首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The majority of reef-building corals acquire their obligate algal symbionts ( Symbiodinium ) from the environment. However, factors shaping the initial establishment of coral–algal symbioses, including parental effects, local environmental conditions and local availability of symbionts, are not well understood. This study monitored the uptake and maintenance of Symbiodinium in juveniles of two common corals, Acropora tenuis and Acropora millepora , that were reciprocally explanted between sites where adult colonies host different types of Symbiodinium . We found that coral juveniles were rapidly dominated by type D Symbiodinium , even though this type is not found in adult colonies (including the parental colonies) in four out of the five study populations. Furthermore, type D Symbiodinium was found in less than one-third of a wide range of coral species ( n  > 50) sampled at the two main study sites, suggesting that its dominance in the acroporid juveniles is not because it is the most abundant local endosymbiotic type. Moreover, dominance by type D was observed irrespective of the light intensity to which juveniles were exposed in a field study. In summary, despite its relatively low abundance in coral assemblages at the study sites and irrespective of the surrounding light environment, type D Symbiodinium is the main symbiont type initially acquired by juveniles of A. millepora and A. tenuis . We conclude that during early ontogeny in these corals, there are few barriers to the uptake of Symbiodinium types which differ from those found in parental colonies, resulting in dominance by a highly infectious and potentially opportunistic symbiont.  相似文献   

2.
3.
Symbiotic algae (Symbiodinium sp.) in scleractinian corals are important in understanding how coral reefs will respond to global climate change. The present paper reports on the diversity of Symbiodinium sp. in 48 scleractinian coral species from 25 genera and 10 families sampled from the Xisha Islands in the South China Sea, which were identified with the use of restriction fragment length polymorphism (RFLP) of the nuclear ribosomal DNA large subunit gene (rDNA). The results showed that: (i) Symbiodinium Clade C was the dominant zooxanthellae in scleractinian corals in the Xisha Islands; (ii) Symbiodinium Clade D was found in the corals Montipora aequituberculata, Galaxea fascicularis, and Plerogyra sinuosa; and (iii) both Symbiodinium Clades C and D were found simultaneously in Montipora digitata, Psammocora contigua, and Galaxeafascicularis. A poor capacity for symbiosis polymorphism, as uncovered by RFLP, in the Xisha Islands indicates that the scleractinian corals have low adaptability to environmental changes. Further studies are needed to investigate zooxanthellae diversity using other molecular markers.  相似文献   

4.
Discovering how corals can adjust their thermal sensitivity in the context of global climate change is important in understanding the long-term persistence of coral reefs. In this study, we showed that short-term preconditioning to higher temperatures, 3°C below the experimentally determined bleaching threshold, for a period of 10 days provides thermal tolerance for the symbiosis stability between the scleractinian coral, Acropora millepora and Symbiodinium. Based on genotypic analysis, our results indicate that the acclimatization of this coral species to thermal stress does not come down to simple changes in Symbiodinium and/or the bacterial communities that associate with reef-building corals. This suggests that the physiological plasticity of the host and/or symbiotic components appears to play an important role in responding to ocean warming. The further study of host and symbiont physiology, both of Symbiodinium and prokaryotes, is of paramount importance in the context of global climate change, as mechanisms for rapid holobiont acclimatization will become increasingly important to the long-standing persistence of coral reefs.  相似文献   

5.
The endosymbiotic relationship between coral hosts and dinoflagellates of the genus Symbiodinium is critical for the growth and productivity of coral reef ecosystems. Here, synchrotron radiation-based infrared microspectroscopy was applied to examine metabolite concentration differences between endosymbiotic (within the anemone Aiptasia pulchella) and free-living Symbiodinium over the light-dark cycle. Significant differences in levels of lipids, nitrogenous compounds, polysaccharides and putative cell wall components were documented. Compared with free-living Symbiodinium, total lipids, unsaturated lipids and polysaccharides were relatively enriched in endosymbiotic Symbiodinium during both light and dark photoperiods. Concentrations of cell wall-related metabolites did not vary temporally in endosymbiotic samples; in contrast, the concentrations of these metabolites increased dramatically during the dark photoperiod in free-living samples, possibly reflecting rhythmic cell-wall synthesis related to light-driven cell proliferation. The level of nitrogenous compounds in endosymbiotic cells did not vary greatly across the light-dark cycle and in general was significantly lower than that observed in free-living samples collected during the light. Collectively, these data suggest that nitrogen limitation is a factor that the host cell exploits to induce the biosynthesis of lipids and polysaccharides in endosymbiotic Symbiodinium.  相似文献   

