首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Evidence that similar color patterns occur in unrelated animals with different habits undermines the traditional view that homoplasy evolves through shared ecological selection pressures. Carotenoid pigments responsible for many yellow to red signals exhibit two related properties that could link ecology with appearance by nontraditional means. Ecologic homoplasy could arise through ecophenotypy because all animals must obtain carotenoids through their diet. Such homoplasy also could be hidden from view because increased carotenoid levels are more strongly encoded by decreased reflectance over ultraviolet (UV) wavelengths invisible to humans. To explore these possibilities, I examined apparent matches or mismatches between color and ecology among insectivorous (low carotenoid diet) and frugivorous (high carotenoid diet) bird species in relation to the typical yellow and black plumage pattern of insectivorous, UV-sensitive titmice (Paridae). Diagnostic features of reflectance spectra indicated that all yellow plumages resulted from carotenoids, black plumages from melanins, and olive green plumages from codeposition of both pigments. However, reflectance by carotenoid-bearing plumages correlated with diet independent of plumage pattern; compared to the insectivores, frugivores had reduced amounts of UV reflectance, and to a lesser extent, "red shifts" in longer-wavelength reflectance. Furthermore, an asymptotic decrease in amount of UV with increased redness implied that plumage reflectance of insectivorous species differed more over UV wavelengths, whereas that of frugivorous species differed more over longer wavelengths. I verified that dietary links to plumage reflectance resulted from greater amounts of plumage carotenoids in frugivores, presumably due to their carotenoid-rich diets. All of these ecological associations transcended post-mortem or post-breeding color change, and phylogeny. Thus, predictable associations between avian-visible plumage reflectance, pigmentation, and diet across evolutionary scales may arise directly (diet per se) or indirectly (honest signaling of diet) by ecophenotypy, although various genetic factors also may play a role.  相似文献   

2.
King and emperor penguins (Aptenodytes patagonicus and Aptenodytes forsteri) are the only species of marine birds so far known to reflect ultraviolet (UV) light from their beaks. Unlike humans, most birds perceive UV light and several species communicate using the near UV spectrum. Indeed, UV reflectance in addition to the colour of songbird feathers has been recognized as an important signal when choosing a mate. The king penguin is endowed with several highly coloured ornaments, notably its beak horn and breast and auricular plumage, but only its beak reflects UV, a property considered to influence its sexual attraction. Because no avian UV-reflecting pigments have yet been identified, the origin of such reflections is probably structural. In an attempt to identify the structures that give rise to UV reflectance, we combined reflectance spectrophotometry and morphological analysis by both light and electron microscopy, after experimental removal of surface layers of the beak horn. Here, we characterize for the first time a multilayer reflector photonic microstructure that produces the UV reflections in the king penguin beak.  相似文献   

3.
4.
Dirty ptarmigan: behavioral modification of conspicuous male plumage   总被引:2,自引:1,他引:1  
Males of many bird species acquire a conspicuous breeding plumagethrough molt. Male rock ptarmigan (Lagopus mutus), however,become conspicuous in a unique way—as snow melts awayfrom the tundra, their cryptic white winter plumage suddenlybecomes exceptionally conspicuous, and remains so for at least3 weeks. While males remain white, females molt into one ofthe most cryptic plumages known in birds. From our 17-year fieldstudy in arctic North America, we show that, unlike other birds,male rock ptarmigan eventually change from conspicuous to crypticby soiling their plumage, thereby reducing their conspicuousnesssix fold before they molt to their cryptic summer plumage.Individual males began to soil their plumage as soon as theirmates began egg-laying, and were maximally dirty and relatively cryptic by the time incubation began and their mates no longerfertilizable. Thus male plumage conspicuousness appears toserve a reproductive function. Moreover, both polygynous andbachelor males delayed soiling for a few days after monogamousmales, as expected because of the prolonged mating opportunitiesavailable to them. We use these data to address a variety of hypotheses to explain both the conspicuousness of breeding malesand their subsequent plumage soiling. Given the high predationrate recorded for male ptarmigan during the breeding season,we argue that male conspicuousness is best explained by sexualselection and that plumage soiling is an adaptation that reducespredation risk by increasing camouflage.  相似文献   

