首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous results showed that pyrazole potentiates lipopolysaccharide (LPS)-induced liver injury in mice. Mechanisms involved the overexpression of cytochrome P450 2E1 (CYP2E1), oxidative stress, and activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). The current study was carried out to test the hypothesis that the mitochondria permeability transition (MPT) plays a role in this pyrazole plus LPS toxicity. Mice were injected intraperitoneally with pyrazole for 2 days, followed by a challenge with LPS with or without treatment with cyclosporin A (CsA), an inhibitor of the MPT. Serum alanine aminotransferase and aspartate aminotransferase were increased by pyrazole plus LPS treatment, and CsA treatment could attenuate these increases. CsA also prevented pyrazole plus LPS-induced hepatocyte necrosis. Formation of 4-hydroxynonenal protein adducts and 3-nitrotyrosine protein adducts in liver tissue was increased by the pyrazole plus LPS treatment, and CsA treatment blunted these increases. Swelling, cytochrome c release from mitochondria to the cytosol, and lipid peroxidation were increased in mitochondria isolated from the pyrazole plus LPS-treated mice, and CsA treatment prevented these changes. CsA did not prevent the increased levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), pp38 MAPK, and p-JNK2. In conclusion, although CsA does not prevent elevations in upstream mediators of the pyrazole plus LPS toxicity (iNOS, TNF-α, CYP2E1, MAPK), it does protect mice from the pyrazole plus LPS-induced liver toxicity by preventing the MPT and release of cytochrome c and decreasing mitochondrial oxidative stress. These results indicate that mitochondria are the critical targets of pyrazole plus LPS in mediating liver injury.  相似文献   

2.
Elevated LPS and elevated cytochrome P-450 2E1 (CYP2E1) in liver are two major independent risk factors in alcoholic liver disease. We investigated possible synergistic effects of the two risk factors in causing oxidative stress and liver injury. Sprague-Dawley rats were injected intraperitoneally with pyrazole (inducer of CYP2E1) for 2 days, and then LPS was injected via tail vein. Other rats were treated with pyrazole alone or LPS alone or saline. Eight hours later, blood was collected and livers were excised. Pathological evaluation showed severe inflammatory responses and necroses only in liver sections from rats in the pyrazole plus LPS group; blood transaminase levels were significantly elevated only in the combination group. Activities of caspase-3 and -9 and positive terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining were highest in the LPS alone and the LPS plus pyrazole group, with no significant difference between the two groups. Lipid peroxidation and protein carbonyls in liver homogenate as well as in situ superoxide production were maximally elevated in the LPS plus pyrazole group. Levels of nitrite plus nitrate and inducible nitric oxide (NO) synthase (iNOS) content were comparably elevated in LPS alone and the LPS plus pyrazole group; however, 3-nitrotyrosine adducts were elevated in the combined group but not the LPS group. It is likely that LPS induction of iNOS, which produces NO, coupled to pyrazole induction of CYP2E1 which produces superoxide, sets up conditions for maximal peroxynitrite formation and production of 3-nitrotyrosine adducts. CYP2E1 activity and content were elevated in the pyrazole and the LPS plus pyrazole groups. Immunohistochemical staining indicated that distribution of CYP2E1 was in agreement with that of necrosis and production of superoxide. These results show that pyrazole treatment enhanced LPS-induced necrosis, not apoptosis. The enhanced liver necrosis appears to involve an increase in oxidative and nitrosative stress generated by the combination of LPS plus elevated CYP2E1 levels.  相似文献   

3.
Previous studies show that treatment with a polyunsaturated fatty acid, arachidonic acid (AA), or high concentrations of cycloleucine, an inhibitor of methionine adenosyltransferase (MAT), which lowers levels of S-adenosyl-L-methionine (SAM), increased toxicity in hepatocytes from pyrazole-treated rats which expressed high levels of cytochrome P450 2E1 (CYP2E1). In this study, I used concentrations of cycloleucine or AA, which by themselves do not produce any toxicity, to evaluate whether a decrease in SAM sensitizes hepatocytes to AA toxicity, especially in hepatocytes enriched in CYP2E1. Levels of SAM were lower by 50% in hepatocytes from pyrazole- compared to saline-treated rats. Cycloleucine treatment caused a 50% decline in SAM levels with both hepatocyte preparations and SAM levels were lowest in the pyrazole-treated hepatocytes. The combination of cycloleucine plus AA produced some toxicity and apoptosis in hepatocytes from saline-treated rats but increased toxicity and apoptosis was found in the hepatocytes from pyrazole-treated rats. Cytotoxicity could be prevented by incubation with SAM, the antioxidant trolox, and the mitochondrial permeability transition inhibitor trifluoperazine. The enhanced cytotoxicity could also be protected by treating rats with chlormethiazole, a specific inhibitor of CYP2E1, thus validating the role of CYP2E1. Cycloleucine plus AA treatment elevated production of reactive oxygen species (ROS) and lipid peroxidation to greater extents with the hepatocytes from pyrazole-treated rats than that from the saline-treated rats. I hypothesize that increased production of ROS by hepatocytes enriched in CYP2E1 potentiates AA-induced lipid peroxidation and toxicity when hepatoprotective levels of SAM are lowered. Such interactions, e.g. induction of CYP2E1, decline in SAM and polyunsaturated fatty acid-induced lipid peroxidation, may contribute to alcohol-induced liver injury.  相似文献   

