首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Transverse tubule (TT) membranes isolated from chicken skeletal muscle possess a very active magnesium-stimulated ATPase (Mg-ATPase) activity. The Mg-ATPase has been tentatively identified as a 102-kD concanavalin A (Con A)-binding glycoprotein comprising 80% of the integral membrane protein (Okamoto, V.R., 1985, Arch. Biochem. Biophys., 237:43-54). To firmly identify the Mg-ATPase as the 102-kD TT component and to characterize the structural relationship between this protein and the closely related sarcoplasmic reticulum (SR) Ca-ATPase, polyclonal antibodies were raised against the purified SR Ca-ATPase and the TT 102-kD glycoprotein, and the immunological relationship between the two ATPases was studied by means of Western immunoblots and enzyme-linked immunosorbent assays (ELISA). Anti-chicken and anti-rabbit SR Ca-ATPase antibodies were not able to distinguish between the TT 102-kD glycoprotein and the SR Ca-ATPase. The SR Ca-ATPase and the putative 102-kD TT Mg-ATPase also possess common structural elements, as indicated by amino acid compositional and peptide mapping analyses. The two 102-kD proteins exhibit similar amino acid compositions, especially with regard to the population of charged amino acid residues. Furthermore, one-dimensional peptide maps of the two proteins, and immunoblots thereof, show striking similarities indicating that the two proteins share many common epitopes and peptide domains. Polyclonal antibodies raised against the purified TT 102-kD glycoprotein were localized by indirect immunofluorescence exclusively in the TT-rich I bands of the muscle cell. The antibodies substantially inhibit the Mg-ATPase activity of isolated TT vesicles, and Con A pretreatment could prevent antibody inhibition of TT Mg-ATPase activity. Further, the binding of antibodies to intact TT vesicles could be reduced by prior treatment with Con A. We conclude that the TT 102-kD glycoprotein is the TT Mg-ATPase and that a high degree of structural homology exists between this protein and the SR Ca-ATPase.  相似文献   

2.
A Owen  A Sener  W J Malaisse 《Enzyme》1983,29(1):2-14
Pancreatic islets can be viewed as a fuel-sensor organ. The amount of ATP used by the islet cells for the maintenance of adequate Ca2+ gradients across membranes is not known. An indirect approach to this issue consists in the measurement of Ca-ATPase activity. The kinetics of Ca-ATPase in islet homogenates yielded a Km for ATP close to 0.1 mM and two Km values for Ca2+ close to 0.13 and 4-6 microM, respectively. Within limits, the Ca-ATPase appeared as a distinct entity from Mg-ATPase. Several divalent cations, including Mg2+, inhibited the Ca-ATPase activity. Calmodulin also inhibited, significantly albeit modestly Ca-ATPase. The activity of the enzyme was increased at high pH or in the presence of bicarbonate. The reaction velocity at close-to-physiological concentrations of ATP, Ca2+ and H+ suggests that the consumption of ATP by the Ca-ATPase may account for a major fraction of the overall rate of ATP breakdown in intact islets.  相似文献   

3.
Alkaline phosphatase (AP), 5'-nucleotidase (5'N), Mg2+-activated ATPase (Mg-ATPase) and Ca2+-activated ATPase (Ca-ATPase) were studied in sychronized HeLa S3 cells with cytochemical methods and electron microscopy. It was found that AP activity, as determined by the deposition of lead phosphate reaction product (r.p.) was most active in mitotic (M), early and middle G1 cells, less active in late G1 and almost undetectable in S phase cells. Most AP enzyme activity was found to be associated with undulations (mainly microvilli) of the plasma membrane. Fluctuations and the redistribution of 5'N were also observed; the reaction for 5'N was positive in all phases of the cell cycle studied, it was strongest in M cells and in the majority of middle G1 cells. Mg-ATPase activity was present in the plasma membranes of cells throughout the cell cycle, but did not show noticeable fluctuations in activity and distribution. Ca-ATPase activity appeared in plasma membranes and in limited areas of cell nuclei but was evident only in S phase cells. The results of the present study confirm and extend previous biochemical observations and indicate that changes in membrane phosphate activities are associated with enzyme activity redistributions within the plasma membrane during the HeLa S3 cell cycle.  相似文献   