5.
Previous attempts to establish a link between carotenoid-based plumage reflectance and diet have focused on spectral features within the human visible range (400-700 nm), particularly on the longer wavelengths (550-700 nm) that make these plumages appear yellow, orange or red. However, carotenoid reflectance spectra are intrinsically bimodal, with a less prominent but highly variable secondary reflectance peak at near-ultraviolet (UV; 320-400 nm) wavelengths visible to most birds but not to normal humans. Analysis of physical reflectance spectra of carotenoid-bearing plumages among trophically diverse tanagers (Thraupini, Emberizinae, Passeriformes) indicated that both the absolute and relative (to long visible wavelengths) amounts of short waveband (including UV) reflectance were lower in more frugivorous species. Striking modifications to the branched structure of feathers increased with frugivory. These associations were independent of phylogenetic relatedness, or other physical (specimen age, number of carotenoid-bearing patches) or ecological (body size, elevation) variables. By comparison, reflectance at longer visible wavelengths ('redness') was not consistently associated with diet. The reflectance patterns that distinguished frugivores should be more apparent to UV-sensitive birds than to UV-blind humans, but humans can perceive the higher plumage gloss produced by modified gross feather structure. Basic aspects of carotenoid chemistry suggest that increases in pigment concentration and feather dimensions reduce short waveband reflectance by the plumages of frugivores.  相似文献   

6.
Sex differences in behavior, morphology, and physiology are common in animals. In many bird species, differences in the feather colors of the sexes are apparent when judged by human observers and using physical measures of plumage reflectance, cryptic (to human) plumage dichromatism has also been detected in several additional avian lineages. However, it remains to be confirmed in almost all species whether sexual dichromatism is perceivable by individuals of the studied species. This latter step is essential because it allows the evaluation of alternative hypotheses regarding the signaling and communication functions of plumage variation. We applied perceptual modeling of the avian visual system for the first time to an endemic New Zealand bird to provide evidence of subtle but consistent sexual dichromatism in the whitehead, Mohoua albicilla. Molecular sexing techniques were also used in this species to confirm the extent of the sexual size dimorphism in plumage and body mass. Despite the small sample sizes, we now validate previous reports based on human perception that in male whiteheads head and chest feathers are physically brighter than in females. We further suggest that the extent of sexual plumage dichromatism is pronounced and can be perceived by these birds. In contrast, although sexual dimorphism was also detectable in the mass among the DNA‐sexed individuals, it was found to be less extensive than previously thought. Sexual size dimorphism and intraspecifically perceivable plumage dichromatism represent reliable traits that differ between female and male whiteheads. These traits, in turn, may contribute to honest communication displays within the complex social recognition systems of communally breeding whitehead and other group‐breeding taxa. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Manakins (Pipridae) are neotropical birds that usually exhibit delayed plumage maturation (DPM). Thus, while plumage of most adult male manakins is brightly conspicuous, subadult males and females are basically dull‐olive green. Although sexual dichromatism in some bird species may be evident only through UV reflectance, this phenomenon, known as hidden sexual dichromatism, has not been previously studied in manakins to compare subadult males and females. Within this framework, we carried out spectrophotometric analyses in searching for hidden sexual dichromatism in the white‐bearded manakin Manacus manacus, through comparison of UV spectra in females and subadult males in green plumage. Our results revealed UV reflectance in both sexes in green plumage. Moreover, we found UV spectral differences in homologous color patches between sexes, particularly at belly. Since the observed differences may allow intraspecific sex recognition of individuals in green plumage, our results do not support the female‐mimicry hypothesis to explain delayed plumage maturation in the white‐bearded manakin. Although our findings dismiss the female mimicry hypothesis, we cannot state whether these results support the non‐mutually exclusive cryptic and status signaling hypotheses. We propose then, that dull coloration of subadult males may serve both as a cryptic trait and to limit the energetic costs of acquiring the adult plumage before sexual maturity. Meanwhile, differential UV color traits between sexes in green plumage may allow adult males to avoid unnecessary energy expenditures in courtship displays in the presence of males near leks, and to selectively focus their the courtship displays on females. In accordance with the status signaling hypothesis, subadult males can be recognized both as males and subordinates and consequently may practice courtship displays without suffering aggressions by adult males. Our results highlight the importance to include a wider range of spectrophotometric information analyses for testing hypotheses regarding delayed plumage maturation.  相似文献   