4.
S-Adenosyl-l-methionine (SAM) is the principal biological methyl donor. Methionine adenosyltransferase (MAT) catalyzes the only reaction that generates SAM. Hepatocytes were treated with cycloleucine, an inhibitor of MAT, to evaluate whether hepatocytes enriched in cytochrome P450 2E1 (CYP2E1) were more sensitive to a decline in SAM. Cycloleucine decreased SAM and glutathione (GSH) levels and induced cytotoxicity in hepatocytes from pyrazole-treated rats (with an increased content of CYP2E1) to a greater extent as compared to hepatocytes from saline-treated rats. Apoptosis caused by cycloleucine in pyrazole hepatocytes appeared earlier and was more pronounced than control hepatocytes and could be prevented by incubation with SAM, glutathione reduced ethyl ester and antioxidants. The cytotoxicity was prevented by treating rats with chlormethiazole, a specific inhibitor of CYP2E1. Cycloleucine induced greater production of reactive oxygen species (ROS) in pyrazole hepatocytes than in control hepatocytes, and treatment with SAM, Trolox, and chlormethiazole lowered ROS formation. In conclusion, lowering of hepatic SAM levels produced greater toxicity and apoptosis in hepatocytes enriched in CYP2E1. This is due to elevated ROS production by CYP2E1 coupled to lower levels of hepatoprotective SAM and GSH. We speculate that such interactions e.g. induction of CYP2E1, decline in SAM and GSH may contribute to alcohol liver toxicity.  相似文献   

5.
The current study was designed to investigate the effect and potential mechanism of exogenous administration of S-adenosyl-l-methionine (SAM) on the enhanced hepatotoxicity induced by the Fas agonistic Jo2 antibody plus acute ethanol pretreatment in C57BL/6 mice. Acute ethanol plus Jo2 treatment produces liver toxicity under conditions in which ethanol alone or Jo2 alone do not. SAM significantly attenuated this elevated hepatotoxicity in mice as manifested by a decrease of serum aminotransferases and morphological amelioration. Levels of SAM and activity of methionine adenosyltransferase were lowered by the ethanol plus Jo2 treatment but restored by administration of SAM. The ethanol plus Jo2 treatment increased activity and content of CYP2E1, iNOS content and TNF-α levels; these increases were blunted by SAM. SAM also protected against the elevated oxidative and nitrosative stress found after ethanol plus Jo2, likely due to the decreases in CYP2E1, iNOS and TNF-α. Calcium-induced swelling of mitochondria was enhanced by the ethanol plus Jo2 treatment and this was prevented by SAM. JNK and P38 MAPK were activated by the ethanol plus Jo2 treatment; JNK activation was partially prevented by SAM. It is suggested that SAM protects against the ethanol plus Jo2 toxicity by restoring hepatic SAM levels, preventing the increase in iNOS, CYP2E1 and TNF-α and there by lowering the elevated oxidative/nitrosative stress and activation of the JNK signal pathway, ultimately preventing mitochondrial damage.  相似文献   

