首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-two amino acid residues from transmembrane domain 3 of the creatine transporter were replaced, one at a time, with cysteine. The background for mutagenesis was a C144S mutant retaining approximately 75% of wild-type transport activity but resistant to methanethiosulfonate (MTS) reagents. Each substitution mutant was tested for creatine transport activity and sensitivity to the following MTS reagents: 2-aminoethyl methanethiosulfonate (MTSEA), 2-(trimethylammonium) ethyl methanethiosulfonate (MTSET), and 2-sulfonatoethyl methanethiosulfonate (MTSES). Two mutants (G134C and Y148C) were inactive, but most mutants showed significant levels of creatine transport. Treatment with MTSEA inhibited the activity of the W154C, Y147C, and I140C mutants. Creatine partially protected I140C from inactivation, and this residue, like Cys-144 in the wild-type CreaT, is predicted to be close to a creatine binding site. MTSEA inactivation of Y147C was dependent on Na+ and Cl- suggesting that solvent accessibility was ion-dependent. Helical wheel and helical net projections indicate that the three MTSEA-sensitive mutants (W154C, Y147C, and I140C) and two inactive mutants (V151C and Y148C) are aligned on a face of an alpha-helix, suggesting that they form part of a substrate pathway. The W154C mutant, located near the external face of the membrane, was accessible to the larger MTS reagents, whereas those implicated in creatine binding were only accessible to the smaller MTSEA. Consideration of our data, together with a study on the serotonin transporter (Chen, J. G., Sachpatzidis, A., and Rudnick, G. (1997) J. Biol. Chem. 272, 28321-28327), suggests that involvement of residues from transmembrane domain 3 is a common feature of the substrate pathway of Na+- and Cl- -dependent neurotransmitter transporters.  相似文献   

2.
The ClC channel family consists of chloride channels important for various physiological functions. Two members in this family, ClC-0 and ClC-1, share approximately 50-60% amino acid identity and show similar gating behaviors. Although they both contain two subunits, the number of pores present in the homodimeric channel is controversial. The double-barrel model proposed for ClC-0 was recently challenged by a one-pore model partly based on experiments with ClC-1 exploiting cysteine mutagenesis followed by modification with methanethiosulfonate (MTS) reagents. To investigate the pore stoichiometry of ClC-0 more rigorously, we applied a similar strategy of MTS modification in an inactivation-suppressed mutant (C212S) of ClC-0. Mutation of lysine 165 to cysteine (K165C) rendered the channel nonfunctional, but modification of the introduced cysteine by 2-aminoethyl MTS (MTSEA) recovered functional channels with altered properties of gating-permeation coupling. The fast gate of the MTSEA-modified K165C homodimer responded to external Cl(-) less effectively, so the P(o)-V curve was shifted to a more depolarized potential by approximately 45 mV. The K165C-K165 heterodimer showed double-barrel-like channel activity after MTSEA modification, with the fast-gating behaviors mimicking a combination of those of the mutant and the wild-type pore, as expected for the two-pore model. Without MTSEA modification, the heterodimer showed only one pore, and was easier to inactivate than the two-pore channel. These results showed that K165 is important for both the fast and slow gating of ClC-0. Therefore, the effects of MTS reagents on channel gating need to be carefully considered when interpreting the apparent modification rate.  相似文献   

3.
We previously showed that lysine substitutions at two residues in segment 6 of domain 3 in voltage-gated Na(+) channel rNav1.4 (S1276K, L1280K) reduced steady-state inactivated local anesthetic block. Here we studied cysteine substitutions at the same residues (S1276C, L1280C). We used whole-cell recordings to determine local anesthetic block (100 microM bupivacaine) before and after cysteine modification with 1.5 mM 2-aminoethyl methanethiosulfonate (MTSEA). Compared with rNav1.4, steady-state resting bupivacaine block at -180 mV was increased in S1276C, while inactivated block at -50 mV was not different in the mutants. After application of MTSEA at -160 mV, rNav1.4 showed enhanced bupivacaine block and a negative shift in V(1/2) of the bupivacaine affinity curve, while L1280C and S1276C showed a decrease in inactivated bupivacaine block after MTSEA. Application of MTSEA at 0 mV produced similar results in rNav1.4 and L1280C, but an opposite effect in S1276C, i.e., enhancement of bupivacaine block, with a large negative shift in V(1/2) of the bupivacaine affinity curve similar to that found in rNav1.4. We conclude that 1) MTSEA modification of 1276C or 1280C decreases inactivated bupivacaine block similar to that found in L1280K and S1276K, 2) residue 1276C is only accessible to MTS-modification in the resting state, and 3) MTSEA may modify a native cysteine in rNav1.4 that produces an allosteric, indirect effect on bupivacaine affinity.  相似文献   