8.
Recent studies of avian vision and plumage coloration have revealed a surprising degree of cryptic sexual dimorphism, with many examples of male–female differences in UV reflectance that are invisible to humans. We examined the potential for male–female and adult–subadult differences in plumage coloration in the genus Aphelocoma. This group of jays comprises 10 phylogenetic species, which are found across southern and central North America and include cooperatively breeding species, as well as species that form socially monogamous pair-bonds typical of most species of birds. Our goal was to determine whether male–female and adult–subadult differences in plumage coloration were more common in species with complex social systems (i.e., cooperative breeders). We collected a series of reflectance measurements from hundreds of museum specimens and analyzed the results using a model of an avian visual system. We found that age- and sex-related differences were not more frequent in species that practice cooperative breeding. Hence, plumage signaling relating sex and age may not be strongly associated with complex social systems. Rather, the relative lack of a stable and familiar social environment, as well as other selective pressures and constraints (e.g., habitat use and plumage complexity), may have favored a greater degree of age- and sex-related differences in plumage coloration in jays that practice simple biparental care.  相似文献   

9.
The appearance of plumage in brood parasites represents an evolutionary conflict between sexual selection that favours colourful plumages, and parasite–host coevolution that favours crypsis. In this study we quantified the degree of sexual dimorphism from a sample of 179 Great Spotted Cuckoos and determined which features facilitate accurate sex discrimination. In addition, we collected spectrophotometric measures of two colour patches (the crown and the throat) and ran visual models to test for physical and bird‐perceivable sexual differences in coloration. We found that males are bigger and brighter than females in both colour patches. Using visual modelling techniques we demonstrate for the first time that adult Great Spotted Cuckoos are sexually dichromatic in an avian visual framework.  相似文献   

10.
Melanins are the most common pigments providing coloration in the plumage and bare skin of birds and other vertebrates. Numerous species are dichromatic in the adult or definitive plumage, but the direction of this type of sexual dichromatism (i.e. whether one sex tends to be darker than the other) has not been thoroughly investigated. Using color plates, we analysed the presence of melanin‐based color patches in 666 species belonging to 69 families regularly breeding in the Western Palearctic. Sexual dichromatism based on melanins in at least one integumentary part involved 205 (30.7%) species. The body parts contributing more frequently to dichromatism were the dorsal areas, head and breast, whereas the less dichromatic body parts were the belly and the exposed integumentary parts (i.e. bill and legs). Regarding the phylogenetic spread of dichromatisms, 37 (53.6%) families contained at least one species with melanin‐based sexual dimorphism in the definitive adult plumage. As for the direction of the color difference, males are darker than females in a majority of species, meaning that males tend to produce more eumelanin and females tend to synthesize more pheomelanin. This survey has revealed the high prevalence of melanins in the emergence of sexual dichromatism in birds, at least in the Western Palearctic. Whether the described pattern is due to sexual selection promoting more conspicuous males or to natural selection for more cryptic females remains to be determined. Given that pheomelanin synthesis concurrently consumes the antioxidant glutathione but may also reduces toxic cysteine, sex‐biased physiological factors should also be given consideration in the evolution of bird plumages.  相似文献   

11.
The function and evolution of avian plumage colouration has been the subject of many studies over the past decade, but virtually all of this research has focused on the plumages of sexually mature individuals. The colours and patterns of juvenal plumage, which is worn by altricial songbirds only for the first few months of life, have been the focus of few studies. We develop the idea that distinctive juvenile appearance may be a signal of sexual immaturity, serving to reduce aggression from conspecific adults. We use a comparative phylogenetic approach to test this hypothesis in the thrushes (Family Turdidae). Honest signals of reproductive immaturity should be more valuable when juveniles fledge into environments with aggressive adult conspecifics. Therefore, we predicted that distinctive juvenile appearance would be more likely to evolve in species with extended breeding seasons and high levels of territoriality. Because many tropical bird species exhibit year‐round territoriality and elongated breeding seasons, we used breeding latitude as a proxy for these variables. As predicted, distinctive juvenile appearance was significantly correlated with occupancy of tropical latitudes. While alternative explanations cannot be ruled out and more tests of the hypothesis are needed, the observed associations between breeding latitude and distinctiveness of juvenal plumage are consistent with our hypothesis that distinctive juvenal plumage evolved as a signal of sexual immaturity.  相似文献   

