首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several aromatic compounds increased initial lignin degradation rates in cultures of Phanerochaete chrysosporium. This activation was connected to increased H2O2 production and glucose oxidation rates. Veratryl alcohol, a natural secondary metabolite of P. chrysosporium, also activated the lignin-degrading system. In the presence of added veratryl alcohol the ligninolytic system appeared 6–8 h earlier than in reference cultures. This effect was only seen when lignin was added after the primary growth was completed because lignin itself also caused earlier appearance of the degradative system. In cultures which received no added lignin or veratryl alcohol the ligninolytic activity only appeared once the alcohol started to accumulate. The degradation patterns of veratryl alcohol and lignin were similar. The activity levels of lignin degradation and glucose oxidation could be regulated by veratryl alcohol concentration. It is suggested that either veratryl alcohol itself or a metabolite derived from it is actually responsible for the low levels of ligninolytic activity in glucose grown cultures.  相似文献   

2.
Abstract 3,4-Dimethoxycinnamyl alcohol (I) was actively metabolized by a white-rot fungus Coriolus versicolor in low nitrogen and high oxygen stationary cultures favouring the ligninolytic activity in the fungus. Substrate I was mainly oxidized to veratrylglycerol (III) which was a mixture of erythro and threo forms. Both isomers were degraded by cleavage between Cα and Cβ of the side chain to give veratraldehyde (VI), and (VI) was then reduced to veratryl alcohol (VII). A part of I was also metabolized via 1-(3,4-dimethoxyphenyl)-propane-3-ol (IV) and 1-(3,4-dimethoxyphenyl) propane-1,3-diol (VIII) by the fungus.  相似文献   

3.
Summary Two important lignin-degrading fungi with existing or potential applications in the production of food, feed and/or fiber products from wood are Lentinus edodes (Berk.; Sing.=Lentinula edodes [Pegler]) and Phanerochaete chrysosporium (Burds). This study discusses their relative ability to degrade lignin and the factors controlling their ligninolytic activity (synthetic 14C-lignin14CO2). Ligninolytic activity in P. chrysosporium is known to develop after the fungus ceases vegetative growth, and to require both O2 and an exogenous carbon source such as glucose. It has an extracellular ligninase in high titer which is assayed by the oxidation of veratryl alcohol to veratraldehyde. Here, P. chrysosporium was found to have a high capacity for lignin degradation (it was not easily saturated with lignin). Certain inorganic elements, including Fe2+, Ca2+ and Mo6+, were found to stimulate its ligninolytic activity. Calcium addition was required, with 40 ppm Ca2+ giving the highest activity. As in P. chrysosporium, ligninolytic activity in L. edodes was found to require both O2 and an exogenous carbon source. However, in contrast to P. chrysosporium, L. edodes was only moderately ligninolytic, had a lower capacity for lignin degradation (was more easily saturated with lignin), and showed maximal activity only during the vegetative growth period. Also in contrast to P. chrysosporium, ligninolytic activity in L. edodes was not stimulated by Ca2+. Instead, manganese was required, with 10 ppm Mn2+ giving optimal activity. An extracellular ligninase capable of oxidizing veratryl alcohol to veratraldehyde was not detected in L. edodes.  相似文献   

4.
Ligninase activity in Phanerochaete chrysosporium is stimulated by incubating cultures with various substrates for the enzyme, including veratryl (3,4-dimethoxybenzyl) alcohol, which is a secondary metabolite of this fungus. This study was designed to provide insight into the mechanism involved in this stimulation. Ligninase activity increased 2 to 4 h after the addition of exogenous veratryl alcohol to ligninolytic cultures. This increase was prevented by inhibitors of protein synthesis. Analysis of the extracellular proteins by high-performance anion-exchange liquid chromatography revealed increases in the amounts of some, but not all, ligninase species. The normal rapid decrease in ligninase activity in aging cultures was not prevented or retarded by veratryl alcohol, indicating that veratryl alcohol does not increase ligninase activity by protecting extant enzyme. We conclude that veratryl alcohol probably functions via an induction type of mechanism, affecting only certain ligninase species. Results with an isolated lignin indicate that lignin (or its biodegradation products) functions in the same way that veratryl alcohol does.  相似文献   

5.
Summary The abilities of the white-rot fungi Chrysosporium lignorum, Trametes versicolor, Phanerochaete chrysosporium and Stereum hirsutum to mineralize 3,4-dichloroaniline, dieldrin and phenanthrene were investigated. S. hirsutum did not mineralize any of the test compounds but the other strains partly mineralized them all to varying degrees. The relative degradation rates per unit biomass were T. versicolor > C. lignorum > P. chrysosporium. Evidence was obtained for the production of water-soluble metabolic intermediates but no attempt was made to characterize these. It was found that mineral salts-glucose medium supplemented with trace mineral nutrients, vitamins and 1.5 mm 3,4-dimethoxybenzyl alcohol (veratryl alcohol) resulted in the highest mineralization rate. At no time in these experiments was there detectable extracellular ligninase (lignin peroxidase) activity. Offprint requests to: P. Morgan  相似文献   

