首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SNARE proteins on transport vesicles and target membranes have important roles in vesicle targeting and fusion. Therefore, localization and activity of SNAREs have to be tightly controlled. Regulatory proteins bind to N-terminal domains of some SNAREs. vti1b is a mammalian SNARE that functions in late endosomal fusion. To investigate the role of the N terminus of vti1b we performed a yeast two-hybrid screen. The N terminus of vti1b interacted specifically with the epsin N-terminal homology (ENTH) domain of enthoprotin/CLINT/epsinR. The interaction was confirmed using in vitro binding assays. This complex formation between a SNARE and an ENTH domain was conserved between mammals and yeast. Yeast Vti1p interacted with the ENTH domain of Ent3p. ENTH proteins are involved in the formation of clathrin-coated vesicles. Both epsinR and Ent3p bind adaptor proteins at the trans-Golgi network. Vti1p is required for multiple transport steps in the endosomal system. Genetic interactions between VTI1 and ENT3 were investigated. Synthetic defects suggested that Vti1p and Ent3p cooperate in transport from the trans-Golgi network to the prevacuolar endosome. Our experiments identified the first cytoplasmic protein binding to specific ENTH domains. These results point toward a novel function of the ENTH domain and a connection between proteins that function either in vesicle formation or in vesicle fusion.  相似文献   

2.
Exit from the cell cycle is essential for cells to initiate a terminal differentiation program during development, but what controls this transition is incompletely understood. In this paper, we demonstrate a regulatory link between mitochondrial fission activity and cell cycle exit in follicle cell layer development during Drosophila melanogaster oogenesis. Posterior-localized clonal cells in the follicle cell layer of developing ovarioles with down-regulated expression of the major mitochondrial fission protein DRP1 had mitochondrial elements extensively fused instead of being dispersed. These cells did not exit the cell cycle. Instead, they excessively proliferated, failed to activate Notch for differentiation, and exhibited downstream developmental defects. Reintroduction of mitochondrial fission activity or inhibition of the mitochondrial fusion protein Marf-1 in posterior-localized DRP1-null clones reversed the block in Notch-dependent differentiation. When DRP1-driven mitochondrial fission activity was unopposed by fusion activity in Marf-1-depleted clones, premature cell differentiation of follicle cells occurred in mitotic stages. Thus, DRP1-dependent mitochondrial fission activity is a novel regulator of the onset of follicle cell differentiation during Drosophila oogenesis.  相似文献   

3.
Substrate-specific degradation of proteins by the ubiquitin-proteasome pathway is a precise mechanism that controls the abundance of key cell regulators. SCF complexes are a family of E3 ubiquitin ligases that target specific proteins for destruction at the 26S-proteasome. These complexes are composed of three constant polypeptides--Skp1, Cullin1/3 and Roc1/Rbx1--and a fourth variable adapter, the F-box protein. Slimb (Slmb) is a Drosophila F-Box protein that fulfills several roles in development and cell physiology. We analyzed its participation in egg chamber development and found that slmb is required in both the follicle cells and the germline at different stages of oogenesis. We observed that in slmb somatic clones, morphogenesis of the germarium and encapsulation of the cyst were altered, giving rise to egg chambers with extra germline cells and two oocytes. Furthermore, in slmb somatic clones, we observed ectopic Fasciclin 3 expression, suggesting a delay in follicle cell differentiation, which correlated with the occurrence of ectopic polar cells, lack of interfollicular stalks and mislocalization of the oocyte. Later in oogenesis, Slmb was required in somatic cells to specify the position, size and morphology of dorsal appendages. Mild overactivation of the Dpp pathway caused similar phenotypes that could be antagonized by simultaneous overexpression of Slmb, suggesting that Slmb might normally downregulate the Dpp pathway in follicle cells. Indeed, ectopic expression of a dad-LacZ enhancer trap revealed that the Dpp pathway was upregulated in slmb somatic clones and, consistent with this, ectopic accumulation of the co-Smad protein, Medea, was recorded. By analyzing slmb germline clones, we found that loss of Slmb provoked a reduction in E2f2 and Dp levels, which correlated with misregulation of mitotic cycles during cyst formation, abnormal nurse cell endoreplication and impairment of dumping of the nurse cell content into the oocyte.  相似文献   