4.
mu-Conotoxin (mu-CTX) specifically occludes the pore of voltage-dependent Na(+) channels. In the rat skeletal muscle Na(+) channel (mu1), we examined the contribution of charged residues between the P loops and S6 in all four domains to mu-CTX block. Conversion of the negatively charged domain II (DII) residues Asp-762 and Glu-765 to cysteine increased the IC(50) for mu-CTX block by approximately 100-fold (wild-type = 22.3 +/- 7.0 nm; D762C = 2558 +/- 250 nm; E765C = 2020 +/- 379 nm). Restoration or reversal of charge by external modification of the cysteine-substituted channels with methanethiosulfonate reagents (methanethiosulfonate ethylsulfonate (MTSES) and methanethiosulfonate ethylammonium (MTSEA)) did not affect mu-CTX block (D762C: IC(50, MTSEA+) = 2165.1 +/- 250 nm; IC(50, MTSES-) = 2753.5 +/- 456.9 nm; E765C: IC(50, MTSEA+) = 2200.1 +/- 550.3 nm; IC(50, MTSES-) = 3248.1 +/- 2011.9 nm) compared with their unmodified counterparts. In contrast, the charge-conserving mutations D762E (IC(50) = 21.9 +/- 4.3 nm) and E765D (IC(50) = 22.0 +/- 7.0 nm) preserved wild-type blocking behavior, whereas the charge reversal mutants D762K (IC(50) = 4139.9 +/- 687.9 nm) and E765K (IC(50) = 4202.7 +/- 1088.0 nm) destabilized mu-CTX block even further, suggesting a prominent electrostatic component of the interactions between these DII residues and mu-CTX. Kinetic analysis of mu-CTX block reveals that the changes in toxin sensitivity are largely due to accelerated toxin dissociation (k(off)) rates with little changes in association (k(on)) rates. We conclude that the acidic residues at positions 762 and 765 are key determinants of mu-CTX block, primarily by virtue of their negative charge. The inability of the bulky MTSES or MTSEA side chain to modify mu-CTX sensitivity places steric constraints on the sites of toxin interaction.  相似文献   

5.
Although gamma-aminobutyric acid type A receptor agonists and antagonists bind to a common site, they produce different conformational changes within the site because agonists cause channel opening and antagonists do not. We used the substituted cysteine accessibility method and two-electrode voltage clamping to identify residues within the binding pocket that are important for mediating these different actions. Each residue from alpha(1)T60 to alpha(1)K70 was mutated to cysteine and expressed with wild-type beta(2) subunits in Xenopus oocytes. Methanethiosulfonate reagents reacted with alpha(1)T60C, alpha(1)D62C, alpha(1)F64C, alpha(1)R66C, alpha(1)S68C, and alpha(1)K70C. gamma-Aminobutyric acid (GABA) slowed methanethiosulfonate modification of alpha(1)F64C, alpha(1)R66C, and alpha(1)S68C, whereas SR-95531 slowed modification of alpha(1)D62C, alpha(1)F64C, and alpha(1)R66C, demonstrating that different residues are important for mediating GABA and SR-95531 actions. In addition, methanethiosulfonate reaction rates were fastest for alpha(1)F64C and alpha(1)R66C, indicating that these residues are located in an open, aqueous environment lining the core of the binding pocket. Positively charged methanethiosulfonate reagents derivatized alpha(1)F64C and alpha(1)R66C significantly faster than a negatively charged reagent, suggesting that a negative subsite important for interacting with the ammonium group of GABA exists within the binding pocket. Pentobarbital activation of the receptor increased the rate of methanethiosulfonate modification of alpha(1)D62C and alpha(1)S68C, demonstrating that parts of the binding site undergo structural rearrangements during channel gating.  相似文献   

