首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helicobacter pylori is a major pathogen causing various gastric diseases including gastric cancer. Infection of H. pylori induces pro-inflammatory cytokine IL-8 expression in gastric epithelial cells in the initial inflammatory process. It has been known that H. pylori can modulate Ras-Raf-Mek-Erk signal pathway for IL-8 induction. Recently, it has been shown that another signal molecule, cancer Osaka thyroid oncogene/tumor progression locus 2 (Cot/Tpl2) kinase, activates Mek and Erk and plays a role in the Erk pathway, similar to MAP3K signal molecule Raf kinase. Therefore, the objective of this study was to determine whether Cot kinase might be involved in IL-8 induction caused by H. pylori infection. AGS gastric epithelial cells were infected by H. pylori strain G27 or its isogenic mutants lacking cagA or type IV secretion system followed by treatment with Cot kinase inhibitor (KI) or siRNA specific for Cot kinase. Activation of Erk was assessed by Western blot analysis and expression of IL-8 was measured by ELISA. Treatment with Cot KI reduced both transient and sustained Erk activation. It also reduced early and late IL-8 secretion in the gastric epithelial cell line. Furthermore, siRNA knockdown of Cot inhibited early and late IL-8 secretion induced by H. pylori infection. Taken together, these results suggest that Cot kinase might play a critical role in H. pylori type IV secretion apparatus-dependent early IL-8 secretion and CagA-dependent late IL-8 secretion as an alternative signaling molecule in the Erk pathway.  相似文献   

2.
3.
4.
The pathogenesis of Helicobacter pylori-associated disorders is strongly dependent on a specialized type IV secretion system (T4SS) encoded by the cag pathogenicity island (PAI). Cytotoxin-associated gene A (CagA) is the only known H. pylori protein translocated into the host cell followed by tyrosine phosphorylation through host protein kinases. H. pylori induces cellular processes which are either PAI- or CagA-dependent (e.g., cell motility), PAI-dependent, but CagA-independent (e.g., interleukin-8 release), or PAI- and CagA-independent (e.g., cyclooxygenase-2 release). Here, we investigated H. pylori strains mutated in single PAI genes of the wild type strain Hp26695 and their effects on cell motility. We found 17 gene products out of 27 PAI genes playing a superordinated role and five PAI-encoded proteins exhibiting a clearly critical role in motogenic host cell responses, whereas the remaining five PAI gene products had no significant influence on the motogenic response in reaction to H. pylori infection. This study clearly demonstrated that H. pylori-induced cell motility and invasive growth involve type IV secretion system-dependent signalling as well as translocated and phosphorylated CagA. These findings reveal a deeper insight in to the meaning of the T4SS of H. pylori for host cell motility.  相似文献   

5.
To explore the interactions between the host, environment and bacterium responsible for the different manifestations of Helicobacter pylori infection, we examined the effect of acidic conditions on H. pylori-induced interleukin (IL)-8 expression. AGS gastric epithelial cells were exposed to acidic pH and infected with H. pylori[wild-type strain, its isogenic cag pathogenicity island (PAI) mutant or its oipA mutant]. Exposure of AGS cells to acidic pH alone did not enhance IL-8 production. However, following exposure to acidic conditions, H. pylori infection resulted in marked enhancement of IL-8 production which was independent of the presence of the cag PAI and OipA, indicating that H. pylori and acidic conditions act synergistically to induce gastric mucosal IL-8 production. In neutral pH environments H. pylori-induced IL-8 induction involved the NF-kappaB pathways, the extracellular signal-regulated kinase (ERK)-->c-Fos/c-Jun-->activating protein (AP-1) pathways, JNK-->c-Jun-->AP-1 pathways and the p38 pathways. At acidic pH H. pylori-induced augmentation of IL-8 production involved markedly upregulated the NF-kappaB pathways and the ERK-->c-Fos-->AP-1 pathways. In contrast, activation of the JNK-->c-Jun-->AP-1 pathways and p38 pathways were pH independent. These results might explain the clinical studies in which patients with duodenal ulcers had higher levels of IL-8 in the antral gastric mucosa than patients with simple H. pylori gastritis.  相似文献   