4.
The phosphoinositide-binding proteins Ent3p and Ent5p are required for protein transport from the trans-Golgi network (TGN) to the vacuole in Saccharomyces cerevisiae. Both proteins interact with the monomeric clathrin adaptor Gga2p, but Ent5p also interacts with the clathrin adaptor protein 1 (AP-1) complex, which facilitates retention of proteins such as Chs3p at the TGN. When both ENT3 and ENT5 are mutated, Chs3p is diverted from an intracellular reservoir to the cell surface. However, Ent3p and Ent5p are not required for the function of AP-1, but rather they seem to act in parallel with AP-1 to retain proteins such as Chs3p at the TGN. They have all the properties of clathrin adaptors, because they can both bind to clathrin and to cargo proteins. Like AP-1, Ent5p binds to Chs3p, whereas Ent3p facilitates the interaction between Gga2p and the endosomal syntaxin Pep12p. Thus, Ent3p has an additional function in Gga-dependent transport to the late endosome. Ent3p also facilitates the association between Gga2p and clathrin; however, Ent5p can partially substitute for this function. We conclude that the clathrin adaptors AP-1, Ent3p, Ent5p, and the Ggas cooperate in different ways to sort proteins between the TGN and the endosomes.  相似文献   

5.
Identification of vitelline membrane proteins in Drosophila melanogaster   总被引:1,自引:0,他引:1  
In Drosophila melanogaster, proteins involved in vitelline membrane production are secreted by ovarian follicle cells during stages 9 and 10 of oogenesis. We have used SDS-PAGE and two-dimensional electrophoresis to identify six major size classes of radiolabeled components in purified vitelline membrane preparations. Analyses of in vivo labeled proteins from egg chambers of different developmental stages and stage 10 follicle cells show that components of five of these size classes are synthesized by follicle cells during the period of vitelline membrane deposition. Immunological analysis of eggshell antigens utilizing complex antisera raised to purified eggshell fragments has confirmed the identity of components of three size classes.  相似文献   

6.
ABSTRACT: INTRODUCTION: Establishment of distinct follicle cell fates at the early stages of Drosophila oogenesis is crucial for achieving proper morphology of individual egg chambers. In Drosophila oogenesis, Notch-signaling controls proliferation and differentiation of follicular cells, which eventually results in the polarization of the anterior-posterior axis of the oocyte. Here we analyzed the functions of Tribolium Notch-signaling factors during telotrophic oogenesis, which differs fundamentally from the polytrophic ovary of Drosophila. RESULTS: We found Notch-signaling to be required for maintaining the mitotic cycle of somatic follicle cells. Upon Delta RNAi, follicle cells enter endocycle prematurely, which affects egg-chamber formation and patterning. Interestingly, our results indicate that Delta RNAi phenotypes are not solely due to the premature termination of cell proliferation. Therefore, we monitored the terminal /stalk cell precursor lineage by molecular markers. We observed that upon Delta RNAi terminal and stalk cell populations were absent, suggesting that Notch-signaling is also required for the specification of follicle cell populations, including terminal and stalk precursor cells. CONCLUSIONS: We demonstrate that with respect to mitotic cycle/endocycle switch Notch-signaling in Tribolium and Drosophila has opposing effects. While in Drosophila a Delta-signal brings about the follicle cells to leave mitosis, Notch-signaling in Tribolium is necessary to retain telotrophic egg-chambers in an "immature" state. In most instances, Notch-signaling is involved in maintaining undifferentiated (or preventing specialized) cell fates. Hence, the role of Notch in Tribolium may reflect the ancestral function of Notch-signaling in insect oogenesis. The functions of Notch-signaling in patterning the follicle cell epithelium suggest that Tribolium oogenesis may - analogous to Drosophila - involve the stepwise determination of different follicle cell populations. Moreover, our results imply that Notch-signaling may contribute at least to some aspects of oocyte polarization and AP axis also in telotrophic oogenesis.  相似文献   

7.
In the present study we demonstrate the existence of two apoptotic patterns in Drosophila nurse cells during oogenesis. One is developmentally regulated and normally occurs at stage 12 and the other is stage-specific and is sporadically observed at stages 7 and 8 of abnormally developed follicles. The apoptotic manifestation of the first pattern begins at stage 11 and is marked by a perinuclear rearrangement of the actin cytoskeleton and the development of extensive lobes and engulfments of the nurse cell nuclei located proximal to the oocyte. Consequently, at late stage 12 (12C), half of the nurse cell nuclei exhibit condensed chromatin, while at late stage 13 all the nuclei have fragmented DNA, as it is clearly shown by TUNEL assay. Finally, the apoptotic vesicles that are formed during stage 13, are phagocytosed by the neighboring follicle cells and at stage 14 the nurse cell nuclear remnants can be easily detected within the adjacent follicle cell phagosomes. In the second sporadic apoptotic pattern, all the nurse cell nuclei are highly condensed with fragmented DNA, accompanied by a completely disorganized actin cytoskeleton. When we induced apoptosis in Drosophila follicles through an etoposide and staurosporine in vitro treatment, we observed a similar pattern of stage-specific cell death at stages 7 and 8. These observations suggest a possible protective mechanism throughout Drosophila oogenesis that results in apoptosis of abnormal, damaged or spontaneously mutated follicles before they reach maturity.  相似文献   

