首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA editing in kinetoplastid protozoa.   总被引:1,自引:0,他引:1  
  相似文献   

2.
RNA editing in kinetoplastid protozoa.   总被引:17,自引:0,他引:17       下载免费PDF全文
  相似文献   

3.
Molecular phylogeny has provided a new insight on the almost century-old discussion on the origin of parasitism in kinetoplastid protozoa. Phylogenetic trees constructed on the basis of ribosomal RNA sequences show that digenetic parasites (which alternate between insect vector and vertebrate host) did not descend from the same common ancestor. Lineages of Trypanosoma appeared early in evolution and descended directly from an ancestral trypanosomatid, while lineages of Leishmania and Endotrypanum separated late from monogenetic parasites. Here, Dmitri Maslov and Larry Simpson discuss how these new results have changed our view of the evolution of parasitism.  相似文献   

4.
Several species of kinetoplastid protozoa cause major human infectious diseases. Trypanosoma cruzi is responsible for the fatal Chagas disease in large parts of South America, the various species of Leishmania cause a number of different human diseases with millions of patients world-wide, and the African trypanosome Trypanosoma brucei is the agent of human sleeping sickness, a disastrously re-emerging epidemic of fatal infections in Sub-Saharan Africa. Chemotherapy of all of these infections is in a very unsatisfactory state. cAMP signalling pathways in humans have provided interesting drug targets for a number of clinical conditions, from asthma to impotency. Similarly, cAMP signalling in kinetoplastids might offer useful targets for the development of novel antiparasitic drugs, which makes their exploration an urgent need. Current knowledge suggests that cAMP signalling proceeds along very similar pathways in all kinetoplastid pathogens (T. cruzi, the Leishmanias and T. brucei). Their adenylyl cyclases are structurally very different from the human enzymes and appear to function as enzyme-linked cell surface receptors. They might represent the major sensory apparatus of the kinetoplastids, guiding much of their environmental sensing and host/parasite interaction. The cAMP-specific phosphodiesterases of the kinetoplastids are rather similar to those of human cells and might function in similar ways. Essentially nothing is known on downstream effectors of cAMP in the kinetoplastids. Homologues of protein kinase A and its regulatory subunits have been identified, but their biochemical properties seem to be disctinct from that of mammalian protein kinase A.  相似文献   

5.
6.
Cilia and flagella are central to many biological processes in a diverse range of organisms. The kinetoplastid protozoa are very appealing models for the study of flagellar function, particularly in the light of the availability of extensive trypanosomatid genome information. In addition to the highly conserved 9 + 2 axoneme, the kinetoplastid flagellum contains a characteristic paraflagellar rod structure (PFR). The PFR is necessary for full motility and provides support for metabolic regulators that may influence flagellar beating. However, there is an intriguing puzzle: one clade of endosymbiont-containing kinetoplastids apparently lack a PFR yet are as motile as species that possess a PFR and are able to attach to the invertebrate host epithelia. We investigated how these organisms are able to locomote despite the apparent lack of PFR. Here we have identified a PFR1 gene in the endosymbiont-bearing trypanosome Crithidia deanei. This gene is expressed in C. deanei and is able to partially complement a pfr1 null mutation in Leishmania mexicana cells, demonstrating that the encoded protein is functional. Careful reexamination of C. deanei flagellar ultrastructure revealed a greatly reduced PFR missed by many previous analyses. This affirms the PFR as a canonical organelle of kinetoplastids. Moreover, although PFR proteins have been conserved in evolution, primary sequence differences contribute to particular PFR morphotypes characteristic of different kinetoplastid species.  相似文献   

7.
RNA editing and the mitochondrial cryptogenes of kinetoplastid protozoa   总被引:40,自引:0,他引:40  
L Simpson  J Shaw 《Cell》1989,57(3):355-366
  相似文献   

8.
Current biomedical research has its focus on the search for newer intervention strategies to control public health impact of parasitic diseases. The dramatic advances of molecular and cellular biology in recent times have provided opportunities for discovering and evaluating molecular targets for drug designing, which now form a rational basis for the development of improved anti parasitic therapy. DNA topoisomerases, the "cellular magicians" involved in nearly all biological processes governing DNA, have emerged as one such biological target. Over the last two decades, interest in topoisomerases has expanded beyond the realm of the basic science laboratory into the clinical arena. This review aims at providing a comprehensive insight into the biology of DNA topoisomerases and also focus on its evolution as a drug target in the unicellular kinetoplastids.  相似文献   

9.
10.
11.
12.
Giardia, a protozoan parasite of humans and other vertebrates, is a common cause of intestinal disease worldwide. Besides its medical importance, Giardia is considered an excellent system to study the evolution of fundamental cellular processes because it belongs to the earliest branches of the eukaryotic lineage of descent. Giardia trophozoites lack organelles typical of higher eukaryotes such mitochondria, peroxisomes and compartments involved in intracellular protein trafficking and secretion, such as the Golgi apparatus and secretory granules. Nevertheless, the minimal machinery for protein transport and sorting is present in this parasite. When Giardia undergoes encystation, the biogenesis of secretory organelles necessary to transport cyst wall constituents to the cell surface takes place. Recent studies in both vegetative and encysting trophozoites have provided interesting information regarding the secretory pathway of this important human pathogen.  相似文献   