6.
Summary Six fast growing ligninolytic white-rot fungi were compared with Phanerochaete chrysosporium. The results showed that the fungi have similar ligninolytic systems, although minor differences exist. Like in P. chrysosporium the ligninolytic system could be induced by veratryl alcohol in Coriolus versicolor and Chrysosporium pruinosum. These three lignin peroxidase producing fungi were the fastest lignin degraders in stationary cultures, whereas in agitated cultures Bjerkandera adusta showed highest lignin degradation rates. Metabolites accumulating during the degradation of veratryl alcohol were analyzed and compared. Peroxidase production seems to be a common feature of all the tested fungi. Polyclonal antibodies against the lignin peroxidase with pl of 4.65 from P. chrysosporium reacted with the extracellular peroxidases of C. pruinosum, C. versicolor and B. adusta, but not with those of Pleurotus ostreatus.Dedicated to Professor Dr. Hans-Jürgen Rehm on the occasion of his 60th birthday  相似文献   

7.
Summary The degradation of three non-phenolic -O-4 diarylpropane lignin model compounds was studied in cultures of the white-rot fungus Phlebia radiata. The degradation pattern of the model compound 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol (I) was also compared with that of Phanerochaete chrysosporium under conditions where both fungi were cultivated without agitation in an oxygen atmosphere. Compound I was readily degraded by both fungi, and qualitatively the degradation patterns were quite similar. The product, after C-C bond cleavage, was veratraldehyde (IV) which was almost stoichiometrically reduced to veratryl alcohol (V). However, large amounts of V were detected only in P. chrysosporium cultures. Experiments with the model compound 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol (II) showed that in the presence of II, the total amount of veratryl compounds accounted for 15–33 m in standing cultures of Phlebia radiata. The model compound 1-(3,4-dimethoxyphenyl)-2-(4-methoxyphenoxy) propane-1,3-diol (III) was more readily degraded than I and II. The results indicated that, in P. radiata cultures, the acting enzymes were lignin peroxidases and IV reducing enzyme, while laccase was less important. Offprint requests to: A. Hatakka  相似文献   

8.
The metabolism of quinones formed in the enzymatic oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) (Ia) and its methyl ether Ib in ligninolytic cultures of Phanerochaete chrysosporium was studied. A metabolite of 2-hydroxymethyl-5-methoxy-2,5-cyclohexadiene-1,4-dione (IIa, formed from Ia by oxidation) was isolated and identified as cis-4-hydroxy-6-hydroxymethyl-3-methoxy-cyclohex-2-en-one (IVa), formally the reduced hydroquinone IIIa. The formation of IVa was also observed when both veratryl alcohol Ia or 2,5-dihydroxy-4-methoxybenzyl alcohol (IIIa), the hydroquinone of IIa, were used as substrates. Analogously, cis-4-hydroxy-3-methoxy-6-methoxymethyl-cyclohex-2-en-one (IVc) was isolated and identified as a metabolite from either 3,4-dimethoxybenzyl methyl ether (Ib) or from its oxidation product 5-methoxy-2-methoxymethyl-2,5-cyclohexadiene-1,4-dione (IIb) as well as from the corresponding hydroquinone 2,5-dihydroxy-4-methoxybenzyl methyl ether (IIIc). The physiological role of these unprecedented conversions is discussed. Correspondence to: H. E. Schoemaker  相似文献   

9.
Summary In absence of veratryl alcohol (VA),Phanerochaete chrysosporium ligninases were extensively inactivated by H2O2 concentrations as low as 5.0 μM (1 hr exposure time, pH 4.5, 38°C). In the presence of 2.5 mM VA (but not 2.5 mM benzyl alcohol), protection occurred below 500 μM H2O2.  相似文献   

10.
A new system to produce lignin peroxidase (LiP) continuously by Phanerochaete chrysosporium is described. A fixed-bed bioreactor with a pulsing device was used as the optimal bioreactor configuration. Addition of veratryl alcohol (1 mM), tryptophan (1 mM), no Mn2+ addition, low glucose addition rate (60–70 mg l–1 h) and an atmosphere of O2 gave maximum LiP activities of 700 U l–1, which are higher than those previously reported.  相似文献   