6.
Intestinal epithelial cells are an important site of the host's interaction with enteroinvasive bacteria. Genes in the chromosomally encoded Salmonella pathogenicity island 2 (SPI 2) that encodes a type III secretion system and genes on the virulence plasmid pSDL2 of Salmonella enteritica serovar Dublin (spv genes) are thought to be important for Salmonella dublin survival in host cells. We hypothesized that genes in those loci may be important also for prolonged Salmonella growth and the induction of apoptosis induced by Salmonella in human intestinal epithelial cells. HT-29 human intestinal epithelial cells were infected with wild-type S. dublin or isogenic mutants deficient in the expression of spv genes or with SPI 2 locus mutations. Neither the spv nor the SPI 2 mutations affected bacterial entry into epithelial cells or intracellular proliferation of Salmonella during the initial 8 h after infection. However, at later periods, bacteria with mutations in the SPI 2 locus or in the spv locus compared to wild-type bacteria, manifested a marked decrease in intracellular proliferation and a different distribution pattern of bacteria within infected cells. Epithelial cell apoptosis was markedly increased in response to infection with wild-type, but not the mutant Salmonella. However, apoptosis of epithelial cells infected with wild-type S. dublin was delayed for approximately 28 h after bacterial entry. Apoptosis was preceded by caspase 3 activation, which was also delayed for approximately 24 h after infection. Despite its late onset, the cellular commitment to apoptosis was determined in the early period after infection as inhibition of bacterial protein synthesis during the first 6 h after epithelial cell infection with wild-type S. dublin, but not at later times, inhibited the induction of apoptosis. These studies indicate that genes in the SPI 2 and the spv loci are crucial for prolonged bacterial growth in intestinal epithelial cells. In addition to their influence on intracellular proliferation of Salmonella, genes in those loci determine the ultimate fate of infected epithelial cells with respect to caspase 3 activation and undergoing death by apoptosis.  相似文献   

7.
Hematopoietic progenitor kinase 1 (HPK1), a mammalian Ste20-related protein kinase, is an upstream activator of c-Jun N-terminal kinase (JNK). In order to further characterize the HPK1-mediated JNK signaling cascade, we searched for HPK1-interacting proteins that could regulate HPK1. We found that HPK1 interacted with Crk and CrkL adaptor proteins in vitro and in vivo and that the proline-rich motifs within HPK1 were involved in the differential interaction of HPK1 with the Crk proteins and Grb2. Crk and CrkL not only activated HPK1 but also synergized with HPK1 in the activation of JNK. The HPK1 mutant (HPK1-PR), which encodes the proline-rich region alone, blocked JNK activation by Crk and CrkL. Dominant-negative mutants of HPK1 downstream effectors, including MEKK1, TAK1, and SEK1, also inhibited Crk-induced JNK activation. These results suggest that the Crk proteins serve as upstream regulators of HPK1. We further observed that the HPK1 mutant HPK1-KD(M46), which encodes the kinase domain with a point mutation at lysine-46, and HPK1-PR blocked interleukin-2 (IL-2) induction in Jurkat T cells, suggesting that HPK1 signaling plays a critical role in IL-2 induction. Interestingly, HPK1 phosphorylated Crk and CrkL, mainly on serine and threonine residues in vitro. Taken together, our findings demonstrate the functional interaction of HPK1 with Crk and CrkL, reveal the downstream pathways of Crk- and CrkL-induced JNK activation, and highlight a potential role of HPK1 in T-cell activation.  相似文献   

8.
Helicobacter pylori infection is a primary cause of peptic ulcers and is associated with gastric carcinogenesis. The H. pylori -induced pathophysiology may be linked to the deregulation of EGFR signalling. Elevated mucosal levels of EGF and the EGFR have been found in antral gastric biopsies of H. pylori -infected patients. A critical mechanism for regulating EGFR signalling is ligand-induced endocytosis. The internalized receptor recycles back to the plasma membrane for continued signalling or is targeted for degradation terminating receptor signalling. Here, we show that H. pylori blocks EGFR endocytosis and receptor degradation upon prolonged infection of gastric epithelial cells. Moreover, this inhibition occurs via a CagA-dependent, but CagA phosphorylation-independent activation of the non-receptor kinase c-Abl, which in turn phosphorylates the EGFR target site pY1173. This suggests a novel CagA-induced host cell response that is independent of CagA tyrosine phosphorylation. Our data indicate an intriguing strategy of H. pylori in host cell manipulations by altering selective receptor populations via a CagA-dependent endocytic mechanism. Furthermore, we identified a new role for c-Abl in phosphorylation of the EGFR target site pY1173 during H. pylori infection.  相似文献   