12.
Juveniles of many avian species possess a spotted or mottled body plumage that is visually distinct from the plumage of adults. In other species, however, juveniles fledge with a body plumage that is just a pale representation of adult female plumage. The reasons for this variation are poorly understood. Several hypotheses concerning social (parent–offspring, adult–juvenile, juvenile–juvenile), ecological (predation risk) and physiological (costs of plumage development) implications of juvenile body plumage are presented in relation to predictions concerning associations with certain ecological and life‐history attributes of avian species. In the present study, we conduct a phylogenetically corrected comparative analysis of Western Palearctic passerines looking for sources of variation in the incidence of distinct and adult‐like juvenile body plumages. We scored plumages based on plates in the Handbook of the Birds of the Western Palearctic (Cramp & Perrins, 1988–1994; Oxford University Press) (HBWP) and entered body mass, migratory habits, habitat, nestling diet, breeding dispersion, gregariousness, duration of the nestling period, type of nest, conspicuousness of female plumage, and sexual dimorphism as explanatory variables, as presented in HBWP, in phylogenetic generalized least square regression analyses. One‐third of the species presented distinct juvenile body plumages, which lasted on average for the first 2 months of life. Body mass, conspicuousness of female plumage, migratory habits, and habitat were significantly associated with interspecific variation in distinctness of juvenile plumage, with smaller species, more conspicuous species, migrants, and species from forested habitats showing distinct juvenile plumages with higher frequency. The phylogenetic signal was moderately high. Assuming that conspicuous adult plumage is costlier to produce than distinct juvenile body plumage (pigments, conspicuousness), the need to acquire social status among juveniles before the winter may explain the more adult‐like plumage in resident species because juveniles will probably compete with individuals that they may have known during their first months of life. On the other hand, migrant juveniles may compete with a different set of individuals in winter quarters and can use savings in resources necessary for developing adult‐like plumages to improve migration capacity by allocating resources to other functions. The association with habitat could be related to juveniles in open habitats participating in more extended interactions with other juveniles than in forested habitats where lower visibility may reduce the capacity to detect or respond to signals from juvenile conspecifics. More studies on this possibly crucial life stage are needed. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 440–454.  相似文献   

13.
The broad palette of feather colours displayed by birds serves diverse biological functions, including communication and camouflage. Fossil feathers provide evidence that some avian colours, like black and brown melanins, have existed for at least 160 million years (Myr), but no traces of bright carotenoid pigments in ancient feathers have been reported. Insight into the evolutionary history of plumage carotenoids may instead be gained from living species. We visually surveyed modern birds for carotenoid-consistent plumage colours (present in 2956 of 9993 species). We then used high-performance liquid chromatography and Raman spectroscopy to chemically assess the family-level distribution of plumage carotenoids, confirming their presence in 95 of 236 extant bird families (only 36 family-level occurrences had been confirmed previously). Using our data for all modern birds, we modelled the evolutionary history of carotenoid-consistent plumage colours on recent supertrees. Results support multiple independent origins of carotenoid plumage pigmentation in 13 orders, including six orders without previous reports of plumage carotenoids. Based on time calibrations from the supertree, the number of avian families displaying plumage carotenoids increased throughout the Cenozoic, and most plumage carotenoid originations occurred after the Miocene Epoch (23 Myr). The earliest origination of plumage carotenoids was reconstructed within Passeriformes, during the Palaeocene Epoch (66–56 Myr), and not at the base of crown-lineage birds.  相似文献   