8.
Clathrin adaptors are key factors in clathrin-coated vesicle formation, coupling clathrin to cargo and/or the lipid bilayer. A physically interacting network of three classes of adaptors participate in clathrin-mediated traffic between the trans-Golgi network (TGN) and endosomes: AP-1, Gga proteins, and epsin-like proteins. Here we investigate functional relationships within this network through transport assays and protein localization analysis in living yeast cells. We observed that epsin-like protein Ent3p preferentially localized with Gga2p, whereas Ent5p distributed equally between AP-1 and Gga2p. Ent3p was mislocalized in Gga-deficient but not in AP-1-deficient cells. In contrast, Ent5p retained localization in cells lacking either or both AP-1 and Gga proteins. The Ent proteins were dispensable for AP-1 or Gga localization. Synthetic genetic growth and alpha-factor maturation defects were observed when ent5Delta but not ent3Delta was introduced together with deletions of the GGA genes. In AP-1-deficient cells, ent3Delta and to a lesser extent ent5Delta caused minor alpha-factor maturation defects, but together resulted in a near-lethal phenotype. Deletions of ENT3 and ENT5 also displayed synthetic defects similar to, but less severe than, synthetic effects of AP-1 and Gga inactivation. These results differentiate Ent3p and Ent5p function in vivo, suggesting that Ent3p acts primarily with Gga proteins, whereas Ent5p acts with both AP-1 and Gga proteins but is more critical for AP-1-mediated transport. The data also support a model in which the Ent adaptors provide important accessory functions to AP-1 and Gga proteins in TGN/endosome traffic.  相似文献   

9.
Carney GE  Bender M 《Genetics》2000,154(3):1203-1211
Oogenesis in Drosophila is regulated by the steroid hormone ecdysone and the sesquiterpenoid juvenile hormone. Response to ecdysone is mediated by a heteromeric receptor composed of the EcR and USP proteins. We have identified a temperature-sensitive EcR mutation, EcR(A483T), from a previously isolated collection of EcR mutations. EcR(A483T) is predicted to affect all EcR protein products (EcR-A, EcR-B1, and EcR-B2) since it maps to a common exon encoding the ligand-binding domain. In wild-type females, we find that both EcR-A and EcR-B1 are expressed in nurse cells and follicle cells throughout oogenesis. EcR mutant females raised at permissive temperature and then shifted to restrictive temperature exhibit severe reductions in fecundity. Oogenesis in EcR mutant females is defective, and the spectrum of oogenic defects includes the presence of abnormal egg chambers and loss of vitellogenic egg stages. Our results demonstrate a requirement for EcR during female reproduction and suggest that EcR is required for normal oogenesis.  相似文献   

10.
Clathrin-coated vesicles (CCVs) are a central component of endocytosis and traffic between the trans-Golgi network (TGN) and endosomes. Although endocytic CCV formation is well characterized, much less is known about CCV formation at internal membranes. Here we describe two epsin amino-terminal homology (ENTH) domain-containing proteins, Ent3p and Ent5p, that are intimately involved in clathrin function at the Golgi. Both proteins associate with the clathrin adaptor Gga2p in vivo; Ent5p also interacts with the clathrin adaptor complex AP-1 and clathrin. A novel, conserved motif that mediates the interaction of Ent3p and Ent5p with gamma-ear domains of Gga2p and AP-1 is defined. Ent3p and Ent5p colocalize with clathrin, and cells lacking both Ent proteins exhibit defects in clathrin localization and traffic between the Golgi and endosomes. The findings suggest that Ent3p and Ent5p constitute a functionally related pair that co-operate with Gga proteins and AP-1 to recruit clathrin and promote formation of clathrin coats at the Golgi/endosomes. On the basis of our results and the established roles of epsin and epsin-related proteins in endocytosis, we propose that ENTH-domain-containing proteins are a universal component of CCV formation.  相似文献   