9.
Helicobacter pylori (Hp) injects the CagA effector protein into host epithelial cells and induces growth factor-like signaling, perturbs cell-cell junctions, and alters host cell polarity. This enables Hp to grow as microcolonies adhered to the host cell surface even in conditions that do not support growth of free-swimming bacteria. We hypothesized that CagA alters host cell physiology to allow Hp to obtain specific nutrients from or across the epithelial barrier. Using a polarized epithelium model system, we find that isogenic ΔcagA mutants are defective in cell surface microcolony formation, but exogenous addition of iron to the apical medium partially rescues this defect, suggesting that one of CagA's effects on host cells is to facilitate iron acquisition from the host. Hp adhered to the apical epithelial surface increase basolateral uptake of transferrin and induce its transcytosis in a CagA-dependent manner. Both CagA and VacA contribute to the perturbation of transferrin recycling, since VacA is involved in apical mislocalization of the transferrin receptor to sites of bacterial attachment. To determine if the transferrin recycling pathway is involved in Hp colonization of the cell surface, we silenced transferrin receptor expression during infection. This resulted in a reduced ability of Hp to colonize the polarized epithelium. To test whether CagA is important in promoting iron acquisition in vivo, we compared colonization of Hp in iron-replete vs. iron-deficient Mongolian gerbils. While wild type Hp and ΔcagA mutants colonized iron-replete gerbils at similar levels, ΔcagA mutants are markedly impaired in colonizing iron-deficient gerbils. Our study indicates that CagA and VacA act in concert to usurp the polarized process of host cell iron uptake, allowing Hp to use the cell surface as a replicative niche.  相似文献   

10.
Host DNA synthesis is induced when CV-1 (monkey kidney) cell cultures are infected at 40 C with wild-type virions or with temperature-sensitive Simian virus 40 mutants of the "early" complementation group A. Host DNA synthesis is not induced when cultures are infected with mutants of the late complementation group D. The simplest explanation for these observations, that induction depends not upon the expression of some early gene function but rather on the presence of an active D protein in the infecting virion, has been examined. Indirect experiments suggest that this explanation is not correct. Moreover, the induction of host DNA synthesis is impaired when cultures are infected with mutants of the A group at 42.5 C rather than 40 C, suggesting that the A function may be responsible for host induction. The inability of D virions to induce host DNA synthesis may reflect their inability to "uncoat" at 40C.  相似文献   

11.
ureI encodes an inner membrane protein of Helicobacter pylori. The role of the bacterial inner membrane and UreI in acid protection and regulation of cytoplasmic urease activity in the gastric microorganism was studied. The irreversible inhibition of urease when the organism was exposed to a protonophore (3,3',4', 5-tetrachlorsalicylanide; TCS) at acidic pH showed that the inner membrane protected urease from acid. Isogenic ureI knockout mutants of several H. pylori strains were constructed by replacing the ureI gene of the urease gene cluster with a promoterless kanamycin resistance marker gene (kanR). Mutants carrying the modified ureAB-kanR-EFGH operon all showed wild-type levels of urease activity at neutral pH in vitro. The mutants resisted media of pH > 4.0 but not of pH < 4.0. Whereas wild-type bacteria showed high levels of urease activity below pH 4.0, this ability was not retained in the ureI mutants, resulting in inhibition of metabolism and cell death. Gene complementation experiments with plasmid-derived H. pylori ureI restored wild-type properties. The activation of urease activity found in structurally intact but permeabilized bacteria treated with 0.01% detergent (polyoxy-ethylene-8-laurylether; C12E8), suggested a membrane-limited access of urea to internal urease at neutral pH. Measurement of 14C-urea uptake into Xenopus oocytes injected with ureI cRNA showed acid activation of uptake only in injected oocytes. Acceleration of urea uptake by UreI therefore mediates the increase of intracellular urease activity seen under acidic conditions. This increase of urea permeability is essential for H. pylori survival in environments below pH 4.0. ureI-independent urease activity may be sufficient for maintenance of bacterial viability above pH 4.0.  相似文献   