4.
Adenosine triphosphatase (ATPase) activated by Mg2+ or Ca2+ ions was detected in single mechanoreceptors (Pacini's corpuscles) of cat; addition of Ca2+ (10(-5)M) to Mg-ATP-ase increased the activity by the factor of 1.6. The activity optimum of Mg- or Co-ATPase was in the alkaline pH zone. A high substrate specificity of Mg, Ca-ATPase was shown. Parachlorinemercury-benzoate (5muM) considerably reduced the activity of Mg, Ca-ATPase, whereas oubain (10(-5)M) failed to affect it significantly. It is supposed that Mg, Ca-ATPase of Pacini's corpuscles was close to actomyosine -like proteins.  相似文献   

5.
The Mg-ATPase and (Na+ + K+)-stimulated Mg-ATPase in the mitochondrial and microsomal fraction of smooth muscular cells of the sheep's common carotid artery have been characterized in more detail. Optimal enzyme activities were found for all ATPases to be at pH 7.5-8.0 and 45 degrees C-50 degrees C. The energies of activation were found to be at 5-9 kcal/mole for both ATPases. Two-thirds of the (Na+ + K+)-stimulated Mg-ATPase were found to be ouabain-sensitive and thus attributed to the coupled (Na, K)-transport system. The pI 50 values of ouabain for microsomal and mitochondrial fractions are 6.3 and 6.0, respectively. The highest activity of (Na+ + K+)-stimulated Mg-ATPase is at 5-10 mM K+ and more than 50 mM Na+. One-third of the (Na+ + K+)-stimulated Mg-ATPase activity was found to be due to a stimulation of Mg-ATPase by Na+ alone, which is not inhibited by ouabain. The relationship of this activity to the ouabain-sensitive part of the (Na+ + K+)-stimulated Mg-ATPase and to Na+-transport is discussed. For the Mg-ATPases apparent KM(ATP) values were determined to be 1.4 and 1.0 mM, resp., and for the (Na+ + K+)-stimulated Mg-ATPases 0.15 and 0.14 mM, resp.  相似文献   

6.
ATPases, an important target of insecticides, are enzymes that hydrolyze ATP and use the energy released in that process to accomplish some type of cellular work. Pachymerus nucleorum (Fabricius) larvae possess an ATPase, that presents high Ca-ATPase activity, but no Mg-ATPase activity. In the present study, the effect of zinc and copper ions in the activity Ca-ATPase of that enzyme was tested. More than 90% of the Ca-ATPase activity was inhibited in 0.5 mM of copper ions or 0.25 mM of zinc ions. In the presence of EDTA, but not in the absence, the inhibition by zinc was reverted with the increase of calcium concentration. The inhibition by copper ions was not reverted in the presence or absence of EDTA. The Ca-ATPase was not inhibited by treatment of the ATPase fraction with copper, suggesting that the copper ion does not bind directly to the enzyme. The results suggest that zinc and copper ions form a complex with ATP and bind to the enzyme inhibiting its Ca-ATPase activity.  相似文献   

7.
Isoelectric focusing of a purified fraction of thermostable modulator of 3',5'-AMP-dependent protein kinase revealed five individual proteins, the main protein having an isoelectric point of 4,05. The molecular weight of this protein as determined by gel filtration is 8000--9000. The protein with a pI of 4,05 binds Ca2+ and in contrast to the original modulator inhibits the endogenous 3',5'-AMP-dependent phosphorylation of synaptic membranes. An addition of the original modulator fraction to the microsomes isolated from nervous tissue increases the Mg, Ca-ATPase activity and absorption of 45Ca. Neither the protein with a pI of 4,05 nor other individual proteins affect the activity of transport ATPase. The activating effect is partly restored after mixing of all the five subfractions. It is assumed that these proteins are aggregated by Ca2+ and change the activity of ATPase or membrane 3',5'-AMP-dependent protein kinase depending on the concentration of calcium ions.  相似文献   