6.
Induction of CYP2E1 by pyrazole (PY) potentiated the hepatotoxicity induced by TNFα in mice. We evaluated the role of nitrosative and oxidative stress and the NF-κB activation pathway in this liver injury. The iNOS inhibitor N-(3-aminomethyl)benzylacetamindine (1400W) or the antioxidant N-acetyl-l-cysteine (NAC) prevented this liver injury. TNFα plus PY treatment triggered radical stress in the liver with increased lipid peroxidation and decreased glutathione and caused mitochondrial damage as reflected by elevated membrane swelling and cytochrome c release. The radical stress and mitochondrial damage were prevented by 1400W and NAC. TNFα plus PY treatment elevated 3-nitrotyrosine adduct formation and induced NOS2 in the liver; 1400W and NAC blocked these changes. A lower extent of liver injury and oxidative stress was found in NOS2?/? mice treated with TNFα plus PY compared with wild-type controls. Neither 1400W nor NAC modified CYP2E1 activity or protein. Activation of JNK and p38MAPK was weaker in TNFα plus PY-treated NOS2?/? mice and 1400W and NAC blocked the activation of JNK and p38MAPK in wild-type mice. IKKα/β protein levels were decreased by TNFα plus PY treatment, whereas IκBα and IκBβ protein levels were elevated compared with saline, PY, or TNFα alone. NF-κB DNA binding activity was increased by TNFα alone but lowered by TNFα plus PY. All these changes were blocked by 1400W and NAC. NF-κB activation products such as Bcl-2, Bcl-XL, cFLIPS, cFLIPL, and Mn-SOD were reduced by TNFα plus PY and restored by 1400W or NAC. We conclude that TNFα plus CYP2E1 induces oxidative/nitrosative stress, which plays a role in the activation of JNK or p38MAPK and mitochondrial damage. These effects combine with the blunting of the NF-κB activation pathways and the synthesis of protective factors to cause liver injury.  相似文献   

7.
Oxidative and nitrative stress responses resulting from inflammation exacerbate liver injury associated with nonalcoholic steatohepatitis (NASH) by inducing lipid peroxidation and protein nitration. The objective of this study was to investigate whether the anti-inflammatory properties of green tea extract (GTE) would protect against NASH by suppressing oxidative and nitrative damage mediated by proinflammatory enzymes. Obese mice (ob/ob) and their 5-week-old C57BL6 lean littermates were fed 0%, 0.5% or 1% GTE for 6 weeks (n=12-13 mice/group). In obese mice, hepatic lipid accumulation, inflammatory infiltrates and serum alanine aminotransferase activity were markedly increased, whereas these markers of hepatic steatosis, inflammation and injury were significantly reduced among obese mice fed GTE. GTE also normalized hepatic 4-hydroxynonenal and 3-nitro-tyrosine (N-Tyr) concentrations to those observed in lean controls. These oxidative and nitrative damage markers were correlated with alanine aminotransferase (P<.05; r=0.410-0.471). Improvements in oxidative and nitrative damage by GTE were also associated with lower hepatic nicotinamide adenine dinucleotide phosphate oxidase activity. Likewise, GTE reduced protein expression levels of hepatic myeloperoxidase and inducible nitric oxide synthase and decreased the concentrations of nitric oxide metabolites. Correlative relationships between nicotinamide adenine dinucleotide phosphate oxidase and hepatic 4-hydroxynonenal (r=0.364) as well as nitric oxide metabolites and N-Tyr (r=0.598) suggest that GTE mitigates lipid peroxidation and protein nitration by suppressing the generation of reactive oxygen and nitrogen species. Further study is warranted to determine whether GTE can be recommended as an effective dietary strategy to reduce the risk of obesity-triggered NASH.  相似文献   

8.
This study evaluated whether acute ethanol pretreatment potentiates Fas-mediated liver injury and if oxidative stress and CYP2E1 play a role in any enhanced hepatotoxicity. There were 3-fold increases of transaminases and more extensive apoptotic necrosis of hepatocytes and focal hemorrhages of the hepatic lobule in mice treated with Jo2 Fas agonistic antibody plus ethanol compared to saline control or to mice treated with Jo2 or ethanol alone. CYP2E1 catalytic activity and protein were increased 2-fold by the acute ethanol pretreatment. There were 2- and 2.5-fold increases of caspase-8 and caspase-3 activity and 1.6-fold increases of apoptotic-positive cells in the Jo2 plus acute ethanol group compared to the Jo2 alone group. Levels of TNF-alpha, malondialdehyde, 4-hydroxynonenal, protein carbonyl formation, 3-nitrotyrosine protein adducts, and inducible nitric oxide synthase were increased in the Jo2 plus ethanol group. The enhanced hepatotoxicity of Jo2 plus ethanol and the elevated oxidative stress and TNF levels were lower in CYP2E1 knockout mice compared to wild-type mice expressing CYP2E1 but higher than saline controls. Toxicity also declined in mice treated with gadolinium chloride, an inhibitor of the inducible nitric oxide synthase or the antioxidant, N-acetyl-L-cysteine. These data indicate that acute ethanol pretreatment is capable of elevating hepatic apoptosis and liver injury induced by Jo2 Fas agonistic antibody. The enhanced hepatotoxicity involves increased oxidative and nitrosative stress, and appears to be mediated by CYP2E1-dependent and also CYP2E1-independent mechanisms.  相似文献   

