首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
At the heart of microbial ecology lies a true scientific dichotomy. On the one hand, we know microbes are responsible for processes on which all other life on Earth is dependent; their removal would mean the cessation of all known life. However, in opposition, the majority of extant microbial species in natural environments have never been cultured or studied in a laboratory as living organisms. Owing to these factors, the question of "who does what?" has been a major barrier to understanding how microbially mediated ecosystem level events occur. Recently, the use of stable isotopes (13C) to trace carbon from specific substrates into microbes that assimilate carbon from that substrate has significantly advanced our understanding of the relationship between environmental processes and microbial phylogeny.  相似文献   

2.
Knallgas bacteria are a physiologically defined group that is primarily studied using cultivation-dependent techniques. Given that current cultivation techniques fail to grow most bacteria, cultivation-independent techniques that selectively detect and identify knallgas bacteria will improve our ability to study their diversity and distribution. We used stable-isotope probing (SIP) to identify knallgas bacteria in rhizosphere soil of legumes and in a microbial mat from Obsidian Pool in Yellowstone National Park. When samples were incubated in the dark, incorporation of (13)CO(2) was H(2) dependent. SIP enabled the detection of knallgas bacteria that were not detected by cultivation, and the majority of bacteria identified in the rhizosphere soils were betaproteobacteria predominantly related to genera previously known to oxidize hydrogen. Bacteria in soil grew on hydrogen at concentrations as low as 100 ppm. A hydB homolog encoding a putative high-affinity NiFe hydrogenase was amplified from (13)C-labeled DNA from both vetch and clover rhizosphere soil. The results indicate that knallgas bacteria can be detected by SIP and populations that respond to different H(2) concentrations can be distinguished. The methods described here should be applicable to a variety of ecosystems and will enable the discovery of additional knallgas bacteria that are resistant to cultivation.  相似文献   

3.
DNA稳定同位素探针 (DNA-SIP) 是一种新兴的技术,通过将同位素稳定结合到特定的底物来确定环境中微生物的作用。DNA-SIP与宏基因组学结合可以让某些微生物的特性与其特殊新陈代谢联系在一起,不仅可以从宏基因组库里检测到低含量的微生物,而且加速了对新的酶类和其他生物活性物质的发现。以下总结了SIP-宏基因组学技术的原理、应用及研究进展,并讨论了其在环境微生物学和生物技术的应用前景。  相似文献   

4.
In many of the DNA-based stable-isotope probing (SIP) studies published to date in which soil communities were investigated, a single DNA extraction was performed on the soil sample, usually using a commercial DNA extraction kit, prior to recovering the (13)C-labeled (heavy) DNA by density-gradient ultracentrifugation. Recent evidence suggests, however, that a single extraction of a soil sample may not lead to representative recovery of DNA from all of the organisms in the sample. To determine whether multiple DNA extractions would affect the DNA yield, the eubacterial 16S rRNA gene copy number, or the identification of anthracene-degrading bacteria, we performed seven successive DNA extractions on the same aliquot of contaminated soil either untreated or enriched with [U-(13)C]anthracene. Multiple extractions were necessary to maximize the DNA yield and 16S rRNA gene copy number from both untreated and anthracene-enriched soil samples. Sequences within the order Sphingomonadales, but unrelated to any previously described genus, dominated the 16S rRNA gene clone libraries derived from (13)C-enriched DNA and were designated "anthracene group 1." Sequences clustering with Variovorax spp., which were also highly represented, and sequences related to the genus Pigmentiphaga were newly associated with anthracene degradation. The bacterial groups collectively identified across all seven extracts were all recovered in the first extract, although quantitative PCR analysis of SIP-identified groups revealed quantitative differences in extraction patterns. These results suggest that performing multiple DNA extractions on soil samples improves the extractable DNA yield and the number of quantifiable eubacterial 16S rRNA gene copies but have little qualitative effect on the identification of the bacterial groups associated with the degradation of a given carbon source by SIP.  相似文献   

5.
6.
  1. Download : Download high-res image (118KB)
  2. Download : Download full-size image
  相似文献   