8.
The effects of the inhibitors dicyclohexyl-carbodiimide (DCCD), bathophenanthroline and tertiary octylcatechol, on some enzyme activities in membranes from strains of Escherichia coli carrying mutations in the uncB or uncC genes have been studied. Membranes prepared from uncC mutants retain a normal DCCD-sensitive Mg2+-stimulated adenosine triphosphatase (Mg-ATPase) activity whereas in uncB mutants this enzyme activity is insensitive to DCCD. The membrane-bound Mg-ATPase activity from the uncC mutant strain, as compared with that from the normal strain, is only partially sensitive to the inhibitors bathophenanthroline or tertiary-octylcatechol. Both of these inhibitors stimulate the membrane-bound Mg-ATPase from uncB mutant strains. A DCCD-insensitive Mg-ATPase activity is found in the cytoplasmic fraction following cell disruption of either the uncB or the uncC mutants. The lipophilic chelators bathophenanthroline and tertiary-octylcatechol stimulate the activity of the 'soluble' Mg-ATPase in the uncB mutant but partially inhibit the activity in the uncC mutant. The NADH oxidase activities in membranes from both mutant and normal strains are strongly inhibited by tertiary-octylcatechol and bathophenanthroline but not by DCCD.  相似文献   

9.
1. The enzymic properties of myosin isolated from chicken gizzard by three different methods have been compared. 2. Although the specific Ca2+-stimulated ATPases of all preparations were similar and high, there were significant differences in the specific activities of the Mg2+-stimulated actomyosin ATPases. 3. There was no direct correlation between the Mg2+-stimulated actomyosin ATPase activity and the extent of P-light-chain phosphorylation in any of the three myosin preparations. 4. A fraction that activates the Mg2+-stimulated actomyosin ATPase of gizzard muscle has been isolated from a gizzard muscle filament preparation. 5. The activator was specific for the Mg2+-activated actomyosin ATPase of smooth muscle. 6. The activator required the addition of calmodulin for full effect.  相似文献   

10.
Rat liver nuclei were isolated in aqueous solutions of low ionic strength or anhydrous glycerol. The presence of ribonuclease H (RNase H) [EC 3.1.4.34] activity in the cytoplasm is due to extraction of the nuclear enzyme by buffer and inorganic salts. Two forms of RNase H were separated from rat liver nuclei by affinity chromatography using a DNA-cellulose column. When the RNase H in the wash solution of nuclei with 0.3 M sucrose and in nuclear solution extracted with 0.15 M NaCl were fractionated on a single-stranded DNA-cellulose column, two peaks corresponding to Mn2+- and Mg2+-dependent RNases H were eluted at 0.1 M and 0.2 M NaCl, respectively, and a peak having both RNase H activities was recovered in the wash-through fraction from the column. Among the enzymes from these two fractions in the nuclei, the activity of the Mg2+-dependent RNase H which binds to DNA-cellulose increased several-fold within 24 h of a single injection of thioacetamide. The activities of Mg2+-dependent RNase H extracted with higher-salt solution from the nuclei and recovered in the flow-through fraction from the DNA-cellulose column and the Mn2+-dependent RNase H activities were relatively unaffected by an injection of thioacetamide.  相似文献   