6.
The secretory Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) is a member of a small gene family of electroneutral salt transporters that play essential roles in salt and water homeostasis in many mammalian tissues. We have identified a highly conserved residue (Ala-483) in the sixth membrane-spanning segment of rat NKCC1 that when mutated to cysteine renders the transporter sensitive to inhibition by the sulfhydryl reagents 2-aminoethyl methanethiosulfonate (MTSEA) and 2-(trimethylammonium)ethyl methanethiosulfonate (MTSET). The mutation of Ala-483 to cysteine (A483C) results in little or no change in the affinities of NKCC1 for substrate ions but produces a 6-fold increase in sensitivity to the inhibitor bumetanide, suggesting a specific modification of the bumetanide binding site. When residues surrounding Ala-483 were mutated to cysteine, only I484C was sensitive to inhibition by MTSEA and MTSET. Surprisingly I484C showed increased transport activity in the presence of low concentrations of mercury (1-10 microm), whereas A483C showed inhibition. The inhibition of A483C by MTSEA was unaffected by the presence or absence of sodium and potassium but required the presence of extracellular chloride. Taken together, our results indicate that Ala-483 lies at or near an important functional site of NKCC1 and that the exposure of this site to the extracellular medium is dependent on the conformation of the transporter. Specifically, our results indicate that the cysteine introduced at residue 483 is only available for interaction with MTSEA when chloride is bound to NKCC1 at the extracellular surface.  相似文献   

7.
All creatine transporters contain a cysteine residue (Cys(144)) in the third transmembrane domain that is not present in other members of the Na+,Cl(-)-dependent family of neurotransmitter transporters. Site-directed mutagenesis and reaction with methane thiosulfonates were used to investigate the importance of Cys(144) for transporter function. Replacement of Cys(144) with Ser did not significantly affect the kinetics or activity of the transporter, whereas a C144A mutant had a higher K(m) (0.33 compared with 0.18 mm). Substitution of Cys(144) with Leu gave a mutant with a 5-fold higher K(m) and a reduced specificity for substrate. Low concentrations of 2-aminoethyl methanethiosulfonate (MTSEA) resulted in rapid inactivation of the creatine transporter. The C144S mutant was resistant to inactivation, indicating that modification of Cys(144) was responsible for the loss of transport activity. Creatine and analogues that function as substrates of the creatine transporter were able to protect from MTSEA inactivation. Na+ and Cl(-) ions were not necessary for MTSEA inactivation, but Na+ was found to be important for creatine protection from inactivation. Our results indicate that cysteine 144 is close to the binding site or part of a permeation channel for creatine.  相似文献   

8.
Serotonin transporter (SERT) contains a single reactive external cysteine residue at position 109 (Chen, J. G., Liu-Chen, S., and Rudnick, G. (1997) Biochemistry 36, 1479-1486) and seven predicted cytoplasmic cysteines. A mutant of rat SERT (X8C) in which those eight cysteine residues were replaced by other amino acids retained approximately 32% of wild type transport activity and approximately 56% of wild type binding activity. In contrast to wild-type SERT or the C109A mutant, X8C was resistant to inhibition of high affinity cocaine analog binding by the cysteine reagent 2-(aminoethyl)methanethiosulfonate hydrobromide (MTSEA) in membrane preparations from transfected cells. Each predicted cytoplasmic cysteine residue was reintroduced, one at a time, into the X8C template. Reintroduction of Cys-357, located in the third intracellular loop, restored MTSEA sensitivity similar to that of C109A. Replacement of only Cys-109 and Cys-357 was sufficient to prevent MTSEA sensitivity. Thus, Cys-357 was the sole cytoplasmic determinant of MTSEA sensitivity in SERT. Both serotonin and cocaine protected SERT from inactivation by MTSEA at Cys-357. This protection was apparently mediated through a conformational change following ligand binding. Although both ligands bind in the absence of Na(+) and at 4 degrees C, their ability to protect Cys-357 required Na(+) and was prevented at 4 degrees C. The accessibility of Cys-357 to MTSEA inactivation was increased by monovalent cations. The K(+) ion, which is believed to serve as a countertransport substrate for SERT, was the most effective ion for increasing Cys-357 reactivity.  相似文献   