11.
H Ruohola  K A Bremer  D Baker  J R Swedlow  L Y Jan  Y N Jan 《Cell》1991,66(3):433-449
Oogenesis in Drosophila involves specification of both germ cells and the surrounding somatic follicle cells, as well as the determination of oocyte polarity. We found that two neurogenic genes, Notch and Delta, are required in oogenesis. These genes encode membrane proteins with epidermal growth factor repeats and are essential in the decision of an embryonic ectodermal cell to take on the fate of neuroblast or epidermoblast. In oogenesis, mutation in either gene leads to an excess of posterior follicle cells, a cell fate change reminiscent of the hyperplasia of neuroblasts seen in neurogenic mutant embryos. Furthermore, the Notch mutation in somatic cells causes mislocalization of bicoid in the oocyte. These results suggest that the neurogenic genes Notch and Delta are involved in both follicle cell development and the establishment of anterior-posterior polarity in the oocyte.  相似文献   

12.
Proper assembly and maintenance of epithelia are critical for normal development and homeostasis. Here, using the Drosophila ovary as a model, we identify a role for the B1 isoform of the ecdysone receptor (EcR-B1) in this process. We performed a reverse genetic analysis of EcR-B1 function during oogenesis and demonstrate that silencing of this receptor isoform causes loss of integrity and multilayering of the follicular epithelium. We show that multilayered follicle cells lack proper cell polarity with altered distribution of apical and basolateral cell polarity markers including atypical-protein kinase C (aPKC), Discs-large (Dlg), and Scribble (Scrib) and aberrant accumulation of adherens junctions and F-actin cytoskeleton. We find that the EcR-B1 isoform is required for proper follicle cell polarity both during early stages of oogenesis, when follicle cells undergo the mitotic cell cycle, and at midoogenesis when these cells stop dividing and undergo several endocycles. In addition, we show that the EcR-B1 isoform is required during early oogenesis for follicle cell survival and that disruption of its function causes apoptotic cell death induced by caspase.  相似文献   

13.
Although the Myc oncogene has long been known to play a role in many human cancers, the mechanisms that mediate its effects in both normal cells and cancer cells are not fully understood. We have initiated a genetic analysis of the Drosophila homolog of the Myc oncoprotein (dMyc), which is encoded by the dm locus. We carried out mosaic analysis to elucidate the functions of dMyc in the germline and somatic cells of the ovary during oogenesis, a process that involves cell proliferation, differentiation and growth. Germline and somatic follicle cells mutant for dm exhibit a profound decrease in their ability to grow and to carry out endoreplication, a modified cell cycle in which DNA replication occurs in the absence of cell division. In contrast to its dramatic effects on growth and endoreplication, dMyc is dispensable for the mitotic division cycles of both germline and somatic components of the ovary. Surprisingly, despite their impaired ability to endoreplicate, dm mutant follicle cells appeared to carry out chorion gene amplification normally. Furthermore, in germline cysts in which the dm mutant cells comprised only a subset of the 16-cell cluster, we observed strictly cell-autonomous growth defects. However, in cases in which the entire germline cyst or the whole follicular epithelium was mutant for dm, the growth of the entire follicle, including the wild-type cells, was delayed. This observation indicates the existence of a signaling mechanism that acts to coordinate the growth rates of the germline and somatic components of the follicle. In summary, dMyc plays an essential role in promoting the rapid growth that must occur in both the germline and the surrounding follicle cells for oogenesis to proceed.  相似文献   

14.
The involvement of the Notch locus in Drosophila oogenesis.   总被引:12,自引:0,他引:12  
The Notch gene in Drosophila encodes a transmembrane protein with homology to EGF that, in a variety of tissues, appears to mediate cell interactions necessary for cell fate choices. Here we demonstrate that oogenesis and spermatogenesis depend on Notch. We examine the phenotypes of the temperature-sensitive Notch allele, Nts1, and, using a monoclonal antibody, determine the cellular and subcellular distribution of Notch protein during oogenesis. We show that Nts1 is associated with a missense mutation in the extracellular, EGF homologous region of Notch and that at non-permissive temperatures oogenesis is blocked and the subcellular distribution of the protein is altered. In wild-type ovaries, Notch protein is found on the apical surface of somatically derived follicle cells, while in the germline-derived cells the protein is not polarized. These findings are discussed in view of the hypothesis that Notch acts as a multifunctional receptor to mediate developmentally important cell interactions.  相似文献   

15.
Pai LM  Barcelo G  Schüpbach T 《Cell》2000,103(1):51-61
During Drosophila oogenesis, asymmetrically localized Gurken activates the EGF receptor (Egfr) and determines dorsal follicle cell fates. Using a mosaic follicle cell system we have identified a mutation in the D-cbl gene which causes hyperactivation of the Egfr pathway. Cbl proteins are known to downregulate activated receptors. We find that the abnormal Egfr activation is ligand dependent. Our results show that the precise regulation of Egfr activity necessary to establish different follicle cell fates requires two levels of control. The localized ligand Gurken activates Egfr to different levels in different follicle cells. In addition, Egfr activity has to be repressed through the activity of D-cbl to ensure the absence of signaling in the ventral most follicle cells.  相似文献   