11.
Isolated membrane vesicles from pig stomach smooth muscle (antral part) were subfractionated by a density gradient procedure modified in order to obtain an efficient extraction of extrinsic proteins. By using this method in combination with digitonin-treatment, an endoplasmic reticulum fraction contaminated with maximally 10 to 20% of plasma membranes was isolated, together with a plasma membrane fraction containing at most 30% endoplasmic reticulum. The endoplasmic reticulum and plasma membrane fractions differed in protein composition, reaction to digitonin, binding of wheat germ agglutinin, activities of marker enzymes and in the characteristics of the Ca2+ uptake. The Ca2+ uptake by the endoplasmic reticulum was much more stimulated by oxalate than the uptake by plasma membranes. Both fractions showed a (Ca2+ + Mg2+)-ATPase activity, but the largest amount of this enzyme was present in the plasma membranes. The study of the phosphorylated intermediates of the (Ca2+ + Mg2+)-ATPase by polyacrylamide gel electrophoresis revealed two phosphoproteins one of 130 kDa and one of 100 kDa (Wuytack, F., Raeymaekers, L., De Schutter, G. and Casteels, R. (1982) Biochim. Biophys. Acta 693, 45-52). The 130 kDa enzyme was predominant in the fraction enriched in plasma membrane whereas the distribution of the 100 kDa polypeptide correlated with the endoplasmic reticulum markers. The 130 kDa ATPase was the main 125I-calmodulin binding protein detected on nitrocellulose blots of proteins separated by gel electrophoresis. The (Ca2+ + Mg2+)-ATPase activity of the plasma membranes was higher than the (Na+ + K+)-ATPase activity, suggesting that the Ca2+ extrusion from these cells depends much more on the activity of the (Ca2+ + Mg2+)-ATPase than on Na+-Ca2+ exchange.  相似文献   

12.
The effects of Ca2+ on the RNA polymerase activity of the nuclei isolated from normal and denervated gastrocnemius muscles of the rabbit were studied. It was shown that 18 hrs after denervation the RNA synthesis in vitro, Ca2+ content and the Ca, Mg-ATPase activity of the nuclei are decreased. After addition of exogenous Ca2+ the incorporation of labelled UTP into the nuclei is stimulated in the denervated muscle and is inhibited in the control. Electrostimulation of the denervated muscle at the peripheral part of the sciatic nerve for 3 hrs increases both the RNA synthesis in the nuclei and the Ca2+ content, as well as the Ca, Mg-ATPase activity. Exogenous Ca2+ has an inhibitory effect on the nuclei of the stimulated muscle. The correlation established is indicative of participation of Ca2+ in the transmission of excitation in skeletal muscle sarcolemma to the processes occurring in nuclear structures.  相似文献   

13.
The present work evaluated polyphosphate (poly P) metabolism in nuclear and mitochondrial fractions during Rhipicephalus microplus embryogenesis. Nuclear poly P decreased and activity of exopolyphosphatase (PPX - polyphosphate-phosphohydrolases; EC 3.6.1.11) increased after embryo cellularization until the end of embryogenesis. The utilization of mitochondrial poly P content occurred between embryo cellularization and segmentation stages. Increasing amounts of total RNA extracted from eggs progressively enhanced nuclear PPX activity, whereas it exerted no effect on mitochondrial PPX activity. The decline in total poly P content after the 7th day of embryogenesis does not reflect the free P(i) increase and the total poly P chain length decrease after embryo cellularization. The Km(app) utilizing poly P(3), poly P(15) and poly P(65) as substrate was almost the same for the nuclear fraction (around 1muM), while the affinity for substrate in mitochondrial fraction was around 10 times higher for poly P(3) (Km(app) = 0.2muM) than for poly P(15) (Km(app) = 2.8muM) and poly P(65) (Km(app) = 3.6muM). PPX activity was stimulated by a factor of two by Mg2+ and Co2+ in the nuclear fraction and only by Mg2+ in the mitochondrial fraction. Heparin (20microg/mL) inhibited nuclear and mitochondrial PPX activity in about 90 and 95% respectively. Together, these data are consistent with the existence of two different PPX isoforms operating in the nuclei and mitochondria of the hard tick R. microplus with distinct metal dependence, inhibitor and activator sensitivities. The data also shed new light on poly P biochemistry during arthropod embryogenesis, opening new routes for future comparative studies on the physiological roles of different poly P pools distributed over cell compartments.  相似文献   