6.
7.
Recognizing diversity in coral symbiotic dinoflagellate communities   总被引:13,自引:2,他引:11  
A detailed understanding of how diversity in endosymbiotic dinoflagellate communities maps onto the physiological range of coral hosts is critical to predicting how coral reef ecosystems will respond to climate change. Species-level taxonomy of the dinoflagellate genus Symbiodinium has been predominantly examined using the internal transcribed spacer (ITS) region of the nuclear ribosomal array (rDNA ITS2) and downstream screening for dominant types using denaturing gradient gel electrophoresis (DGGE). Here, ITS2 diversity in the communities of Symbiodinium harboured by two Hawaiian coral species was explored using direct sequencing of clone libraries. We resolved sixfold to eightfold greater diversity per coral species than previously reported, the majority of which corresponds to a novel and distinct phylogenetic lineage. We evaluated how these sequences migrate in DGGE and demonstrate that this method does not effectively resolve this diversity. We conclude that the Porites spp. examined here harbour diverse assemblages of novel Symbiodinium types and that cloning and sequencing is an effective methodological approach for resolving the complexity of endosymbiotic dinoflagellate communities harboured by reef corals.  相似文献   

8.
Symbiotic algae in coral species distributed over a large depth range are confronted with major differences in light conditions. We studied the genetic variation of Symbiodinium in the coral genus Madracis over depth (5-40 m) and at two different colony surface positions. Using polymerase chain reaction-denaturing gradient gel electrophoresis ITS2 nuclear ribosomal DNA analyses, we consistently identified three symbiont genotypes with distributions that reveal patterns of host specificity and depth-based zonation. ITS2 type B7 Symbiodinium is the generalist type, occurring in all zooxanthellate Madracis corals and at all depths. Type B13 is restricted to the shallow water specialist Madracis mirabilis. Type B15 is typical of deep reef environments and replaces B7 in the depth generalist Madracis pharensis. Contrasting with variation over depth, we found strong functional within-colony uniformity in symbiont diversity. Relating symbiont distributions to measured physical factors (irradiance, light spectral distribution, temperature), suggests depth-based ecological function and host specificity for Symbiodinium ITS2 types, even among closely related coral species.  相似文献   

9.
Increased sea-surface temperatures linked to warming climate threaten coral reef ecosystems globally. To better understand how corals and their endosymbiotic dinoflagellates (Symbiodinium spp.) respond to environmental change, tissue biomass and Symbiodinium density of seven coral species were measured on various reefs approximately every four months for up to thirteen years in the Upper Florida Keys, United States (1994-2007), eleven years in the Exuma Cays, Bahamas (1995-2006), and four years in Puerto Morelos, Mexico (2003-2007). For six out of seven coral species, tissue biomass correlated with Symbiodinium density. Within a particular coral species, tissue biomasses and Symbiodinium densities varied regionally according to the following trends: Mexico≥Florida Keys≥Bahamas. Average tissue biomasses and symbiont cell densities were generally higher in shallow habitats (1-4 m) compared to deeper-dwelling conspecifics (12-15 m). Most colonies that were sampled displayed seasonal fluctuations in biomass and endosymbiont density related to annual temperature variations. During the bleaching episodes of 1998 and 2005, five out of seven species that were exposed to unusually high temperatures exhibited significant decreases in symbiotic algae that, in certain cases, preceded further decreases in tissue biomass. Following bleaching, Montastraea spp. colonies with low relative biomass levels died, whereas colonies with higher biomass levels survived. Bleaching- or disease-associated mortality was also observed in Acropora cervicornis colonies; compared to A. palmata, all A. cervicornis colonies experienced low biomass values. Such patterns suggest that Montastraea spp. and possibly other coral species with relatively low biomass experience increased susceptibility to death following bleaching or other stressors than do conspecifics with higher tissue biomass levels.  相似文献   