9.
Using cysteine mutagenesis and chemical modification by methanethiosulfonate derivatives, it was demonstrated that the external putative loop, joining transmembrane segments (TM's) IV-V of rabbit Na+/glucose cotransporter, rSGLT1, forms part of a Na+ binding and voltage sensing domain. Within this region, exposure to cationic (2-aminoethyl)methanethiosulfonate hydrobromide (MTSEA) inhibited F163C, A166C, and L173C, but anionic sodium (2-sulfonatoethyl)methanethiosulfonate (MTSES) had no effect. Unexpectedly, MTSEA had no effect on Q170C; however, MTSES profoundly altered Q170C charge transfer and turnover, leaving Na+ and sugar binding affinity unchanged, but mutation of glutamine to anionic glutamate (Q170E) shifted V(0.5) to positive potentials, suggesting enhanced Na+ affinity. To clarify the role of glutamine 170 in Na+ interaction, we embarked on a more detailed investigation of Q170E using the two-microelectrode voltage clamping in Xenopus oocytes. Compared to wild-type (wt) rSGLT1, Q170E exhibits (i) a 2-fold decrease in methyl alpha-D-glucopyranoside affinity (-150 to -90 mV), (ii) a 5-fold increase in Na+ affinity (-150 to -100 mV) with less voltage dependency, (iii) reduced Na+ leak, and (iv) two transient current decay constants (tau(fast), tau(slow)) compared to three (tau(fast), tau(medium), tau(slow)) for wt, and computer simulation of Q170E pre-steady-state currents with a four-state kinetic model yields parameters similar to wt SGLT1, except for a reduced Na+ debinding rate constant compared to wt. Taken together, the data strengthen the conclusion that residue 170 lies in the Na+ pathway and provide the first evidence that it participates in determining Na+ binding.  相似文献   

10.
Bhogal N  Blaney FE  Ingley PM  Rees J  Findlay JB 《Biochemistry》2004,43(11):3027-3038
Neurokinin-2 receptor (NK(2)R) binding of [(3)H]-SR48968, a piperidinyl antagonist, is inhibited by methanethiosulfonate ethylammonium (MTSEA) in a time- and concentration-dependent manner. By the systematic alanine replacement of putative loop and transmembrane region cysteine residues (Cys(4), Cys(81), Cys(167), Cys(262), Cys(281), Cys(308), and Cys(309)), we have determined that MTSEA perturbs [(3)H]-SR48968 binding by modifying Cys(167) in transmembrane helix 4. Data were substantiated using glycine, serine, and threonine substitutions of Cys(167). MTSEA preferentially modifies cysteine residues that are in proximity to a negatively charged environment. Hence, aspartate and glutamate residues were systematically substituted with leucine or valine, respectively, and the inhibitory effects of MTSEA on [(3)H]-SR48968 binding were reevaluated to determine those acidic residues close to the MTSEA binding crevice. Most significantly, substitution of Asp(5) in the receptor's extreme N-terminus abolished the effects of MTSEA on [(3)H]-SR48968 binding. Therefore, our data would suggest close association of the extreme N-terminus with the extracellular surfaces of helices 4 and 3 in the NK(2)R in forming a binding crevice for MTSEA. The inhibition of SR48968 binding appears to result from loss of the SR48968 binding conformation of Gln(166) induced by MTSEA when it is coupled to Cys(167). Hence, it is proposed that there is mutually exclusive hydrogen bonding of SR48968 and MTSEA to Gln(166).  相似文献   