9.
10.
11.
Mutations in Cu/Zn-superoxide dismutase (SOD1) are associated with some cases of familial amyotrophic lateral sclerosis (ALS). We overexpressed Bcl-2, wild-type SOD1 or mutant SOD1s (G37R and G85R) in NT-2 and SK-N-MC cells. Overexpression of Bcl-2 rendered cells more resistant to apoptosis induced by serum withdrawal, H2O2 or 4-hydroxy-2-trans-nonenal (HNE). Overexpression of Bcl-2 had little effect on levels of protein carbonyls, lipid peroxidation, 8-hydroxyguanine (8-OHG) or 3-nitrotyrosine. Serum withdrawal or H2O2 raised levels of protein carbonyls, lipid peroxidation, 8-OHG and 3-nitrotyrosine, changes that were attenuated in cells overexpressing Bcl-2. Overexpression of either SOD1 mutant tended to increase levels of lipid peroxidation, protein carbonyls, and 3-nitrotyrosine and accelerated viability loss induced by serum withdrawal, H2O2 or HNE, accompanied by greater rises in oxidative damage parameters. The effects of mutant SOD1s were attenuated by Bcl-2. By contrast, expression of wild-type SOD1 rendered cells more resistant to loss of viability induced by serum deprivation, HNE or H2O2. The levels of lipid peroxidation in wild-type SOD1 transfectants were elevated. Overexpression of mutant SOD1s makes cells more predisposed to undergo apoptosis in response to several insults. Our cellular systems appear to mimic events in patients with ALS or transgenic mice overexpressing mutant SOD1.  相似文献   

12.
Recent evidence has been presented that expression of lipogenic genes is downregulated in adipose tissue of ob/ob mice as well as in human obesity, suggesting a functionally lipoatrophic state. Using (2)H(2)O labeling, we measured three adipose tissue biosynthetic processes concurrently: triglyceride (TG) synthesis, palmitate de novo lipogenesis (DNL), and cell proliferation (adipogenesis). To determine the effect of the ob/ob mutation (leptin deficiency) on these parameters, adipose dynamics were compared in ob/ob, leptin-treated ob/ob, food-restricted ob/ob, and lean control mice. Adipose tissue fluxes for TG synthesis, de novo lipogenesis (DNL), and adipogenesis were dramatically increased in ob/ob mice compared with lean controls. Low-dose leptin treatment (2 microg/day) via miniosmotic pump suppressed all fluxes to control levels or below. Food restriction in ob/ob mice only modestly reduced DNL, with no change in TG synthesis or adipogenesis. Measurement of mRNA levels in age-matched ob/ob mice showed generally normal expression levels for most of the selected lipid anabolic genes, and leptin treatment had, with few exceptions, only modest effects on their expression. We conclude that leptin deficiency per se results in marked elevations in flux through diverse lipid anabolic pathways in adipose tissue (DNL, TG synthesis, and cell proliferation), independent of food intake, but that gene expression fails to reflect these changes in flux.  相似文献   

13.
Kim TH  Lee SH  Lee SM 《The FEBS journal》2011,278(13):2307-2317
The present study aimed to determine the role of Kupffer cells (KCs) in cytochrome P450 (CYP) isozyme activity and the expression of its gene during polymicrobial sepsis. For ablation of KCs, rats were pretreated with gadolinium chloride (GdCl(3)) at 48 and 24 h before cecal ligation and puncture (CLP). The depletion of KCs was confirmed by measuring the mRNA level of the KC marker gene CD163. Serum aminotransferase levels and lipid peroxidation showed an increase and hepatic glutathione content showed a decrease at 24 h after CLP. These changes were prevented by GdCl(3) pretreatment. Catalytic activities of CYP1A1, 1A2 and 2E1 showed a significant reduction at 24 h after CLP but were prevented by GdCl(3). A reduction in the levels of CYP2E1 protein and CYP2B1 and CYP2E1 mRNA expression was prevented by GdCl(3). Phosphorylation of CYP1A1/1A2 markedly increased 24 h after CLP, which was prevented by GdCl(3). The increased serum level of high mobility group box 1, hepatic level of Toll-like receptors 2 and 4, and inducible nitric oxide synthase protein expression were prevented by GdCl(3). In addition, elevated serum concentrations of tumor necrosis factor-α and interleukin-6, and increased hepatic mRNA levels of tumor necrosis factor-α and interleukin-6 were decreased by depletion of KCs. Our findings suggest that ablation of KCs protects against hepatic drug-metabolizing dysfunction by modulation of the inflammatory response.  相似文献   