10.
Recent evidence suggests that corals can acclimatize or adapt to local stress factors through differential regulation of their gene expression. Profiling gene expression in corals from diverse environments can elucidate the physiological processes that may be responsible for maximizing coral fitness in their natural habitat and lead to a better understanding of the coral's capacity to survive the effects of global climate change. In an accompanying paper, we show that Porites astreoides from thermally different reef habitats exhibit distinct physiological responses when exposed to 6 weeks of chronic temperature stress in a common garden experiment. Here, we describe expression profiles obtained from the same corals for a panel of 9 previously reported and 10 novel candidate stress response genes identified in a pilot RNA‐Seq experiment. The strongest expression change was observed in a novel candidate gene potentially involved in calcification, SLC26, a member of the solute carrier family 26 anion exchangers, which was down‐regulated by 92‐fold in bleached corals relative to controls. The most notable signature of divergence between coral populations was constitutive up‐regulation of metabolic genes in corals from the warmer inshore location, including the gluconeogenesis enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase and the lipid beta‐oxidation enzyme acyl‐CoA dehydrogenase. Our observations highlight several molecular pathways that were not previously implicated in the coral stress response and suggest that host management of energy budgets might play an adaptive role in holobiont thermotolerance.  相似文献   

11.
The Chagos Archipelago designated as a no-take marine protected area in 2010, lying about 500 km south of the Maldives in the Indian Ocean, has a high conservation priority, particularly because of its fast recovery from the ocean-wide massive coral mortality following the 1998 coral bleaching event. The aims of this study were to examine Symbiodinium diversity and distribution associated with scleractinian corals in five atolls of the Chagos Archipelago, spread over 10,000 km(2). Symbiodinium clade diversity in 262 samples of seven common coral species, Acropora muricata, Isopora palifera, Pocillopora damicornis, P. verrucosa, P. eydouxi, Seriatopora hystrix, and Stylophora pistillata were determined using PCR-SSCP of the ribosomal internal transcribed spacer 1 (ITS1), PCR-DDGE of ITS2, and phylogenetic analyses. The results indicated that Symbiodinium in clade C were the dominant symbiont group in the seven coral species. Our analysis revealed types of Symbiodinium clade C specific to coral species. Types C1 and C3 (with C3z and C3i variants) were dominant in Acroporidae and C1 and C1c were the dominant types in Pocilloporidae. We also found 2 novel ITS2 types in S. hystrix and 1 novel ITS2 type of Symbiodinium in A. muricata. Some colonies of A. muricata and I. palifera were also associated with Symbiodinium A1. These results suggest that corals in the Chagos Archipelago host different assemblages of Symbiodinium types then their conspecifics from other locations in the Indian Ocean; and that future research will show whether these patterns in Symbiodinium genotypes may be due to local adaptation to specific conditions in the Chagos.  相似文献   

12.
造礁石珊瑚与其共生藻(Symbiodinium)共生研究进展   总被引:1,自引:0,他引:1  
对造礁石珊瑚与其共生藻共生研究现状及其在全球变化下的适应能力进行较全面的综述.造礁石珊瑚与遗传和生理功能独特的共生藻组成内共生关系是成功演化的范例.近年来对珊瑚共生体的分子系统学研究表明共生藻遗传多样性极为丰富,当前认为共生藻属至少包括8个(A-H)各自包含亚系群的世系或系群.珊瑚-共生藻共生功能体对诸如全球变化引起的海水温度上升等环境变化十分敏感.由于珊瑚以及珊瑚礁面临气候变化的严峻挑战,对珊瑚与其共生藻共生关系和共生功体适应能力的研究将是未来重要的研究领域之一.  相似文献   

13.

