首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
MRI biomarkers of tumor edema, vascular permeability, blood volume, and average vessel caliber are increasingly being employed to assess the efficacy of tumor therapies. However, the dependence of these biomarkers on a number of physiological factors can compromise their sensitivity and complicate the assessment of therapeutic efficacy. Here we examine the response of these MRI tumor biomarkers to cediranib, a potent vascular endothelial growth factor receptor (VEGFR) inhibitor, in an orthotopic mouse glioma model. A significant increase in the tumor volume and relative vessel caliber index (rVCI) and a slight decrease in the water apparent diffusion coefficient (ADC) were observed for both control and cediranib treated animals. This contrasts with a clinical study that observed a significant decrease in tumor rVCI, ADC and volume with cediranib therapy. While the lack of a difference between control and cediranib treated animals in these biomarker responses might suggest that cediranib has no therapeutic benefit, cediranib treated mice had a significantly increased survival. The increased survival benefit of cediranib treated animals is consistent with the significant decrease observed for cediranib treated animals in the relative cerebral blood volume (rCBV), relative microvascular blood volume (rMBV), transverse relaxation time (T2), blood vessel permeability (K(trans)), and extravascular-extracellular space (ν(e)). The differential response of pre-clinical and clinical tumors to cediranib therapy, along with the lack of a positive response for some biomarkers, indicates the importance of evaluating the whole spectrum of different tumor biomarkers to properly assess the therapeutic response and identify and interpret the therapy-induced changes in the tumor physiology.  相似文献   

2.
3.
4.
The successful introduction of rationally targeted agents into standard cancer care is a testimony of the vast knowledge base in tumor biology. However, in order to provide individually tailored therapy to patients and to identify small subsets of patients with a high likelihood to benefit from treatment, the identification of biomarkers for response or resistance to a particular therapeutic regimen is imperative. Herein, by the use of a genetically engineered mouse model of pancreatic neuroendocrine tumors, we have assessed the utility of pericyte characteristics in terms of differential marker expression to serve as surrogate markers for response or evasive resistance to anti-angiogenic therapy. We found that tumors refractory to therapy following long-term treatment with a vascular endothelial growth factor receptor-2 blocking antibody contained blood vessels with a prolific investment of pericytes expressing α-smooth muscle actin. Further analysis by simultaneous immunostaining for different pericyte markers led to the conclusion that the increased abundance of this particular subtype of blood vessels most likely occurred by co-option of vessels from the surrounding exocrine pancreas. Our findings may form the basis for retrospective analysis of pancreatic neuroendocrine tumors from patients having undergone treatment with anti-angiogenic agents in order to validate the occurrence of pericytes expressing α-smooth muscle actin as a biomarker for tumors refractory to therapy.  相似文献   

5.
Recent advances in understanding the molecular pathogenesis of polycystic kidney diseases (PKD) are being translated into promising treatments. Currently, a response to therapy in preclinical animal models of PKD can only be evaluated after several weeks of treatment. The availability of biomarkers for rapid efficacy assessment would greatly facilitate the drug development process. Here we applied SELDI-TOF technology to establish serum and urinary biomarker signatures associated with a rapid therapeutic response to cyclin dependent kinase (CDK) inhibitor roscovitine in the jck mouse model of PKD. A set of 74 serum and 56 urinary markers was identified in the group receiving chronic treatment over 5 weeks. This set was further screened for early efficacy biomarkers in acutely (3-5 days) treated animals with mild (26 days of age) and advanced disease (50 days of age). A third group with intermediate disease (33 days of age) received a single injection to monitor rapid changes in protein profiles within 4, 24 or 48 hours after drug administration. Multifactorial comparative analysis of the acutely treated groups identified a set of 20 urinary and 21 serum efficacy biomarkers. This biomarker signature provides a necessary tool for further assessment of CDK inhibitors as therapeutic agents for PKD.  相似文献   

6.
Despite their potential to impact diagnosis and treatment of cancer, few protein biomarkers are in clinical use. Biomarker discovery is plagued with difficulties ranging from technological (inability to globally interrogate proteomes) to biological (genetic and environmental differences among patients and their tumors). We urgently need paradigms for biomarker discovery. To minimize biological variation and facilitate testing of proteomic approaches, we employed a mouse model of breast cancer. Specifically, we performed LC-MS/MS of tumor and normal mammary tissue from a conditional HER2/Neu-driven mouse model of breast cancer, identifying 6758 peptides representing >700 proteins. We developed a novel statistical approach (SASPECT) for prioritizing proteins differentially represented in LC-MS/MS datasets and identified proteins over- or under-represented in tumors. Using a combination of antibody-based approaches and multiple reaction monitoring-mass spectrometry (MRM-MS), we confirmed the overproduction of multiple proteins at the tissue level, identified fibulin-2 as a plasma biomarker, and extensively characterized osteopontin as a plasma biomarker capable of early disease detection in the mouse. Our results show that a staged pipeline employing shotgun-based comparative proteomics for biomarker discovery and multiple reaction monitoring for confirmation of biomarker candidates is capable of finding novel tissue and plasma biomarkers in a mouse model of breast cancer. Furthermore, the approach can be extended to find biomarkers relevant to human disease.  相似文献   