13.
Protein trafficking in plant cells   总被引:2,自引:1,他引:1       下载免费PDF全文
The cells of higher plants contain distinct subcellular compartments (organelles) that perform specialized functions such as photosynthesis, carbohydrate and lipid metabolism, and so forth. The majority of the protein constituents of plant organelles are formed as cytosolic precursors with N-terminal extensions that direct transport across one or more membrane bilayers in a post- or co-translational fashion. Since the majority of proteins in plant cells are products of nuclear gene expression, there must be precise sorting mechanisms in the cytoplasm that direct proteins to their correct cellular locations. Based on recent studies of protein targeting to chloroplasts and vacuoles, the details of these intracellular sorting mechanisms are becoming clear. The ability to direct proteins to specific compartments within cells provides new opportunities for improvement of plants by genetic manipulation.  相似文献   

14.
15.
Intestinal apolipoprotein B mRNA is edited at nucleotide 6666 by a C to U transition resulting in a translational stop codon. The enzymatic properties of the editing activity were characterised in vitro using rat enterocyte cytosolic extract. The editing activity has no nucleotide or ion cofactor requirement. It shows substrate saturation with an apparent Km for the RNA substrate of 2.2 nM. The editing enzyme requires no lag period prior to catalysis, and does not assemble into a higher order complex on the RNA substrate. In crude cytosolic extract editing activity is completely abolished by treatment with micrococcal nuclease or RNAse A. Partially purified editing enzyme is no longer sensitive to nucleases, but is inhibited in a dose dependent manner by nuclease inactivated crude extract. The buoyant density of partially purified editing enzyme is 1.3 g/ml, that of pure protein. Therefore, the apolipoprotein B mRNA editing activity consists of a well defined enzyme with no RNA component. The nuclease sensitivity in crude cytosolic extract is explained by the generation of inhibitors for the editing enzyme. The editing of apo B mRNA has little similarity to complex mRNA processing events such as splicing and unlike editing in kinetoplastid protozoa does not utilise guide RNAs.  相似文献   

16.
The importance of protein kinases in cell signaling and cell cycle control has led to detailed structural and functional studies in various eukaryotes, and hence to the synthesis of specific chemical inhibitors for managing disease. Here, the current progress in applying developments from the wider protein kinase field to parasitic protozoa is reviewed. The availability of genome sequence data for several parasites has led to the identification of many protein kinases. Reverse genetics studies, including gene knockout and 'chemical genetics', can help to define the roles of the protein kinases and validate them as drug targets. In addition, screening chemical libraries with active recombinant protein kinases can identify lead compounds for drug design.  相似文献   

17.
18.
The sliding clamps of chromosomal replicases are acted upon by both the clamp loader and DNA polymerase. Several other proteins and polymerases also interact with the clamp. These proteins bind the clamp at the same spot and use it in sequential fashion. First the clamp loader must bind the clamp in order to load it onto DNA, but directly thereafter the clamp loader must clear away from the clamp so it can be used by the replicative DNA polymerase. At the end of replication, the replicase is ejected from the clamp, which presumably allows the clamp to interact with yet other proteins after its use by the replicase. This paper describes how different proteins in the Escherichia coli replicase, DNA polymerase III holoenzyme, coordinate their traffic flow on the clamp. The mechanism by which traffic flow on the beta clamp is directed is based on competition of the proteins for the clamp, where DNA structure modulates the competition. It seems likely that the principles will generalize to a traffic flow of other factors on these circular clamp proteins.  相似文献   

19.
The accurate targeting of proteins to their final destination is an essential process in all living cells. Apicomplexans are obligate intracellular protozoan parasites that possess a compartmental organization similar to that of free-living eukaryotes but can be viewed as professional secretory cells. Establishment of parasitism involves the sequential secretion from highly specialized secretory organelles, including micronemes, rhoptries and dense granules. Additionally, apicomplexans harbor a tubular mitochondrion, a nonphotosynthetic plastid organelle termed the apicoplast, acidocalcisomes and an elaborated inner membrane complex composed of flattened membrane cisternae that are derived from the secretory pathway. Given the multitude of destinations both inside and outside the parasite, the endoplasmic reticulum/Golgi of the apicomplexans constitutes one of the most busy roads intersections in eukaryotic traffic.  相似文献   

20.
Protein S-palmitoylation, the covalent lipid modification of the side chain of Cys residues with the 16-carbon fatty acid palmitate, is the most common acylation of proteins in eukaryotic cells. This post-translational modification provides an important mechanism for regulating protein subcellular localization, stability, trafficking, translocation to lipid rafts, aggregation, interaction with effectors and other aspects of protein function. In addition, N-terminal myristoylation and C-terminal prenylation, two well-studied post-translational modifications, frequently precede protein S-palmitoylation at a nearby spot of the polypeptide chain. Whereas N-myristoylation and prenylation are considered essentially irreversible attachments, S-palmitoylation is a tightly regulated, reversible modification. In addition, the unique reversibility of protein palmitoylation also allows proteins to rapidly shuttle between intracellular membrane compartments in a process controlled, in some cases, by the DHHC family of palmitoyl transferases. Recent cotransfection experiments using the DHHC family of protein palmitoyl transferases as well as RNA interference results have revealed that these enzymes, frequently localized to the Golgi apparatus, tightly control subcellular trafficking of acylated proteins. In this article we will give an overview of how protein palmitoylation regulates protein trafficking and subcellular localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号