14.
Comparison of the rat microsomal Mg-ATPase of various tissues   总被引:1,自引:0,他引:1  
The microsomal Mg-ATPase from various rat tissues was compared. After fractionating the microsomal vesicles by sucrose gradient centrifugation, the highest specific activity of the Mg-ATPase was found in the low-density vesicles which contained plasma membrane. A large fraction (25-90%) of the microsomal Ca-independent Mg-ATPase found in each tissue had the following properties: (1) the Km for ATP was 0.2 mM; (2) the rate of ATP hydrolysis by the Mg-ATPase was nonlinear due to an ATP-stimulated inactivation of the enzyme; (3) wheat germ agglutinin, concanavalin A, glutaraldehyde, and antiserum prevented inactivation induced by ATP or AdoPP[NH]P; (4) detergents at relatively low detergent:protein ratios increased the rate of inactivation with little change in the initial rate of ATP hydrolysis; (5) the Mg-ATPase was inactivated by irradiation in the presence of 8-azido ATP. (6) in addition to ATP, the Mg-ATPase was able to hydrolyze CTP, GTP, UTP, ITP, and GTP but was unable to hydrolyze any of the 10 nonnucleotide phosphocompounds which were tested; (7) the bivalent cation requirement of the Mg-ATPase could be provided by Mg2+, Ca2+, Mn2+, Zn2+, or Co2+ but the enzyme was inactive in the presence of Cu2+, Sr2+, Ba2+, or Be2+; (8) the Mg-ATPase activity was not altered by ionophores or inhibitors of the Na,K-ATPase, the Ca,Mg-ATPase or the mitochondrial F1ATPase. These data suggest that a major portion of the microsomal, basal Mg-ATPase activity is due to one unique enzyme found in most if not all tissues.  相似文献   

15.
Light-induced proton uptake, light-induced carotenoid absorbance shift, photophosphorylation, and hydrolysis of Mg-ATP, Ca-ATP, and PPi in Rhodospirillum rubrum chromatophores are shown to be inhibited by the antibiotic equisetin. The Mg- and Ca-ATPase activities of purified F0F1-ATPase are inhibited by equisetin. In contrast, only the Ca-ATPase activity of purified F1-ATPase is decreased by equisetin, whereas the Mg-ATPase is stimulated. Both equisetin and N,N'-dicyclohexylcarbodiimide (DCCD) inhibit the hydrolytic activity of the purified H+-PPase but not the hydrolytic activity of soluble PPase from R. rubrum and yeast. The I50 for the PPi hydrolysis is near 20 microM for both equisetin and DCCD. The action of equisetin on membranes is compared to the effect of Triton X-100 and carbonyl cyanide p-trifluoromethoxyhydrazone. On the basis of these new data, equisetin is proposed to act nonspecifically on membranes and hydrophobic domains of proteins.  相似文献   

16.
A membrane fraction isolated from lactating murine mammary tissue and enriched for the Golgi membrane marker enzyme galactosyltransferase exhibited Ca2+-stimulated ATPase activity (Ca-ATPase) in 20 microM-free Mg2+ and 10 microM-MgATP, with an apparent Km for Ca2+ of 0.8 microM. Exogenous calmodulin did not enhance Ca2+ stimulation, nor could Ca-ATPase activities be detected in millimolar total Mg2+ and ATP. When assayed with micromolar Mg2+ and MgATP the Ca-ATPases of skeletal-muscle sarcoplasmic reticulum and of calmodulin-enriched red blood cell plasma membranes were half-maximally activated by 0.1 microM- and 0.6 microM-Ca2+ respectively. All three Ca-ATPases were inhibited by similar micromolar concentrations of trifluoperazine, but the Golgi activity was unaffected by quercetin in concentrations which completely inhibited both the sarcoplasmic-reticulum and red-blood-cell enzymes. The results are consistent with the hypothesis that the high-affinity Ca-ATPase is responsible for the ATP-dependent Ca2+ transport exhibited by Golgi-enriched vesicles derived from lactating mammary gland [Neville, Selker, Semple & Watters (1981) J. Membr. Biol. 61, 97-105; West (1981) Biochim. Biophys. Acta 673, 374-386].  相似文献   