Background

The success of tropical reef-building corals depends on the metabolic co-operation between the animal host and the photosynthetic performance of endosymbiotic algae residing within its cells. To examine the molecular response of the coral Acropora microphthalma to high levels of solar irradiance, a cDNA library was constructed by PCR-based suppression subtractive hybridisation (PCR-SSH) from mRNA obtained by transplantation of a colony from a depth of 12.7 m to near-surface solar irradiance, during which the coral became noticeably paler from loss of endosymbionts in sun-exposed tissues.

Methodology/Principal Findings

A novel approach to sequence annotation of the cDNA library gave genetic evidence for a hypothetical biosynthetic pathway branching from the shikimic acid pathway that leads to the formation of 4-deoxygadusol. This metabolite is a potent antioxidant and expected precursor of the UV-protective mycosporine-like amino acids (MAAs), which serve as sunscreens in coral phototrophic symbiosis. Empirical PCR based evidence further upholds the contention that the biosynthesis of these MAA sunscreens is a ‘shared metabolic adaptation’ between the symbiotic partners. Additionally, gene expression induced by enhanced solar irradiance reveals a cellular mechanism of light-induced coral bleaching that invokes a Ca2+-binding synaptotagmin-like regulator of SNARE protein assembly of phagosomal exocytosis, whereby algal partners are lost from the symbiosis.

Conclusions/Significance

Bioinformatics analyses of DNA sequences obtained by differential gene expression of a coral exposed to high solar irradiance has revealed the identification of putative genes encoding key steps of the MAA biosynthetic pathway. Revealed also by this treatment are genes that implicate exocytosis as a cellular process contributing to a breakdown in the metabolically essential partnership between the coral host and endosymbiotic algae, which manifests as coral bleaching.  相似文献   

14.
Traditional real-time quantitative polymerase chain reaction protocols cannot be used accurately with symbiotic organisms unless the relative contribution of each symbiotic compartment to the total nucleic acid pool is known. A modified 'universal reference gene' protocol was created for reef-building corals and sea anemones, anthozoans that harbour endosymbiotic dinoflagellates belonging to the genus Symbiodinium. Gene expression values are first normalized to an RNA spike and then to a symbiont molecular proxy that represents the number of Symbiodinium cells extracted and present in the RNA. The latter is quantified using the number of genome copies of heat shock protein-70 (HSP70) amplified in the real-time quantitative polymerase chain reaction. Gene expression values are then normalized to the total concentration of RNA to account for differences in the amount of live tissue extracted among experimental treatments and replicates. The molecular quantification of symbiont cells and effect of increasing symbiont contributions to the nucleic acid pool on gene expression were tested in vivo using differentially infected sea anemones Aiptasia pulchella. This protocol has broad application to researchers who seek to measure gene expression in mixed organism assemblages.  相似文献   

15.
Reef corals harbouring clade D Symbiodinium spp. (endosymbiotic dinoflagellates) appear more tolerant of environmental stress. As sea surface temperatures rise, symbioses involving Symbiodinium D may increase in prevalence. For this reason, eight polymorphic microsatellite loci were developed for clade D Symbiodinium. From the analysis of 132 samples originating from cnidarian hosts in the Atlantic, Pacific and Indian Oceans, 4 to 35 alleles were found at each haploid locus and diversity indices ranged from 0.35 to 0.97. Population genetic analyses of these symbionts should reveal how environmental perturbations affect genetic diversity, geographical distributions, and possible host-range expansions to new coral species.  相似文献   

