趋于稳定。  相似文献   

16.
Summary Measurements were made of the kinetics and steady-state properties of the sodium conductance changes in the giant axon of the crabCarcinus maenas. The conductance measurements were made in the presence of small concentrations of tetrodotoxin and as much electrical compensation as possible in order to minimize errors caused by the series resistance. After an initial delay of 10–150 sec, the conductance increase during depolarizing voltage clamp pulses followed the Hodgkin-Huxley kinetics. Values of the time constant for the activation of the sodium conductance lay on a bell-shaped curve with a maximum under 180 sec at –40 mV (at 18°C). Values of the time constant for the inactivation of the sodium conductance were also fitted using a bell-shaped curve with a maximum under 7 msec at –70 mV. The effects of membrane potential on the fraction of Na channels available for activation studied using double pulse protocols suggest that hyperpolarizing potentials more negative than –100 mV lock a fraction of the Na channels in a closed conformation.  相似文献   

17.
Spontaneous, single channel, chloride currents were recorded in 48% of cell-attached patches on neurones in the CA1 region of rat hippocampal slices. In some patches, there was more than 1 channel active. They showed outward rectification: both channel conductance and open probability were greater at depolarized than at hyperpolarized potentials. Channels activated by γ-aminobutyric acid (GABA) in silent patches on the same neurones had similar conductance and outward rectification. The spontaneous currents were inhibited by bicuculline and potentiated by diazepam. It was concluded that the spontaneously opening channels were constitutively active, nonsynaptic GABAA channels. Such spontaneously opening GABAA channels may provide a tonic inhibitory mechanism in these cells and perhaps in other cells that have GABAA receptors although not having a GABAA synaptic input. They may also be a target for clinically useful drugs such as the benzodiazepines. Received: 31 August 1999/Revised: 2 November 1999  相似文献   

18.
Ionized calcium-binding adapter molecule 1 (iba-1) is specifically expressed in microglia and plays an important role in the regulation of the function of microglia. We observed chronological changes of iba-1-immunoreactive cells and iba-1 level in the gerbil hippocampal CA1 region after transient ischemia. Transient forebrain ischemia in gerbils was induced by the occlusion of bilateral common carotid arteries for 5 min. Immunohistochemical and Western blot analysis of iba-1 were performed in the gerbil ischemic hippocampus. In the sham-operated group, iba-1-immunoreactive cells were detected in the CA1 region. Thirty minutes after ischemia/reperfusion, iba-1 immunoreactivity significantly increased, and its immunoreactive cells were well ramified. Three hours after ischemia/reperfusion, iba-1 immunoreactivity and level decreased, and thereafter they increased again with time after ischemia/reperfusion. Three days after ischemia/reperfusion, iba-1-immunoreactive cells had well-ramified processes, which projected to the stratum pyramidale of the CA1 region. Seven days after ischemia/reperfusion, iba-1 immunoreactivity and level were highest in the CA1 region, whereas they significantly decreased in the CA1 region 10 days after ischemia/reperfusion. Iba-1-immunoreactive cells in the ischemic CA1 region were co-localized with OX-42, a microglia marker. In brief, iba-1-immunoreactive cells change morphologically and iba-1 immunoreactivity alters in the CA1 region with time after ischemia/reperfusion. These may be associated with the delayed neuronal death of CA1 pyramidal cells in the gerbil ischemic hippocampus.  相似文献   

19.
海马脑片盲法膜片钳全细胞记录技术   总被引:18,自引:0,他引:18  
Liu ZW  Li LJ  Liu CG 《生理学报》2001,53(5):405-408
本文较为详细地介绍了海马脑片盲法膜片钳全细胞记录技术,对其关键步骤和需要注意的问题进行了重点说明,同时对CA1区锥体神经元突触活动的特点,电压门控性Ca^2 通道以及谷氨酸(glutamate,Glu)γ-氨基丁酸(GABA)受体通道电流性质等进行了观察和分析,实验结果为采用海马脑片盲法膜片钳全细胞记录技术研究海马神经元离子通道动力学性质和中枢神经系统药物对突触活动的影响提供了可靠的依据。  相似文献   

20.
Abstract: In vivo brain microdialysis experiments were performed in the gerbil to evaluate the origin of accumulation of extracellular glutamate under transient ischemia. Microdialysis probes were positioned in the CA1 field of the hippocampus in which proliferation of astrocytes, death of CA1 pyramidal neurons, and damage of presynaptic terminals had been induced by 5-min ischemia 10–14 days before the microdialysis experiment; in the white matter of the cerebral cortex, which contained few neurons, few presynaptic terminals, and many astrocytes; or in the histologically normal CA1 field of the hippocampus, and then 5- or 20-min ischemia was induced. When 5-min ischemia was induced, no significant increase in glutamate content was observed in the CA1 field that showed proliferation of astrocytes, death of CA1 pyramidal neurons, and damage of presynaptic terminals and in the white matter of the cerebral cortex, whereas a significant increase in glutamate (15-fold) was observed in the histologically normal CA1 field. When 20-min ischemia was induced, no significant increase in glutamate content was observed in the CA1 field that showed proliferation of astrocytes, death of CA1 pyramidal neurons, and damage of presynaptic terminals and in the white matter during the first 10 min after the onset of 20-min ischemia, but remarkable ischemia-induced increases in glutamate were observed during the last 10 min of 20-min ischemia in both areas. An excessive increase in glutamate (100-fold) was observed during 20-min ischemia in the normal CA1 field of the hippocampus. When a probe was positioned in the CA1 field of the hippocampus in which presynaptic terminals of Schaffer collaterals and commissural fibers had been eliminated by bilateral kainate injections into the lateral ventricles 4–7 days before the microdialysis experiment and then 5-min ischemia was induced, a significant increase in glutamate was observed during the last half of 5-min ischemia. These results suggest that the efflux of glutamate from astrocytes does not contribute to the large ischemia-induced glutamate accumulation in the CA1 field of the hippocampus during 5-min ischemia but contributes to the ischemia-induced increase in glutamate level during ischemia with a longer duration and that ischemia-induced efflux of glutamate in the CA1 field during 5-min ischemia originates mainly from neuronal elements: presynaptic terminals and postsynaptic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号