12.
13.
Serum and BALF (bronchoalveolar lavage fluid) IL-8 levels and serum levels were investigated in Toxocara canis infected guinea-pigs and the role of IL-5 as a modulator of cytokine secretion was studied. Serum levels increased early in infected animals, exceeding control levels 4 h after infection, peaked between days 6 and 18, and continued to exceed control levels after 48 days of infection. Serum and BALF IL-8 levels showed the same profile as blood eosinophilia, increasing 6 days post-infection and peaking between days 18 and 24. Treatment of infected animals with anti-IL-5 Ab suppressed eosinophilia with a parallel increase in blood IL-8 levels, whereas no change was found in levels. To support our in vivo observation we carried out experiments in vitro using guinea-pig LPS-stimulated adherent peritoneal cells which release large amounts of IL-8 into the supernatants. When rIL-5 was added to LPS-stimulated cells, 65% inhibition of IL-8 release into the supernatants was observed. Pre-incubation of cells with anti-IL-5 Ab prevented the inhibition of IL-8 release into the supernatants induced by rIL-5. Our results demonstrate for the first time that TNF-alpha and IL-8 are released concomitant with or after IL-5 in the eosinophilic inflammation induced by T. canis. Moreover, in addition to showing that IL-5 is fundamental for the induction of blood eosinophilia, the present results suggest that this cytokine may play a new biological role by acting as modulator of IL-8 secretion.  相似文献   

14.
15.
Andes virus (ANDV) causes hantavirus pulmonary syndrome (HPS), a severe acute disease with a 40% case fatality rate. Humans are infected via inhalation, and the lungs are severely affected during HPS, but little is known regarding the effects of ANDV-infection of the lung. Using a 3-dimensional air-exposed organotypic human lung tissue model, we analyzed progeny virus production and cytokine-responses after ANDV-infection. After a 7–10 day period of low progeny virus production, a sudden peak in progeny virus levels was observed during approximately one week. This peak in ANDV-production coincided in time with activation of innate immune responses, as shown by induction of type I and III interferons and ISG56. After the peak in ANDV production a low, but stable, level of ANDV progeny was observed until 39 days after infection. Compared to uninfected models, ANDV caused long-term elevated levels of eotaxin-1, IL-6, IL-8, IP-10, and VEGF-A that peaked 20–25 days after infection, i.e., after the observed peak in progeny virus production. Notably, eotaxin-1 was only detected in supernatants from infected models. In conclusion, these findings suggest that ANDV replication in lung tissue elicits a late proinflammatory immune response with possible long-term effects on the local lung cytokine milieu. The change from an innate to a proinflammatory response might be important for the transition from initial asymptomatic infection to severe clinical disease, HPS.  相似文献   

16.
To determine the effect of Helicobacter pylori CagA expression on interleukin-8 (IL-8) induction in AGS cells, cagA and five of its fragments from strains 147A and 147C that vary in the 3' repeat region were cloned into the eukaryotic expression plasmid pSP65SRalpha. IL-8, but not RANTES or IL-Ibeta, levels were increased in AGS cells transfected with 147A-cagA and to a greater extent with 147C-cagA, compared with negative controls. The 5' b fragment from the two strains had similar effects, but the 3' d and e fragments from 147C CagA had greater effects than those from 147A-CagA. When the Western CagA-specific sequence (WSS) of 147C-cagA was replaced with East Asian CagA-specific sequence (ESS) and cloned into pSP65SRalpha as an East/West chimera, there was no significant effect on IL-8 production. Use of specific inhibitors indicates that Src kinase activation, and the mitogen-activated protein (MAP) kinase and NF-kappaB pathways are the major intermediates for CagA effects on IL-8 induction, but the p38 MAP kinase pathway has little effect. These results indicate a direct CagA effect on IL-8 induction by gastric epithelial cells, and indicate signal pathway loci that can be targeted for amelioration.  相似文献   