11.
A series of chemically modified mutants (CMMs) of subtilisin B. lentus (SBL) were generated employing the combination of site-directed mutagenesis and chemical modification. This strategy entails the mutation of a selected active site residue to cysteine and its subsequent modification with a methanethiosulfonate reagent CH3SO2S-R, where R may be infinitely variable. The present study was undertaken to evaluate the changes in specificity and pH-activity profiles that could be induced by modification of S156C and S166C in the S1 pocket of SBL with a representative range of side chain modifications, namely R=-CH3, -CH2C6H5, -CH2CH2NH3+ and CH2CH2SO3 . The side chain of S156C is surface exposed and well solvated while that of S166C points into the pocket. Kinetic evaluation of the CMMs with suc-AAPF-pNA as substrate showed that the kcat/K(M)s changed very little for the S156C CMMs, but varied by up to 11-fold for the S166C CMMs. pH-Activity profiles were also determined, and showed that a negatively or positively charged side chain modification increased or decreased respectively, the pKa of the catalytic triad histidine for both modification sites but with more dramatic changes for the interior pointing S166C than for the solvent exposed S156C site. As an additional probe of altered specificity, inhibition of the CMMs by a representative series of 5 boronic acid transition state analogue inhibitors was determined. The K(I)s observed ranged from a 3.5-fold improvement over the WT value, to a 12-fold decrease in binding. Overall, greater variability in all the parameters measured, activity, pKa, and boronic acid binding resulted from modification at the inward pointing 166 site than at the solvent-exposed 156 site.  相似文献   

12.
At the majority of mutants in the region Glu181-Val200 incorporating a conserved AsnPheThrΦΦxLys motif cysteine substitution had no effect on sensitivity to ATP, partial agonists, or methanethiosulfonate (MTS) compounds. For the F185C mutant the efficacy of partial agonists was reduced by ∼ 90% but there was no effect on ATP potency or the actions of MTS reagents. At T186C, F188C and K190C mutants ATP potency and partial agonists responses were reduced. The ATP sensitivity of the K190C mutant was rescued towards WT levels by positively charged (2-aminoethyl)methanethiosulfonate hydrobromide and reduced by negatively charged sodium (2-sulfonatoethyl) methanethiosulfonate. Both MTS reagents decreased ATP potency at the T186C mutant, and abolished responses at the F195C mutant. 32P-2-azido ATP binding to the mutants T186C and K190C was sensitive to MTS reagents consistent with an effect on binding, however binding at F195C was unaffected indicating an effect on gating. The accessibility of the introduced cysteines was probed with (2-aminoethyl)methanethiosulfonate hydrobromide-biotin, this showed that the region Thr186-Ser192 is likely to form a beta sheet and that accessibility is blocked by ATP. Taken together these results suggest that Thr186, Phe188 and Lys190 are involved in ATP binding to the receptor and Phe185 and Phe195 contribute to agonist evoked conformational changes.  相似文献   

13.
Banerjee A  Ray A  Chang C  Swaan PW 《Biochemistry》2005,44(24):8908-8917
The residues involved in substrate interaction of the human apical sodium-dependent bile acid transporter (hASBT, SLC10A2) remain undefined. Biochemical modification of conserved cysteine residues has suggested their direct involvement in hASBT function. In the present study, we developed novel methanethiosulfonyl (MTS)-bile salt derivatives and describe their reactivity toward hASBT and its mutants. Endogenous Cys residues were subjected to Ala/Thr scanning mutagenesis and subsequent exposure to affinity inactivators. We show that C51A/T, C105A/T, C144A, and C255A/T are loss-of-function mutations. Additionally, C74A/T cell surface expression was abolished suggesting a role in protein folding and/or trafficking. C270A remained largely unaffected in the presence of 1.0 mM polar and charged MTS reagents (MTSEA, MTSES, and MTSET) and retained function similar to wt-hASBT control. However, in the presence of synthetic cholyl- and chenodeoxycholyl-MTS analogues, C270A displayed a significant decrease in K(T) and J(max). Our findings demonstrate that Cys270 is a highly accessible extracellular residue susceptible to thiol modification in its native form that remains largely unaffected upon mutation to Ala. Consequently, C270A provides an ideal scaffold for cysteine scanning mutagenesis studies. Furthermore, the substantial decrease in ligand affinity and maximal transport capacity of C270A suggest that C270 may potentially impact, although not critically, a putative substrate binding domain of hASBT. Overall, bile acid-MTS conjugates can serve as novel and powerful tools to probe the role of endogenous as well as engineered Cys residues and, ultimately, aid in defining their role in the bile acid binding region(s) of hASBT.  相似文献   