7.
The active bacterial community able to utilize benzoate under denitrifying conditions was elucidated in two coastal sediments using stable-isotope probing (SIP) and nosZ gene amplification. The SIP method employed samples from Norfolk Harbor, Virginia, and a Long-Term Ecosystem Observatory (no. 15) off the coast of Tuckerton, New Jersey. The SIP method was modified by use of archaeal carrier DNA in the density gradient separation. The carrier DNA significantly reduced the incubation time necessary to detect the (13)C-labeled bacterial DNA from weeks to hours in the coastal enrichments. No denitrifier DNA was found to contaminate the archaeal (13)C-carrier when [(12)C]benzoate was used as a substrate in the sediment enrichments. Shifts in the activity of the benzoate-utilizing denitrifying population could be detected throughout a 21-day incubation. These results suggest that temporal analysis using SIP can be used to illustrate the initial biodegrader(s) in a bacterial population and to document the cross-feeding microbial community.  相似文献   

8.
Methane is used as an alternative carbon source in the denitrification of wastewater lacking organic carbon sources because it is nontoxic and may be efficiently produced by anaerobic biological processes. Methane-dependent denitrification (MDD) in the presence of oxygen requires the co-occurrence of methanotrophy and denitrification. Activated sludge was incubated with 13C-labeled methane in either a nitrate-containing medium or a nitrate-free medium. Then, bacterial and methanotrophic populations were analyzed by cloning analysis and terminal restriction fragment length polymorphism analysis targeting 16S rRNA gene and cloning analysis targeting pmoA genes. DNA-based stable-isotope probing (DNA-SIP) analysis of the 16S rRNA gene revealed an association of the Methylococcaceae and the Hyphomicrobiaceae in a MDD ecosystem. Furthermore, supplementation of nitrate stimulated methane consumption and the activity of methanotrophic populations (i.e. the stimulation of uncultivated relatives of distinct groups of the Methylococcaceae). In particular, uncultured type-X methanotrophs of Gammaproteobacteria were dominant when nitrate was added, i.e. in the MDD incubations. On the other hand, most methanotrophs (types I, II, and X methanotrophs) were found to have been labeled with 13C under nitrate-free conditions. This DNA-SIP study identifies key bacterial populations involved in a MDD ecosystem.  相似文献   

9.
Summary DNA-based stable-isotope probing (SIP) using 13C-labeled growth substrates as bait is a powerful tool for the selective DNA isolation from microorganisms that are actively involved in consuming these substrates. To enhance the detection frequency of target genes in screens for new natural products, we have combined for the first time DNA-based SIP with the construction of metagenomic libraries. To isolate genes encoding coenzyme B12-dependent glycerol dehydratases an enrichment of glycerol-fermenting microorganisms from a sediment sample of the Wadden Sea was performed by using glycerol–13C3 as sole carbon source. Subsequently, the 13C-labeled DNA was separated from the naturally abundant 12C-DNA by density centrifugation, and used for library generation. Screening of the constructed libraries for the target genes revealed that the gene detection frequencies employing DNA-based SIP for enrichment of genomes harboring dehydratase genes were 2.1- to 3.8-fold higher than those recorded by using a traditional step with unlabeled glycerol for enrichment.  相似文献   

10.
The microbial decomposition of plant residue is a central part of the carbon cycle in soil ecosystems. Here, we explored the microeukaryotic community responsible for the uptake of plant residue carbon in a rice field soil through DNA-based stable-isotope probing (SIP) using dried rice callus labelled with (13) C as a model substrate. Molecular fingerprinting with PCR-DGGE showed that the total eukaryotic community in soil under drained (upland) conditions distinctly changed within 3 days after the callus was applied and stable thereafter. The predominant group of eukaryotes that incorporated callus carbon were fungi affiliated with the Mucoromycotina (Mortierella), Ascomycota (Galactomyces, Eleutherascus, Gibberella and Fusarium) and Zoopagomycotina (Syncephalis). 'Fungus-like' protists such as Pythium (stramenopiles) and Polymyxa (Cercozoa) were also involved in carbon flow from the callus. Some of these fungi and 'fungus-like' protists took up soil organic matter with time, which suggested a priming effect of the callus on the eukaryotic community. Our results demonstrated the usefulness of SIP not only to trace the carbon flow from fresh organic matter but also to study the effect of fresh organic matter on the utilization of soil organic matter by the microbial community.  相似文献   