14.
Black plumage is expected to absorb and retain more heat and provide better protection against UV radiation compared with lighter plumages. Black plumage is common in species of the genera Turdus and Platycichla that inhabit highlands across different regions of the world. Considering this geographical recurrent pattern we tested the hypothesis that black plumage in these two genera has evolved as a co‐adaptive response to inhabiting highlands, reconstructing ancestral character states for plumage and altitudinal distribution using maximum‐likelihood methods, and a Pagel's multistate discrete method. For these analyses, we used a phylogeny based on mitochondrial and nuclear DNA regions that included 60 of the 66 recognized species in the genera Turdus and Platycichla. We found that black‐plumage coloration evolved independently on eight occasions within these two genera, and species with black plumage occur more often at highlands. Our results support the hypothesis that black‐plumage is adaptative in highlands; but, studies in other bird groups with black‐plumage inhabiting at the same elevations will provide evidence for this adaptive hypothesis or if the evolution of black‐plumage in other groups is explained by other evolutionary forces.  相似文献   

15.
Several recent studies have found instances of cryptic sexual dichromatism within avian taxa. Although this dichromatism has been found in plumage produced through a variety of proximate mechanisms, little is known about how dichromatism varies across these types of plumage within a single species. We used a reflectance spectrometer to measure colour within the Green-backed Tit Parus monticolus , a species which displays multiple types of pigment and structural colours. We found significant differences in spectral measurements corresponding to hue, chroma, and brightness between male and female carotenoid, melanin, structural white, grey and structural blue plumage. The only plumage that did not appear to show sexual dichromatism was the olive plumage of the back. These findings suggest that the mechanism(s) producing cryptic dichromatism in the Green-backed Tit are non-specific and act across multiple types of plumage, rather than within a single type, such as carotenoid-based or structurally produced.  相似文献   

16.
Environment plays an important role in the evolution of plumage coloration in birds and may also lead to sexual dichromatism if males and females face different selection pressures. Mountains exhibit varying ecological conditions along their elevation gradient that may impose divergent selection on elevationally widespread species, causing intraspecific plumage divergence. For example, UV light environments often vary between montane and lowland habitats, which could potentially cause differences in plumage UV reflection between birds occurring in the two types of habitats. However, few studies have examined the effects of elevation on plumage evolution. In this study, we quantified the plumage coloration of the Rufous-capped Babbler Cyanoderma ruficeps from montane and lowland habitats on a mountainous island, Taiwan. We aimed to examine whether their plumage showed differences associated with changing ecological environments across the elevational gradient. The results supported that the plumage of babblers occupying montane habitats had higher UV-reflectance and brightness than that of lowland birds, corresponding to the higher UV intensity in montane than lowland background light environments. The elevational differences were mainly found across the ventral parts of babblers that had relatively higher levels of UV reflectance compared with their dorsal parts. Alternatively, the brighter plumage, with higher UV-reflectance in montane than lowland birds, might be mediated by physiological adaptation to other ecological factors, such as parasite pressures. The elevational differences in plumage UV-reflectance and brightness were more dramatic in males than in females. However, we found significant sexual dichromatism in different body parts between montane and lowland babblers in which females had brighter or stronger UV-associated coloration than males, suggesting that sexual selection has little impact on babbler plumage. Our study suggests the importance of elevational divergent selection associated with UV light or other ecological environments on avian plumage evolution.  相似文献   

17.
Carotenoid pigments were extracted from 29 feather patches from 25 species of cotingas (Cotingidae) representing all lineages of the family with carotenoid plumage coloration. Using high-performance liquid chromatography (HPLC), mass spectrometry, chemical analysis, and 1H-NMR, 16 different carotenoid molecules were documented in the plumages of the cotinga family. These included common dietary xanthophylls (lutein and zeaxanthin), canary xanthophylls A and B, four well known and broadly distributed avian ketocarotenoids (canthaxanthin, astaxanthin, ??-doradexanthin, and adonixanthin), rhodoxanthin, and seven 4-methoxy-ketocarotenoids. Methoxy-ketocarotenoids were found in 12 species within seven cotinga genera, including a new, previously undescribed molecule isolated from the Andean Cock-of-the-Rock Rupicola peruviana, 3??-hydroxy-3-methoxy-??,??-carotene-4-one, which we name rupicolin. The diversity of cotinga plumage carotenoid pigments is hypothesized to be derived via four metabolic pathways from lutein, zeaxanthin, ??-cryptoxanthin, and ??-carotene. All metabolic transformations within the four pathways can be described by six or seven different enzymatic reactions. Three of these reactions are shared among three precursor pathways and are responsible for eight different metabolically derived carotenoid molecules. The function of cotinga plumage carotenoid diversity was analyzed with reflectance spectrophotometry of plumage patches and a tetrahedral model of avian color visual perception. The evolutionary history of the origin of this diversity is analyzed phylogenetically. The color space analyses document that the evolutionarily derived metabolic modifications of dietary xanthophylls have resulted in the creation of distinctive orange-red and purple visual colors.  相似文献   