16.
Homophilic cell adhesion mediated by classical cadherins is important for many developmental processes. Proteins that interact with the cytoplasmic domain of cadherin, in particular the catenins, are thought to regulate the strength and possibly the dynamics of adhesion. beta-catenin links cadherin to the actin cytoskeleton via alpha-catenin. The role of p120/delta-catenin proteins in regulating cadherin function is less clear. Both beta-catenin and p120/delta-catenin are conserved in Drosophila. Here, we address the importance of cadherin-catenin interactions in vivo, using mutant variants of Drosophila epithelial cadherin (DE-cadherin) that are selectively defective in p120ctn (DE-cadherin-AAA) or beta-catenin-armadillo (DE-cadherin-Delta beta) interactions. We have analyzed the ability of these proteins to substitute for endogenous DE-cadherin activity in multiple cadherin-dependent processes during Drosophila development and oogenesis; epithelial integrity, follicle cell sorting, oocyte positioning, as well as the dynamic adhesion required for border cell migration. As expected, DE-cadherin-Delta beta did not substitute for DE-cadherin in these processes, although it retained some residual activity. Surprisingly, DE-cadherin-AAA was able to substitute for the wild-type protein in all contexts with no detectable perturbations. Thus, interaction with p120/delta-catenin does not appear to be required for DE-cadherin function in vivo.  相似文献   

17.
18.
19.
Janus kinase (JAK) pathway activity is an integral part of signaling through a variety of ligands and receptors in mammals. The extensive re-utilization and pleiotropy of this pathway in vertebrate development is conserved in other animals as well. In Drosophila melanogaster, JAK signaling has been implicated in embryonic pattern formation, sex determination, larval blood cell development, wing venation, planar polarity in the eye, and formation of other adult structures. Here we describe several roles for JAK signaling in Drosophila oogenesis. The gene for a JAK pathway ligand, unpaired, is expressed specifically in the polar follicle cells, two pairs of somatic cells at the anterior and posterior poles of the developing egg chamber. Consistent with unpaired expression, reduced JAK pathway activity results in the fusion of developing egg chambers. A primary defect of these chambers is the expansion of the polar cell population and concomitant loss of interfollicular stalk cells. These phenotypes are enhanced by reduction of unpaired activity, suggesting that Unpaired is a necessary ligand for the JAK pathway in oogenesis. Mosaic analysis of both JAK pathway transducers, hopscotch and Stat92E, reveals that JAK signaling is specifically required in the somatic follicle cells. Moreover, JAK activity is also necessary for the initial commitment of epithelial follicle cells. Many of these roles are in common with, but distinct from, the known functions of Notch signaling in oogenesis. Consistent with these data is a model in which Notch signaling determines a pool of cells to be competent to adopt stalk or polar fate, while JAK signaling assigns specific identity within that competent pool.  相似文献   

20.
Vlachos S  Harden N 《Genetics》2011,187(2):501-512
During Drosophila oogenesis, basally localized F-actin bundles in the follicle cells covering the egg chamber drive its elongation along the anterior-posterior axis. The basal F-actin of the follicle cell is an attractive system for the genetic analysis of the regulation of the actin cytoskeleton, and results obtained in this system are likely to be broadly applicable in understanding tissue remodeling. Mutations in a number of genes, including that encoding the p21-activated kinase Pak, have been shown to disrupt organization of the basal F-actin and in turn affect egg chamber elongation. pak mutant egg chambers have disorganized F-actin distribution and remain spherical due to a failure to elongate. In a genetic screen to identify modifiers of the pak rounded egg chamber phenotype several second chromosome deficiencies were identified as suppressors. One suppressing deficiency removes the rho1 locus, and we determined using several rho1 alleles that removal of a single copy of rho1 can suppress the pak phenotype. Reduction of any component of the Rho1-activated actomyosin contractility pathway suppresses pak oogenesis defects, suggesting that Pak counteracts Rho1 signaling. There is ectopic myosin light chain phosphorylation in pak mutant follicle cell clones in elongating egg chambers, probably due at least in part to mislocalization of RhoGEF2, an activator of the Rho1 pathway. In early egg chambers, pak mutant follicle cells have reduced levels of myosin phosphorylation and we conclude that Pak both promotes and restricts myosin light chain phosphorylation in a temporally distinct manner during oogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号