11.
Stable-isotope probing (SIP) has proved a valuable cultivation-independent tool for linking specific microbial populations to selected functions in various natural and engineered systems. However, application of SIP to microbial populations with relatively minor buoyant density increases, such as populations that utilize compounds as a nitrogen source, results in reduced resolution of labeled populations. We therefore developed a tandem quantitative PCR (qPCR)-TRFLP (terminal restriction fragment length polymorphism) protocol that improves resolution of detection by quantifying specific taxonomic groups in gradient fractions. This method combines well-controlled amplification with TRFLP analysis to quantify relative taxon abundance in amplicon pools of FAM-labeled PCR products, using the intercalating dye EvaGreen to monitor amplification. Method accuracy was evaluated using mixtures of cloned 16S rRNA genes, DNA extracted from low- and high-G+C bacterial isolates (Escherichia coli, Rhodococcus, Variovorax, and Microbacterium), and DNA from soil microcosms amended with known amounts of genomic DNA from bacterial isolates. Improved resolution of minor shifts in buoyant density relative to TRFLP analysis alone was confirmed using well-controlled SIP analyses.  相似文献   

12.
The concentrations of one-carbon substrates that fuel methylotrophic microbial communities in the ocean are limited and the specialized guilds of bacteria that use these molecules may exist at low relative abundance. As a result, these organisms are difficult to identify and are often missed with existing cultivation and gene retrieval methods. Here, we demonstrate a novel proof of concept: using environmentally-relevant substrate concentrations in stable-isotope probing (SIP) incubations to yield sufficient DNA for large-insert metagenomic analysis through multiple displacement amplification (MDA). A marine surface-water sample was labelled sufficiently by incubation with near in situ concentrations of methanol. Picogram quantities of labelled (13)C-DNA were purified from caesium chloride gradients, amplified with MDA to produce microgram amounts of high-molecular-weight DNA ( 10 000 clones. Denaturing gradient gel electrophoresis (DGGE) demonstrated minimal bias associated with the MDA step and implicated Methylophaga-like phylotypes with the marine metabolism of methanol. Polymerase chain reaction screening of 1500 clones revealed a methanol dehydrogenase (MDH) containing insert and shotgun sequencing of this insert resulted in the assembly of a 9-kb fragment of DNA encoding a cluster of enzymes involved in MDH biosynthesis, regulation and assembly. This novel combination of methodology enables future structure-function studies of microbial communities to achieve the long-desired goal of identifying active microbial populations using in situ conditions and performing a directed metagenomic analysis for these ecologically relevant microorganisms.  相似文献   

13.
Peatlands represent an enormous carbon reservoir and have a potential impact on the global climate because of the active methanogenesis and methanotrophy in these soils. Uncultivated methanotrophs from seven European peatlands were studied using a combination of molecular methods. Screening for methanotroph diversity using a particulate methane monooxygenase-based diagnostic gene array revealed that Methylocystis-related species were dominant in six of the seven peatlands studied. The abundance and methane oxidation activity of Methylocystis spp. were further confirmed by DNA stable-isotope probing analysis of a sample taken from the Moor House peatland (England). After ultracentrifugation, (13)C-labelled DNA, containing genomic DNA of these Methylocystis spp., was separated from (12)C DNA and subjected to multiple displacement amplification (MDA) to generate sufficient DNA for the preparation of a fosmid metagenomic library. Potential bias of MDA was detected by fingerprint analysis of 16S rRNA using denaturing gradient gel electrophoresis for low-template amplification (0.01 ng template). Sufficient template (1-5 ng) was used in MDA to circumvent this bias and chimeric artefacts were minimized by using an enzymatic treatment of MDA-generated DNA with S1 nuclease and DNA polymerase I. Screening of the metagenomic library revealed one fosmid containing methanol dehydrogenase and two fosmids containing 16S rRNA genes from these Methylocystis-related species as well as one fosmid containing a 16S rRNA gene related to that of Methylocella/Methylocapsa. Sequencing of the 14 kb methanol dehydrogenase-containing fosmid allowed the assembly of a gene cluster encoding polypeptides involved in bacterial methanol utilization (mxaFJGIRSAC). This combination of DNA stable-isotope probing, MDA and metagenomics provided access to genomic information of a relatively large DNA fragment of these thus far uncultivated, predominant and active methanotrophs in peatland soil.  相似文献   