14.
The second transmembrane domain (TM2) of neurotransmitter transporters has been invoked to control oligomerization and surface expression. This transmembrane domain lies between TM1 and TM3, which have both been proposed to contain residues that contribute to the substrate binding site. Rat serotonin transporter (SERT) TM2 was investigated by cysteine scanning mutagenesis. Six mutants in which cysteine replaced an endogenous TM2 residue had low transport activity, and two were inactive. Most of the reduction in transport activity was due to decreased surface expression. In contrast, M124C and G128C showed increased activity and surface expression. Random mutagenesis at positions 124 and 128 revealed that hydrophobic residues at these positions also increased activity. When modeled as an alpha-helix, positions where mutation to cysteine strongly affects expression levels clustered on the face of TM2 surrounding the leucine heptad repeat conserved within this transporter family. 2-(Aminoethyl)-methanethiosulfonate hydrobromide (MTSEA)-biotin labeled A116C and Y136C but not F117C, M135C, or Y134C, suggesting that these residues may delimit the transmembrane domain. None of the cysteine substitution mutants from 117 through 135 were sensitive to [2-(trimethylammonium)ethyl]methanethiosulfonate bromide (MTSET) or MTSEA. However, treatment with MTSEA increased 5-hydroxytryptamine transport by A116C. Activation of A116C by MTSEA was observed only in mutants containing Cys to Ile mutation at position 357, suggesting that modification of Cys-116 activated transport by compensating for a disruption in transport in response to Cys-357 replacement. The reactivity of A116C toward MTSEA was substantially increased in the presence of substrates but not inhibitors. This increase required Na+ and Cl-, and was likely to result from conformational changes during the transport process.  相似文献   

15.
The substituted-cysteine scanning method (SCAM) is used to study conformational changes in proteins. Experiments using SCAM involve site-directed mutagenesis to replace native amino acids with cysteine and subsequent exposure to a methanethiosulfonate (MTS) reagent such as methanethiosulfonate ethylammonium (MTSEA). These reagents react with substituted-cysteines and can provide functional information about relative positions of amino acids within a protein. In the human heart voltage-gated Na(+) channel hNav1.5 there is a native cysteine at position C373 that reacts rapidly with MTS reagents resulting in a large reduction in whole-cell Na(+) current (I(Na)). Therefore, in order to use SCAM in studies in this isoform, this native cysteine is mutated to a non-reactive residue, e.g., tyrosine. This mutant, hNav1.5-C373Y, is resistant to the MTS-mediated decrease in I(Na). Here we show that this resistance is time- and state-dependent. With relatively short exposure times to MTSEA (<4min), there is little effect on I(Na). However, with longer exposures (4-8min), there is a large decrease in I(Na), but this effect is only found when hNav1.5-C373Y is inactivated (fast or slow) - MTSEA has little effect in the closed state. Additionally, this long-term, state-dependent effect is not seen in human skeletal muscle Na(+) channel isoform hNav1.4, which has a native tyrosine at the homologous site C407. We conclude that differences in molecular determinants of inactivation between hNav1.4 and hNav1.5 underlie the difference in response to MTSEA exposure.  相似文献   