18.
The Florida Scrub-Jay is a monogamous cooperative breeder in which both males and females display extensive structurally based blue plumage. Juveniles of this species exhibit blue tail and wing feathers that they begin growing as nestlings, and some of these feathers are retained throughout their first year. Although the birds appear to be sexually monochromatic, we assessed whether cryptic dichromatism exists in both the magnitude and pattern of coloration in tail feathers of juvenile Florida Scrub-Jays. We then determined whether variation in plumage coloration is associated with nutritional condition during molt. Tails of juvenile male Florida Scrub-Jays exhibit a greater proportion of UV reflectance than those of females. Mass at age 11 days and ptilochronology of the juvenile tail feathers were used as measures of individual nutritional condition during feather growth, and the latter was found to be positively associated with UV chroma. These data demonstrate that Florida Scrub-Jays are sexually dichromatic and suggest that variation in plumage color may be condition dependent, although we cannot rule out alternative explanations. Juvenile plumage coloration, therefore, has the potential to function as a signal of individual quality in both males and females.  相似文献   

19.
Ultraviolet (UV) reflectance has been implicated in mate selection.Yet, in some bird species the plumage of young varies in UVreflectance already in the nest and long before mate choiceand sexual selection come into play. Most birds molt the juvenilebody plumage before reaching sexual maturity, and thus, someconspicuous traits of the juvenile body plumage may rather haveevolved by natural selection, possibly via predation or parentalpreference. This second hypothesis is largely untested and predictsa differential allocation of food between fledging and totalindependence, which is a time period of 2–3 weeks whereoffspring mortality is also highest. Here, we test the predictionthat parents use the individual variation in UV reflectanceamong fledglings for differential food allocation. We manipulatedUV reflectance of the plumage of fledgling great tits Parusmajor by treating chest and cheek feathers with a lotion thateither did or did not contain UV blockers and then recordedfood allocation by parents in an outdoor design simulating postfledgingconditions. The visible spectrum was minimally affected by thistreatment. Females were found to feed UV-reflecting offspringpreferentially, whereas males had no preference. It is the firstevidence showing that the UV reflectance of the feathers ofyoung birds has a signaling function in parent–offspringcommunication and suggests that the UV traits evolved via parentalpreference.  相似文献   

20.
Ultraviolet signals in birds are special   总被引:10,自引:0,他引:10  
Recent behavioural experiments have shown that birds use ultraviolet (UV)-reflective and fluorescent plumage as cues in mate choice. It remains controversial, however, whether such UV signals play a special role in sexual communication, or whether they are part of general plumage coloration. We use a comparative approach to test for a general association between sexual signalling and either UV-reflective or fluorescent plumage. Among the species surveyed, 72% have UV colours and there is a significant positive association between UV reflectance and courtship displays. Among parrots (Psittaciformes), 68% of surveyed species have fluorescent plumage, and again there is a strong positive association between courtship displays and fluorescence. These associations are not artefacts of the plumage used in courtship displays, being generally more 'colourful' because there is no association between display and colours lacking UV reflectance or fluorescence. Equally, these associations are not phylogenetic artefacts because all results remain unchanged when families or genera, rather than species, are used as independent data points. We also find that, in parrots, fluorescent plumage is usually found adjacent to UV-reflective plumage. Using a simple visual model to examine one parrot, the budgerigar Melopsittacus undulatus, we show that the juxtaposition of UV-reflective and fluorescent plumage leads to a 25-fold increase in chromatic contrast to the budgerigar's visual system. Taken together, these results suggest that signals based on UV contrast are of special importance in the context of active sexual displays. We review briefly six hypotheses on why this may be the case: suitability for short-range signalling; high contrast with backgrounds; invisibility to predators; exploitation of pre-existing sensory biases; advertisement of feather structure; and amplification of behavioural signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号