14.
Marine sediment slurries enriched for anaerobic, sulfate-reducing prokaryotic communities utilizing glucose and acetate were used to provide the first comparison between stable-isotope probing (SIP) of phospholipid fatty acids (PLFA) and DNA (16S rRNA and dsrA genes) biomarkers. Different 13C-labelled substrates (glucose, acetate and pyruvate) at low concentrations (100 microM) were used over a 7-day incubation to follow and identify carbon flow into different members of the community. Limited changes in total PLFA and bacterial 16S rRNA gene DGGE profiles over 7 days suggested the presence of a stable bacterial community. A broad range of PLFA were rapidly labelled (within 12 h) in the 13C-glucose slurry but this changed with time, suggesting the presence of an active glucose-utilizing population and later development of another population able to utilize glucose metabolites. The identity of the major glucose-utilizers was unclear as 13C-enriched PLFA were common (16:0, 16:1, 18:1omega7, highest incorporation) and there was little difference between 12C- and 13C-DNA 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) profiles. Seemingly glucose, a readily utilizable substrate, resulted in widespread incorporation consistent with the higher extent of 13C-incorporation (approximately 10 times) into PLFA compared with 13C-acetate or 13C-pyruvate. 13C-PLFA in the 13C-acetate and 13C-pyruvate slurries were similar to each other and to those that developed in the 13C-glucose slurry after 4 days. These were more diagnostic, with branched odd-chain fatty acids (i15:0, a15:0 and 15:1omega6) possibly indicating the presence of Desulfococcus or Desulfosarcina sulfate-reducing bacteria (SRB) and sequences related to these SRB were in the 13C-acetate-DNA dsrA gene library. The 13C-acetate-DNA 16S rRNA gene library also contained sequences closely related to SRB, but these were the acetate-utilizing Desulfobacter sp., as well as a broad range of uncultured Bacteria. In contrast, analysis of DGGE bands from 13C-DNA demonstrated that the candidate division JS1 and Firmicutes were actively assimilating 13C-acetate. Denaturing gradient gel electrophoresis also confirmed the presence of JS1 in the 13C-DNA from the 13C-glucose slurry. These results demonstrate that JS1, originally found in deep subsurface sediments, is more widely distributed in marine sediments and provides the first indication of its metabolism; incorporation of acetate and glucose (or glucose metabolites) under anaerobic, sulfate-reducing conditions. Here we demonstrate that PLFA- and DNA-SIP can be used together in a sedimentary system, with low concentrations of 13C-substrate and overlapping incubation times (up to 7 days) to provide complementary, although not identical, information on carbon flow and the identity of active members of an anaerobic prokaryotic community.  相似文献   

15.
The active population of low-affinity methanotrophs in a peat soil microcosm was characterized by stable-isotope probing. "Heavy" (13)C-labeled DNA, produced after microbial growth on (13)CH(4), was separated from naturally abundant (12)C-DNA by cesium chloride density gradient centrifugation and used as a template for the PCR. Amplification products of 16S rRNA genes and pmoA, mxaF, and mmoX, which encode key enzymes in the CH(4) oxidation pathway, were analyzed. Sequences related to extant type I and type II methanotrophs were identified, indicating that these methanotrophs were active in peat exposed to 8% (vol/vol) CH(4). The (13)C-DNA libraries also contained clones that were related to beta-subclass Proteobacteria, suggesting that novel groups of bacteria may also be involved in CH(4) cycling in this soil.  相似文献   

16.
A novel approach was developed to follow the successive utilization of organic carbon under anoxic conditions by microcalorimetry, chemical analyses of fermentation products and stable-isotope probing (SIP). The fermentation of (13) C-labeled glucose was monitored over 4 weeks by microcalorimetry in a stimulation experiment with tidal-flat sediments. Based on characteristic heat production phases, time points were selected for quantifying fermentation products and identifying substrate-assimilating bacteria by the isolation of intact ribosomes prior to rRNA-SIP. The preisolation of ribosomes resulted in rRNA with an excellent quality. Glucose was completely consumed within 2 days and was mainly fermented to acetate. Ethanol, formate, and hydrogen were detected intermittently. The amount of propionate that was built within the first 3 days stayed constant. Ribosome-based SIP of fully labeled and unlabeled rRNA was used for fingerprinting the glucose-degrading species and the inactive background community. The most abundant actively degrading bacterium was related to Psychromonas macrocephali (similarity 99%) as identified by DGGE and sequencing. The disappearance of Desulfovibrio-related bands in labeled rRNA after 3 days indicated that this group was active during the first degradation phase only. In summary, ribosome-based SIP in combination with microcalorimetry allows dissecting distinct phases in substrate turnover in a very sensitive manner.  相似文献   