16.
Xu W  Chen C  Huang P  Li J  de Riel JK  Javitch JA  Liu-Chen LY 《Biochemistry》2000,39(45):13904-13915
Binding pockets of the opioid receptors are presumably formed among the transmembrane domains (TMDs) and are accessible from the extracellular medium. In this study, we determined the sensitivity of binding of [(3)H]diprenorphine, an antagonist, to mu, delta, and kappa opioid receptors to charged methanethiosulfonate (MTS) derivatives and identified the cysteine residues within the TMDs that conferred the sensitivity. Incubation of the mu opioid receptor expressed in HEK293 cells with MTS ethylammonium (MTSEA), MTS ethyltrimethylammonium (MTSET), or MTS ethylsulfonate (MTSES) inhibited [(3)H]diprenorphine binding with the potency order of MTSEA > MTSET > MTSES. Pretreatment of mu, delta, and kappa opioid receptors with MTSEA dose-dependently inhibited [(3)H]diprenorphine binding with MTSEA sensitivity in the order of kappa > mu > delta. The effects of MTSEA occurred rapidly, reaching the maximal inhibition in 10 min. (-)-Naloxone, but not (+)-naloxone, prevented the MTSEA effect, demonstrating that the reaction occurs within or in the vicinity of the binding pockets. Each cysteine residue in the TMDs of the three receptors was mutated singly, and the effects of MTSEA treatment were examined. The mutants had similar affinities for [(3)H]diprenorphine, and C7. 38(321)S, C7.38(303)S, and C7.38(315)S mutations rendered mu, delta, and kappa opioid receptors less sensitive to the effect of MTSEA, respectively. These results indicate that the conserved Cys7.38 is differentially accessible in the binding-site crevice of these receptors. The second extracellular loop of the kappa receptor, which contains several acidic residues, appears to play a role, albeit small, in its higher sensitivity to MTSEA, whereas the negative charge of Glu6.58(297) did not. To the best of our knowledge, this is the first report to show that a conserved residue among highly homologous G protein-coupled receptors is differentially accessible in the binding-site crevice. In addition, this represents the first successful generation of MTSEA-insensitive mutants of mu, delta, and kappa opioid receptors, which will allow determination of residues accessible in the binding-site crevices of these receptors by the substituted cysteine accessibility method.  相似文献   

17.
To examine conformational changes during slow inactivation involving domain 2-segment 6 (D2-S6) of human cardiac Na(+) channel (hNav1.5), we applied the substituted-cysteine accessibility method (SCAM) using methanethiosulfonate ethylammonium (MTSEA). We substituted cysteine (C) for native valine (V) at position 930 of D2-S6 in the MTSEA-resistant hNav1.5 mutant C373Y to produce the double mutant C373Y-V930C. Whole-cell Na(+) currents were recorded using patch-clamp techniques in transiently transfected HEK cells. In C373Y-V930C, we find that MTSEA (1.5 mM) applied in the closed state (-160 mV) has no significant effect on whole-cell Na(+) current, while MTSEA applied in the slow-inactivated state (prolonged depolarization at 0 mV) decreases current. We propose that D2-S6 in hNav1.5 undergoes molecular rearrangement during slow inactivation exposing the side chain of residue 930 such that it becomes accessible to modification by MTSEA.  相似文献   

18.
The contribution of transmembrane regions I, II, and III of the Rickettsia prowazekii ATP/ADP translocase to the structure of the putative water-filled ATP translocation channel was evaluated from the accessibility of hydrophilic, thiol-reactive, methanethiosulfonate reagents to a library of 68 independent cysteine-substitution mutants heterologously expressed in Escherichia coli. The MTS reagents used were MTSES (negatively charged) and MTSET and MTSEA (both positively charged). Mutants F036C, Y042C, and R046C (TM I), K066C and P072C (TM II), and F101C, F105C, F108C, Y113C, and P114C (TM III) had no assayable transport activity, indicating that cysteine substitution at these positions may not be tolerated. All three MTS reagents inhibit the transport of ATP in mutants of TM I (L039C, S043C, S047C, I048C) and TM II (S061C, S063C, T067C, I069C, V070C, A074C). Further, these residues appear to cluster along a single face of the transmembrane domain. Preexposure of MTS-reactive mutants S047C (TM I) and T067C (TM II) to high levels of ATP resulted in protection from MTS-mediated inhibition. This indicated that both TM I and TM II make major contributions to the structure of an aqueous ATP translocation pathway. Finally, on the basis of the lack of accessibility of charged MTS reagents to the thiol groups in mutants of TM III, it appears that TM III is not exposed to the ATP translocation channel. Cysteine substitution of residues constituting a highly conserved "phenylalanine face" in TM III resulted in ablation of ATP transport activity. Further, substituting these phenylalanine residues for either isoleucine or tyrosine also resulted in much lower transport activity, indicating that some property of phenylalanine at these positions that is not shared by cysteine, isoleucine, or tyrosine is critical to translocase activity.  相似文献   