17.
18.
Cytoplasmic RNA sequences produced in HeLa cells infected with the adeno-virus 5 temperature-sensitive mutants ts1, ts2, ts9, ts17, ts18, ts19, ts20, ts22, ts49, ts36, and ts125 were characterized by hybridization to DNA probes generated by strand separation of restriction endonuclease fragments of adenovirus 5 DNA. Two "early' mutants defective in DNA synthesis, ts125 and ts36, fail to make wild-type levels of all previously reported classes of late RNA at the nonpermissive temperature. At 40.5 degrees C, both ts125 and ts36 synthesize a wild-type complement of early cytoplasmic RNA 16 h after infection. Under these conditions, no "late' cytoplasmic RNA sequences were observed. Similarly, nuclear RNA present in these cells resembled early cytoplasmic RNA rather than late nuclear RNA. All the late adenovirus 5 temperature-sensitive mutants synthesized normal wild-type levels of late cytoplasmic RNA at the nonpermissive temperature, except ts2, which appears to overproduce certain cytoplasmic species.  相似文献   

19.
Treatment of invasive adenovirus (Ad) disease in hematopoietic stem cell transplant (SCT) recipients with capsid protein hexon-specific donor T cells is under investigation. We propose that cytotoxic T cells (CTLs) targeted to the late protein hexon may be inefficient in vivo because the early Ad protein E3-19K downregulates HLA class I antigens in infected cells. In this study, CD8+ T cells targeted to highly conserved HLA A2-restricted epitopes from the early regulatory protein DNA polymerase (P-977) and late protein hexon (H-892) were compared in peripheral blood (PB) and tonsils of naturally infected adults. In tonsils, epitope-specific pentamers detected a significantly higher frequency of P-977+CD8+ T cells compared to H-892+CD8+ T cells; this trend was reversed in PB. Tonsil epitope-specific CD8+ T cells expressed IFN-γ and IL-2 but not perforin or TNF-α, whereas PB T cells were positive for IFN-γ, TNF-α, and perforin. Tonsil epitope-specific T cells expressed lymphoid homing marker CCR7 and exhibited lower levels of the activation marker CD25 but higher proliferative potential than PB T cells. Finally, in parallel with the kinetics of mRNA expression, P-977-specific CTLs lysed targets as early as 8 hrs post infection. In contrast, H-892-specific CTLs did not kill unless infected fibroblasts were pretreated with IFN-γ to up regulate HLA class I antigens, and cytotoxicity was delayed until 16-24 hours. These data show that, in contrast to hexon CTLs, central memory type DNA polymerase CTLs dominate the lymphoid compartment and kill fibroblasts earlier after infection without requiring exogenous IFN-γ. Thus, use of CTLs targeted to both early and late Ad proteins may improve the efficacy of immunotherapy for life-threatening Ad disease in SCT recipients.  相似文献   

20.
Young VA  Parks GD 《Journal of virology》2003,77(12):7124-7130
We have compared chemokine secretion from human lung A549 cells infected with simian virus 5 (SV5) with other members of the Rubulavirus genus of paramyxoviruses. High levels of the chemokines interleukin-8 (IL-8) and macrophage chemoattractant protein-1 (MCP-1) were secreted from A549 cells infected with Human parainfluenza virus type 2 (HPIV-2) but not from cells infected with wild-type (WT) SV5. The lack of IL-8 secretion from SV5-infected cells was not due to a global block in all signal transduction pathways leading to IL-8 secretion, since SV5-infected A549 cells secreted IL-8 after stimulation with exogenously added tumor necrosis factor alpha or by coinfection with HPIV-2. A previously described, recombinant SV5 containing substitutions in the shared region of the P/V gene (rSV5-P/V-CPI-) induced IL-8 secretion by a mechanism that was dependent on viral gene expression. By contrast, an SV5 variant isolated from persistently infected cells (Wake Forest strain of Canine parainfluenza virus) induced IL-8 secretion by a mechanism that was largely not affected by inhibitors of viral gene expression. Together, these data demonstrate that SV5 is unusual compared to other closely related paramyxoviruses, since SV5 is a very poor inducer of the cytokines IL-8 and MCP-1. The isolation of two recombinant SV5 mutants that are defective in preventing chemokine induction will allow an identification of mechanisms utilized by WT SV5 to avoid activation of host cell innate immune responses to infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号