17.
18.
The indigenous microorganisms responsible for degrading phenanthrene (PHE) in activated biosludge were identified using DNA-based stable isotope probing. Besides the well-known PHE degraders Burkholderia, Ralstonia, Sinobacteraceae and Arthrobacter, we for the first time linked the taxa Paraburkholderia and Kaistobacter with in situ PHE biodegradation. Analysis of PAH-RHDα gene detected in the heavy DNA fraction of 13C-PHE treatment suggested the mechanisms of horizontal gene transfer or inter-species hybridisation in PAH-RHD gene spread within the microbial community. Additionally, three cultivable PHE degraders, Microbacterium sp. PHE-1, Rhodanobacter sp. PHE-2 and Rhodococcus sp. PHE-3, were isolated from the same activated biosludge. Among them, Rhodanobacter sp. PHE-2 is the first identified strain in its genus with PHE-degrading ability. However, the involvement of these strains in PHE degradation in situ was questionable, due to their limited enrichment in the heavy DNA fraction of 13C-PHE treatment and lack of PAH-RHDα gene found in these isolates. Collectively, our findings provide a deeper understanding of the diversity and functions of indigenous microbes in PHE degradation.  相似文献   

19.
Chemical and photochemical probing of DNA complexes   总被引:3,自引:0,他引:3  
An overview of the chemical and photochemical probes which over the past ten years have been used in studies of DNA/ligand complexes and of non-B-form DNA conformations is presented with emphasis on the chemical reactions of the probes with DNA and on their present 'use-profile'. The chemical probes include: dimethyl sulfate, ethyl nitroso urea, diethyl pyrocarbonate, osmium tetroxide, permanganate, aldehydes, methidiumpropyl-EDTA-Fell (MPE), phenanthroline metal complexes and EDTA/FeII. The photochemical probes that have been used include: psoralens, UVB, acridines and uranyl salts. The biological systems analysed by use of these probes are reviewed by tabulation.  相似文献   

20.
T Ihara  Y Maruo  S Takenaka    M Takagi 《Nucleic acids research》1996,24(21):4273-4280
Toward the development of a universal, sensitive and convenient method of DNA (or RNA) detection, electrochemically active oligonucleotides were prepared by covalent linkage of a ferrocenyl group to the 5'-aminohexyl-terminated synthetic oligonucleotides. Using these electrochemically active probes, we have been able to demonstrate the detection of DNA and RNA at femtomole levels by HPLC equipped with an ordinary electrochemical detector (ECD) [Takenaka,S., Uto,Y., Kondo,H., Ihara,T. and Takagi,M. (1994) Anal. Biochem., 218, 436-443]. Thermodynamic and electrochemical studies of the interaction between the probes and the targets are presented here. The thermodynamics obtained revealed that the conjugation stabilizes the triple-helix complexes by 2-3 kcal mol-1 (1-2 orders increment in binding constant) at 298 K, which corresponds to the effect of elongation of additional several base triplets. The main cause of this thermodynamic stabilization by the conjugation is likely to be the overall conformational change of whole structure of the conjugate rather than the additional local interaction. The redox potential of the probe was independent of the target structure, which is either single- or double stranded. However, the potential is slightly dependent (with a 10-30 mV negative shift on complexation) on the extra sequence in the target, probably because the individual sequence is capable of contacting or interacting with the ferrocenyl group in a slightly different way from each other. This small potential shift itself, however, does not cause any inconvenience on practical applications in detecting the probes by using ECD. These results lead to the conclusion that the redox-active probes are very useful for the microanalysis of nucleic acids due to the stability of the complexes, high detection sensitivity and wide applicability to the target structures (DNA and RNA; single- and double strands) and the sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号