16.
The coral holobiont is the community of metazoans, protists and microbes associated with scleractinian corals. Disruptions in these associations have been correlated with coral disease, but little is known about the series of events involved in the shift from mutualism to pathogenesis. To evaluate structural and functional changes in coral microbial communities, Porites compressa was exposed to four stressors: increased temperature, elevated nutrients, dissolved organic carbon loading and reduced pH. Microbial metagenomic samples were collected and pyrosequenced. Functional gene analysis demonstrated that stressors increased the abundance of microbial genes involved in virulence, stress resistance, sulfur and nitrogen metabolism, motility and chemotaxis, fatty acid and lipid utilization, and secondary metabolism. Relative changes in taxonomy also demonstrated that coral-associated microbiota ( Archaea , Bacteria , protists) shifted from a healthy-associated coral community (e.g. Cyanobacteria , Proteobacteria and the zooxanthellae Symbiodinium ) to a community (e.g. Bacteriodetes , Fusobacteria and Fungi ) of microbes often found on diseased corals. Additionally, low-abundance Vibrio spp. were found to significantly alter microbiome metabolism, suggesting that the contribution of a just a few members of a community can profoundly shift the health status of the coral holobiont.  相似文献   

17.
Bleaching of corals by loss of symbiotic dinoflagellate algae and/or photosynthetic pigments is commonly triggered by elevated temperatures coupled with high irradiance, and is a first-order threat to coral reef communities. In this study, a high-resolution high-performance liquid chromatography method integrated with mass spectrometry was applied to obtain the first definitive identification of chlorophyll and carotenoid pigments of three clades of symbiotic dinoflagellate algae (Symbiodinium) in corals, and their response to experimentally elevated temperature and irradiance. The carotenoids peridinin, dinoxanthin, diadinoxanthin (Dn), diatoxanthin (Dt) and beta-carotene were detected, together with chlorophylls a and c2, and phaeophytin a, in all three algal clades in unstressed corals. On exposure to elevated temperature and irradiance, three coral species (Montastrea franksi and Favia fragum with clade B algae, and Montastrea cavernosa with clade C) bleached by loss of 50-80% of their algal cells, with no significant impact to chlorophyll a or c2, or peridinin in retained algal cells. One species (Agaricia sp. with clade C) showed no significant reduction in algal cells at elevated temperature and irradiance, but lost substantial amounts of chlorophyll a and carotenoid pigments, presumably through photo-oxidative processes. Two coral species (Porites astreoides and Porites porites both bearing clade A algae) did not bleach. The impact of elevated temperature and irradiance on the levels of the photoprotective xanthophylls (Dn + Dt) and beta-carotene varied among the corals, both in pool size and xanthophyll cycling, and was not correlated to coral bleaching resistance.  相似文献   

18.
19.
20.
The potential of corals to associate with more temperature-tolerant strains of algae (zooxanthellae, Symbiodinium) can have important implications for the future of coral reefs in an era of global climate change. In this study, the genetic identity and diversity of zooxanthellae was investigated at three reefs with contrasting histories of bleaching mortality, water temperature and shading, in the Republic of Palau (Micronesia). Single-stranded conformation polymorphism and sequence analysis of the ribosomal DNA internal transcribed spacer (ITS)1 region was used for genotyping. A chronically warm but partly shaded coral reef in a marine lake that is hydrographically well connected to the surrounding waters harboured only two single-stranded conformation polymorphism profiles (i.e. zooxanthella communities). It consisted only of Symbiodinium D in all 13 nonporitid species and two Porites species investigated, with the remaining five Porites harbouring C*. Despite the high temperature in this lake (> 0.5 degrees above ambient), this reef did not suffer coral mortality during the (1998) bleaching event, however, no bleaching-sensitive coral families and genera occur in the coral community. This setting contrasts strongly with two other reefs with generally lower temperatures, in which 10 and 12 zooxanthella communities with moderate to low proportions of clade D zooxanthellae were found. The data indicate that whole coral assemblages, when growing in elevated seawater temperatures and at reduced irradiance, can be composed of colonies associated with the more thermo-tolerant clade D zooxanthellae. Future increases in seawater temperature might, therefore, result in an increasing prevalence of Symbiodinium phylotype D in scleractinian corals, possibly associated with a loss of diversity in both zooxanthellae and corals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号