11.
In this paper, the in vivo decolourization of the polymeric dye Poly R‐478 by semi‐solid‐state cultures of Phanerochaete chrysosporium BKM‐F‐1767 (ATCC 24725) was investigated, employing corncob as a support. In order to stimulate the ligninolytic system of the fungus, the cultures were supplemented with veratryl alcohol (2 mM) or manganese (IV) oxide (1 g/l). Maximum manganese‐dependent peroxidase (MnP) and lignin peroxidase (LiP) activities of around 2,000 U/l and 400 U/l were attained by the former, whereas the activities reached by the latter were of about 1,500 U/l and 200 U/l, respectively. Furthermore, laccase activity (around 150 U/l) was only detected in manganese (IV) oxide supplemented cultures. The polymeric dye Poly R‐478 (0.02 w/v) was added to three‐day‐old cultures. A percentage of biological decolourization of about 85% was achieved using cultures supplemented with veratryl alcohol, whereas MnO2 cultures showed a rather lower percentage of around 58% after nine days of dye incubation. Moreover, a correlation between MnP activity and Poly R‐478 decolourization could be observed, indicating that this enzyme is mainly responsible for dye degradation. In the present work, the in vivo decolourizing capability of the ligninolytic complex secreted by P. chrysosporium was investigated under the above‐mentioned cultivation conditions, employing a model compound, such as the polymeric dye Poly R‐478.  相似文献   

12.
Biodegradation of 2,4,6-trinitrotoluene (TNT) by the wood-rotting BasidiomycetePhanerochaete chrysosporium was studied in a fixed-film silicone membrane bioreactor and in agitated pellected cultures. The initial intermediate products of TNT biodegradation were shown to be 2-amino-4,6-dinitrotoluene (2amDNT) and 4-amino-2,6-dinitrotoluene (4amDNT). These intermediates were also degraded byP. chrysosporium. However, their rates of degradation were slow and appeared to represent rate-limiting steps in TNT degradation. The fact that 2amDNT and 4amDNT were further degraded is of importance. In most other microbial systems these compounds are typically not further degraded or are dimerized to even more persistent azo and azoxydimers. Similar to previous studies performed in stationary cultures, it was shown that substantial amounts of [14C]-TNT were degrade to [14C]-carbon dioxide in agitated pelleted cultures. Lignin peroxidase activity (assayed by veratryl alcohol oxidation) virtually disappeared upon addition of TNT to ligninolytic cultures ofP. chrysosporium. However, TNT, 2amDNT, and 4amDNT did not inhibit lignin peroxidase activity, nor were they substrates for this enzyme. Subsequent studies revealed that 4-hydroxylamino-2,6-dinitrotoluene, an intermediate in TNT reduction, was a potent lignin peroxidase inhibitor. Further studies revealed that this compound was also a substrate for lignin peroxidase H8.  相似文献   

13.
Song QX  Wei DZ  Zhou WY  Xu WQ  Yang SL 《Biotechnology letters》2004,26(23):1777-1780
L-Ascorbyl oleate and L-ascorbyl linoleate were synthesized by an immobilized lipase from Candida antarctica with yields of 38% and 44%, respectively. L-Ascorbyl oleate was stable in sterile culture medium over 12 h at 37 °C but L-ascorbyl linoleate degraded by 17%. Ascorbyl oleate had a better protective effect on human umbilical cord vein endothelial cells treated with H2O2 than of L-ascorbic acid-2-phosphate-6-palmitate (Asc2P6P).Revisions requested 21 July 2004/26 August 2004; Revisions received 20 August 2004/27 September 2004  相似文献   

14.
The white rot fungus Phanerochaete chrysosporium metabolized 3,4-dimethoxycinnamic acid in shaking and nitrogen sufficient cultures. Metabolites identified included 3-(3,4-dimethoxyphenyl)propionic acid, dimethoxycinnamyl alcohol and 3-(3,4-dimethoxyphenyl)- 1-propanol. Significantly smaller amounts of veratryl and vanillyl alcohol were also present. The abundance of the propionic acid and the propanol as metabolic products indicate that olefin saturation and acid reduction are important reactions catalysed under these conditions. Metabolites identified from the metabolism of 3-(3,4-dimethoxyphenyl)-propionic acid included the above 1-propanol as well as veratryl and vanillyl alcohol; the identification of these benzyl alcohol derivatives as metabolites suggests that α,β-bond cleavage of this substrate was preceded by alkane hydroxylation at the α-position.  相似文献   