14.
Glycerol-3-phosphate acyltransferase (GPAT) controls the first step of triglyceride (TAG) synthesis. Three distinct GPAT activities have been identified, two localized in mitochondria and one in microsomes. Mitochondrial GPAT1 (mtGPAT1) is abundantly expressed in the liver and constitutes approximately 50% of total GPAT activities in this organ. Hepatic mtGPAT1 activity is elevated in obese rodents. Mice deficient in mtGPAT1 have an improved lipid profile. To investigate if beneficial effects can result from reduced hepatic expression of mtGPAT1 in adult obese mice, adenoviral vector-based short hairpin RNA interference (shRNA) technology was used to knockdown mtGPAT1 expression in livers of ob/ob mice. Reduced expression of mtGPAT1 mRNA in liver of ob/ob mice resulted in dramatic and dose dependent reduction in mtGPAT1 activity. Reduced hepatic TAG, diacylglycerol, and free fatty acid, as well as reduced plasma cholesterol and glucose, were also observed. Fatty acid composition analysis revealed decrease of C16:0 in major lipid species. Our results demonstrate that acute reduction of mtGPAT1 in liver of ob/ob mice reduces TAG synthesis, which points to a role for mtGPAT1 in the correction of obesity and related disorders.  相似文献   

15.
Hepatic levels of the cytochrome P450 (CYP) proteins 2E1 and 4A are often increased in obesity, diabetes and fasting. In such states of nutritional imbalance, CYPs 2E1 and 4A may play a more significant role in fatty acid oxidation. In order to more fully characterize the regulation of CYP2E1 and CYP4A in obesity and obesity-related (type II) diabetes, we analyzed the hepatic expression of CYP2E1 and CYP4A in ob/ob mice which are leptin deficient, and fa/fa Zucker rats which have defective leptin receptor function. CYP2E1 protein and mRNA were either unchanged or reduced in both models. Conversely, expression of murine Cyp4a10 and 4a14 in the obese mice, and 4A2 in the male fatty Zucker rat, were greatly increased. The levels of other CYP4As were either unchanged or reduced. These results show that CYP2E1 is not inevitably increased by obesity and diabetes and indicate differential regulation of CYP4A subfamily genes in rodent models. Further, they implicate leptin receptor signaling as a factor that may modulate expression of CYP gene products involved in fatty acid oxidation.  相似文献   

16.
1) The effect of 4-hydroxynonenal and lipid peroxidation on the activities of glucose-6-phosphatase and palmitoyl CoA hydrolase were studied.

2) 4-Hydroxynonenal inactivates glucose-6-phosphatase but has no effect on palmitoyl-CoA hydrolase. These effects are similar with those observed during lipid peroxidation of microsomes.

3) The inhibition of glucose-6-phosphatase by 4-hydroxynonenal can be prevented by glutathione but not by vitamin E. The inactivation of glucose-6-phosphatase during lipid peroxidation is prevented by glutathione and delayed by vitamin E.

4) The formation of 4-hydroxynonenal during lipid peroxidation was followed in relation to the inactivation of glucose-6-phosphatase. At 50% inactivation of glucose-6-phosphatase the 4-hydroxynonenal concentration was 1.5μM. To obtain 50% inactivation of glucose-6-phosphatase by added 4-hydroxynonenal a concentration of 150μM or 300μM was needed with a preincubation time of 30 and 60 min, respectively.

5) It is concluded that the glucose-6-phosphatase inactivation during lipid peroxidation can be due to the formation of 4-hydroxynbnenal. The formed 4-hydroxynonenal which inactivates glucose-6-phosphatase is located in the membrane. If this mechanism is valid it implies that a functional SH group of glucose-6-phosphatase is layered in the membrane. However, an inactivation of glucose-6-phosphatase by desintegration of the membrane by lipid peroxidation cannot be ruled out.  相似文献   