19.
In voltage- and cyclic nucleotide-gated ion channels, the amino-acid loop that connects the S5 and S6 transmembrane domains, is a major component of the channel pore. It determines ion selectivity and participates in gating. In the alpha subunit of cyclic nucleotide-gated channels from bovine rod, the pore loop is formed by the residues R345-S371, here called R1-S27. These 24 residues were mutated one by one into a cysteine. Mutant channels were expressed in Xenopus laevis oocytes and currents were recorded from excised membrane patches. The accessibility of the substituted cysteines from both sides of the plasma membrane was tested with the thiol-specific reagents 2-aminoethyl methanethiosulfonate (MTSEA) and [2-(trimethylammonium)ethyl]methanethiosulfonate (MTSET). Residues V4C, T20C, and P22C were accessible to MTSET only from the external side of the plasma membrane, and to MTSEA from both sides of the plasma membrane. The effect of MTSEA applied to the inner side of T20C and P22C was prevented by adding 10 mM cysteine to the external side of the plasma membrane. W9C was accessible to MTSET from the internal side only. L7C residue was accessible to internal MTSET, but the inhibition was partial, approximately 50% when the MTS compound was applied in the absence of cGMP and 25% when it was applied in the presence of cGMP, suggesting that this residue is not located inside the pore lumen and that it changes its position during gating. Currents from T15C and T16C mutants were rapidly potentiated by intracellular MTSET. In T16C, a slower partial inhibition took place after the initial potentiation. Current from I17C progressively decayed in inside-out patches. The rundown was accelerated by inwardly applied MTSET. The accessibility results of MTSET indicate a well-defined topology of the channel pore in which residues between L7 and I17 are inwardly accessible, residue G18 and E19 form the narrowest section of the pore, and T20, P21, P22 and V4 are outwardly accessible.  相似文献   

20.
Xu W  Sanz A  Pardo L  Liu-Chen LY 《Biochemistry》2008,47(40):10576-10586
We previously demonstrated that D3.49(164)Y or T6.34(279)K mutation in the rat mu opioid receptor (MOPR) resulted in agonist-independent activation. Here, we identified the cysteine(s) within the transmembrane domains (TMs) of the D3.49(164)Y mutant that became accessible in the binding-site crevice by use of methanethiosulfonate ethylammonium (MTSEA) and inferred conformational changes associated with receptor activation. While the C7.38(321)S mutant was insensitive to MTSEA, the D3.49(164)Y/C7.38(321)S mutant showed similar sensitivity as the D3.49(164)Y, suggesting that, in the D3.49(164)Y mutant, C7.38(321) becomes inaccessible while other cysteines are accessible in the binding-site crevice. Each of the other seven cysteines in the TMs was mutated to serine on the background of D3.49(164)Y/C7.38(321)S, and the resulting triple mutants were evaluated for [3H]diprenorphine and [d-Ala2,NMe-Phe4,Gly5-ol]-enkephalin (DAMGO) binding and effect of MTSEA on [3H]diprenorphine binding. The D3.49(164)Y/C7.38(321)S mutant and the triple mutants, except the C6.47(292)S triple mutant, retained similar affinities for [3H]diprenorphine and DAMGO as the D3.49(164)Y mutant. The second-order rate constants for MTSEA reactions showed that C3.44(159)S, C4.48(190)S, C5.41(235)S, and C7.47(330)S significantly reduced sensitivity to MTSEA, compared with the D3.49(164)Y/C7.38(321)S. These results suggest that the four cysteines may be rotated and/or tilted to become accessible. While the D3.49(164)Y/C7.38(321)S was similarly sensitive to MTSEA as the D3.49(164)Y mutant, the T6.34(279)K/C7.38(321)S was much less sensitive to MTSEA than the T6.34(279)K mutant, suggesting that the two constitutively active mutants assume different conformations and/or possess different dynamic properties. Molecular models of the MOPR monomer and homodimer, using the crystal structures of rhodopsin, the beta2-adrenergic receptor, and the ligand-free opsin, which contains several features characteristic of the active state, were employed to analyze these experimental results in a structural context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号