17.
The influence of sulfhydryl reagents on ATPase systems of rabbit sceletal muscles nuclei was studied. It is found that p-ChMB at low concentration similarly inhibits both Mg2+- and Mg2+, Ca2+-ATPases. p-ChMB at higher concentrations inhibits completely Mg2+, Ca2+-ATPase, while Mg2+- ATPase--only by 60%. N-EM is lesser specific inhibitor of SH-groups, than p-ChMB. The degree of nuclear ATPases inhibition by N-EM is practically identical. Using inhibitory analysis, two hypes of skeletal muscles nuclei SH-groups are found: easily reacting with N-EM, and those reacting with N-EM at more high concentrations, which are essential for ATPase ATP-hydrolysing activity. ATP defends Mg2+, Ca2+-ATPase, but not the Mg2+-ATPase from N-EM inhibitory action. Cysteine completely eliminates the inhibitory effect of p-ChMB on Mg2+-ATPase but only 40% on MG2+, Ca2+-ATPase. Mg2+, Ca2+-ATPase of nuclei is more sensitive to the sulfhydryl venoms action than Mg2+-ATPase.  相似文献   

18.
Removal of spectrin and other proteins of membrane skeleton from rat erythrocyte membranes resulted in a significant loss of Na,K-ATPase and Ca-ATPase activities, and even more of respective phosphatase activities. At the same time the modulating influence of ATP and Ca2+ on the enzymes disappeared. These ATPase activities were reconstituted by addition of concentrated spectrin to spectrin-depleted membranes. The activating influence of Ca2+ on ouabain-resistant and ouabain-sensitive phosphatases in ghosts could be discovered only in the presence of ATP. The highest activities of both the phosphatases were revealed when both ATP (0.5 mM) and Ca2+ (10-30 mM) were present simultaneously in the incubation medium. These data show that the functioning of transport ATPases in non-nuclear erythrocyte membranes is related to the membrane skeleton: regulating influence of intracellular ATP and Ca2+ on enzymes seems to be realized through the proteins of the skeleton.  相似文献   

19.
The plain synaptic vesicle and the ocated vesicle fractions were isolated from rat brains, and the ATPase [EC 3.6.1.3] activities were characterized in terms of ionic effects, drug effects, and protein components. Coated vesicle fraction contained three times as much actomysin-like proteins as plain vesicle fraction, although both fractions had an identical ratio of actin-like protein to myosin-like protein. The ATPases of these two fractions were activated by both Mg2+ and Ca2+, and, in the presence of either of the cations, were inhibited by KCl. Reserpine activated plain vesicle ATPase only in the presence of Cl-. Colchicine and vinblastine inhibited coated vesicle ATPase only. The results are consistent with the view that actomyosin-like proteins are involved in the synaptic retrieval process.  相似文献   

20.
We have studied Ca transport and the Ca-activated Mg-ATPase in plasma membrane vesicles prepared from normal human lymphocytes. Membrane vesicles that were exposed to oxalate as a Ca-trapping agent accumulated Ca in the presence of Mg2+ and ATP. ADP, AMP, GTP, UTP, ITP, TTP, or CTP did not substitute for ATP in energizing uptake. The Vmax for Ca uptake was 2.4 pmol of Ca/micrograms of protein/min, and the Km values for Ca and ATP were 1.0 and 80 microM, respectively. One microM A23187, added initially, completely inhibited net Ca uptake and, if added later, caused the release of Ca accumulated previously. Cyanide, oligomycin, ouabain, or varying Na+ or K+ concentrations had no effect on Ca uptake. A Ca-activated ATPase was present in the same membrane vesicles, which had a Vmax of 25 pmol of Pi/micrograms of protein/min at a free Ca concentration of 4-5 microM. This Ca-ATPase had Km values for Ca and ATP of 0.6 and 90 microM, respectively. These kinetic parameters were similar to those observed for uptake of Ca by the vesicles. The Ca-ATPase activity was insensitive to azide, oligomycin, ouabain, or varying Na+ or K+ concentrations. No Ca-activated hydrolysis of GTP or UTP was observed. Both Ca transport and the Ca-ATPase activity of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid-treated lymphocyte plasma membranes were stimulated 2-fold by a cytoplasmic component (calmodulin) that was purified 500-fold from lymphocyte cytoplasm. Thus, human lymphocyte plasma membranes have both a Ca transport activity and a Ca-stimulated ATPase activity with similar substrate affinities and specificities and similar sensitivities to calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号