15.
The white rot fungus Bjerkandera sp. strain BOS55 produces veratryl, anisyl, 3-chloroanisyl, and 3,5-dichloroanisyl alcohol and the corresponding aldehydes de novo from glucose. All metabolites are produced simultaneously with the extracellular ligninolytic enzymes and have an important physiological function in the fungal ligninolytic system. Both mono- and dichlorinated anisyl alcohols are distinctly better substrates for the extracellular aryl alcohol oxidases than veratryl alcohol. The aldehydes formed are readily recycled by reduction by washed fungal mycelium, thus creating an extracellular H2O2 production system regulated by intracellular enzymes. Lignin peroxidase does not oxidize the chlorinated anisyl alcohols either in the absence or in the presence of veratryl alcohol. It was therefore concluded that the chlorinated anisyl alcohols are well protected against the fungus's own aggressive ligninolytic enzymes. The relative amounts of veratryl alcohol and the chlorinated anisyl alcohols differ significantly according to the growth conditions, indicating that production of veratryl alcohol and the production of the (chlorinated) anisyl metabolites are independently regulated. We conclude that the chlorinated anisyl metabolites biosynthesized by the white rot fungus Bjerkandera sp. strain BOS55 can be purposefully produced for ecologically significant processes such as lignin degradation.  相似文献   

16.
Summary Several bacteria, yeast and fungi selectively isolated from paper-mill waste-water grew on veratryl alcohol, a key intermediate of lignin metabolism. Penicillium simplicissimum oxidized veratryl alcohol via a NAD(P)+-dependent veratryl alcohol dehydrogenase to veratraldehyde, which was further oxidized to veratric acid in a NAD(P)+-dependent reaction. Veratric-acid-grown cells contained NAD(P)H-dependent O-demethylase activity for veratrate, vanillate and isovanillate. Protocatechuate was cleaved by a protocatechuate 3,4-dioxygenase. Offprint requests to: E. de Jong  相似文献   

17.
The cathodic reduction of oxygen to hydrogen peroxide, the current efficiency for the production of H2O2 and the oxidation of veratryl alcohol with an in situ generated hydrogen peroxide‐lignin peroxidase complex were studied in this paper. The complex was prepared by utilizing a novel preparation technique in an electrochemical reactor. The oxidation of veratryl alcohol (VA; 3,4‐dimethoxybenzyl alcohol) was carried out with or without lignin peroxidase under an electric field. The redox properties of veratryl alcohol on a carbon electrode in the presence of lignin peroxidase have been investigated using cyclic voltammetry. The kinetics of veratryl alcohol oxidation in an electrochemical reactor were compared to the oxidation when hydrogen peroxide was supplied externally. Further, the oxidation of veratryl alcohol by lignin peroxidase was optimized in terms of enzyme dosage, pH, and electrical potential. The novel electroenzymatic method was found to be effective using in situ generated hydrogen peroxide for the oxidation of veratryl alcohol by lignin peroxidase.  相似文献   

18.
The effect of biodelignification of rice straw by two different ligninolytic organisms, Phanerochaete chrysosporium (white-rot fungus) and Streptomyces badius (actinomycetes), on humus quality was investigated during a 56-day incubation at 30 °C. Lignin degradation, the release of humic extract (HE), humic acid (HA) and fulvic acid (FA), E4/E6 ratio of HA, and humification index (HI, HA/FA) were measured during the incubation. Lignin was degraded by both organisms, but to different extents. Lignin was degraded to 41% and 31% by P. chrysosporium and S. badius, respectively. HE released by P. chrysosporium and S. badius were, respectively, 2.10 and 2.13 times larger than that in the control at the maximum values. A significant correlation between lignin degradation and humus-related parameters involving HA fraction showed that both organisms are converting lignin to humic substances.  相似文献   

19.
The ligninolytic system of white rot fungi is primarily composed of lignin peroxidase, manganese peroxidase (MnP) and laccase. The present work was carried out to determine the best culture conditions for production of MnP and its activity in the relatively little-explored cultures of Dichomitus squalens, Irpex flavus and Polyporus sanguineus, as compared with conditions for Phanerochaete chrysosporium and Coriolus versicolor. Studies on enzyme production under different nutritional conditions revealed veratryl alcohol, guaiacol, Reax 80 and Polyfon H to be excellent MnP inducers. Electronic Publication  相似文献   

20.
The biodegradation of anthracene-9, 10-diethanol by the ligninolytic fungus Phanerochaete chrysosporium, previously though to involve singlet oxygen, is shown to be catalyzed by lignin peroxidases. Veratryl alcohol stimulated the enzymatic degradation of anthracenediethanol, and anthracenediethanol inhibited enzymatic oxidation of veratryl alcohol. Competition for oxidation by lignin peroxidase is suggested as the mechanism of the inhibition of lignin biodegradation by anthracenediethanol and related anthracene derivatives.Abbreviations ADE anthracene-9,10-diethanol - AES anthracene-9,10-bisethanesulfonic acid - DHP dehydrogenative polymerizate - DMF N,N-dimethylformamide - EPX 9,10-endoperoxide of ADE - PMR proton magnetic resonance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号