17.
Anti-diabetic effect of ginsenoside Re in ob/ob mice   总被引:8,自引:0,他引:8  
We evaluated the anti-diabetic effects of ginsenoside Re in adult male C57BL/6J ob/ob mice. Diabetic ob/ob mice with fasting blood glucose levels of approximately 230 mg/dl received daily intraperitoneal injections of 7, 20 and 60 mg/kg ginsenoside Re for 12 consecutive days. Dose-related effects of ginsenoside Re on fasting blood glucose levels were observed. After the 20 mg/kg treatment, fasting blood glucose levels were reduced to 188+/-9.2 and 180+/-10.8 mg/dl on Day 5 and Day 12, respectively (both P<0.01 compared to vehicle group, 229+/-9.5 and 235+/-13.4 mg/dl, respectively). The EC(70) of ginsenoside Re was calculated to be 10.3 mg/kg and was used for subsequent studies. Consistent with the reduction in blood glucose, there were significant decreases in both fed and fasting serum insulin levels in mice treated with ginsenoside Re. With 12 days of ginsenoside treatment, glucose tolerance of ob/ob mice increased significantly, and the area under the curve for glucose decreased by 17.8% (P<0.05 compared to vehicle treatment). The hypoglycemic effect of the ginsenoside persisted even at 3 days of treatment cessation (blood glucose levels: 198+/-13.1 with ginsenoside treatment vs. 253+/-20.3 mg/dl with vehicle, P<0.01). There were no significant changes in body weight or body temperature. Preliminary microarray analysis revealed differential expression of skeletal muscle genes associated with lipid metabolism and muscle function. The results suggest that ginsenoside Re may prove to be useful in treating type 2 diabetes.  相似文献   

18.
Acylation-stimulating protein (ASP) acts as a paracrine signal to increase triglyceride synthesis in adipocytes. ASP administration results in more rapid postprandial lipid clearance. In mice, C3 (the precursor to ASP) knockout results in ASP deficiency and leads to reduced body fat and leptin levels. The protective potential of ASP deficiency against obesity and involvement of the leptin pathway were examined in ob/ob C3(-/-) double knockout mice (2KO). Compared with age-matched ob/ob mice, 2KO mice had delayed postprandial triglyceride and fatty acid clearance; associated with decreased body weight (4-17 weeks age: male: -13.7%, female: -20.6%, p < 0.0001) and HOMA (homeostasis model assessment) index (-37.7%), suggesting increased insulin sensitivity. By contrast, food intake in 2KO mice was +9.1% higher over ob/ob mice (p < 0.001, 2KO 5.1 +/- 0.2 g/day, ob/ob 4.5 +/- 0.2 g/day, wild type 2.6 +/- 0.1 g/day). The hyperphagia/leanness was balanced by a 28.5% increase in energy expenditure (oxygen consumption: 2KO, 131 +/- 8.9 ml/h; ob/ob, 102 +/- 4.5 ml/h; p < 0.01; wild type, 144 +/- 8.9 ml/h). These results suggest that the ASP regulation of energy storage may influence energy expenditure and dynamic metabolic balance.  相似文献   

19.
20.
The low-insulin responding spiny mice (Acomys cahirinus), maintained on a 50% sucrose diet vs isocaloric regular diet, responded with an impressive increase in the activity of hepatic enzymes of glycolysis and lipogenesis and in hyperlipidemia. There was no hyperinsulinemia or hyperglycemia and spiny mice did not gain weight on sucrose due to loss of adipose tissue. Serum T3 levels rose 1.8 fold and the activity of the hepatic mitochondrial FAD-glycerol-3-phosphate oxidase became induced 2.6 fold representing the enhancement of multiple, T3-dependent, energy-consuming metabolic cycles. An increased TG lipolysis in adipose tissue was also observed. C57BL/6J ob/ob mice were markedly hyperinsulinemic and gained weight on sucrose almost as much as those on regular diet, without changes in serum glucose or insulin. Serum triglyceride level decreased, whereas liver triglycerides accumulated markedly. The extent of the increase in hepatic enzyme activities related to lipogenesis was much lower both in the ob/ob mice and their lean siblings, than in spiny mice, but the basal enzyme activities in ob/ob mice were remarkably elevated. Serum T3 level was also elevated already on the regular diet and rose only slightly on sucrose. Basal glycerol phosphate oxidase activity in ob/ob mice exceeded that in spiny mice and rose only marginally on sucrose. Adipose tissue lipolysis was not increased. Thus, sucrose diet by enhancing the T3 production appeared to activate protective mechanism against weight gain in normoinsulinemic spiny mice, whereas the full expression of these mechanisms appeared to be precluded by the hyperinsulinemia of ob/ob mice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号