7.
Soluble mesothelin-related peptide (SMRP) is a biomarker that has been proposed for differential diagnosis from pleural metastatic cancer, as well as prognosis and treatment monitoring of malignant pleural mesothelioma (MM). The aim of this study was to evaluate the role of SMRP in clinic management of MM. We assayed the SMRP concentrations in 354 subjects: 109 healthy volunteers with no history of exposure to asbestos, 26 patients with previous occupational asbestos exposure but who were free from pleural or parenchymal disease, 48 patients with asbestosis, 110 patients with pleural plaques, 25 patients with lung cancer, and 36 patients with MM. We also tested SMRP titers in 2 patients with MM at 5 different times of the disease, to evaluate the trend of the biomarker in the course of therapy. Our data confirm previous experiences with the use of SMRP as a diagnostic marker of MM. Low SMRP levels at diagnosis seem to have a positive prognostic significance.  相似文献   

8.
Bioconjugated quantum dots (QDs) provide a new class of biological labels for evaluating biomolecular signatures (biomarkers) on intact cells and tissue specimens. In particular, the use of multicolor QD probes in immunohistochemistry is considered one of the most important and clinically relevant applications. At present, however, clinical applications of QD-based immunohistochemistry have achieved only limited success. A major bottleneck is the lack of robust protocols to define the key parameters and steps. Here, we describe our recent experience, preliminary results and detailed protocols for QD-antibody conjugation, tissue specimen preparation, multicolor QD staining, image processing and biomarker quantification. The results demonstrate that bioconjugated QDs can be used for multiplexed profiling of molecular biomarkers, and ultimately for correlation with disease progression and response to therapy. In general, QD bioconjugation is completed within 1 day, and multiplexed molecular profiling takes 1-3 days depending on the number of biomarkers and QD probes used.  相似文献   

9.
Early detection of cancer using biomarkers obtained from blood or other easily accessible tissues would have a significant impact on reducing cancer mortality. However, identifying new blood-based biomarkers has been hindered by the dynamic complexity of the human plasma proteome, confounded by genetic and environmental variability, and the scarcity of high quality controlled samples. In this report, we discuss a new paradigm for biomarker discovery through the use of mouse models. Inbred mouse models of cancer recapitulate many critical features of human cancer, while eliminating sources of environmental and genetic variability. The ability to collect samples from highly matched cases and controls under identical conditions further reduces variability which is critical for successful biomarker discovery. We describe the establishment of a repository containing tumor, plasma, urine, and other tissues from 10 different mouse models of human cancer, including two breast, two lung, two prostate, two gastrointestinal, one ovarian, and one skin tumor model. We present the overall design of this resource and its potential use by the research community for biomarker discovery.  相似文献   

10.
Our progress in understanding pathological disease mechanisms has led to the identification of biomarkers that have had a considerable impact on clinical practice. It is hoped that the move from generalized to stratified approaches, with the grouping of patients into clinical/therapeutic subgroups according to specific biomarkers, will lead to increasingly more effective clinical treatments in the near future. This success depends on the identification of biomarkers that reflect disease evolution and can be used to predict disease state and therapy response, or represent themselves a target for treatment. Biomarkers can be identified by studying relationships between serum, tissue, or tumor microenvironment parameters and clinical or therapeutic parameters at onset and during the progression of the disease, using systems biology. Given that multiple pathways, such as those responsible for redox and immune regulation, are deregulated or altered in tumors, the future of tumor therapy could lie in the simultaneous targeting of these pathways using extracellular and intracellular targets and biomarkers. With this aim in mind, we evaluated the role of thioredoxin 1, a key redox regulator, and CD30, a cell membrane receptor, in immune regulation. Our results lead us to suggest that the combined use of these biomarkers provides more detailed information concerning the multiple pathways affected in disease and hence the possibility of more effective treatment.  相似文献   

11.
Melanoma is known as an aggressive tumor which shows an increasing incidence and poor prognosis in the metastatic phase. Hence, it seems that diagnosis and effective management (including early diagnosis, choosing of the effective therapeutic platform, caring, and training of patients for early detection) are major aspects of melanoma therapy. Early detection of melanoma is a key point for melanoma therapy. There are various diagnosis options such as assessing of biopsy, imaging techniques, and biomarkers (i.e., several proteins, polymorphism, and liquid biopsy). Among the various biomarkers, assessing circulating tumor cells, cell-free DNAs, cell-free RNAs, and microRNAs (miRNAs) have emerged as powerful diagnosis tools for melanoma patients. Deregulations of these molecules are associated with melanoma pathogenesis. After detection of melanoma, choosing of effective therapeutic regimen is a key step for recovery of melanoma patients. Several studies indicated that various therapeutic approaches including surgery, immunotherapy, systematic therapy, radiation therapy and antibodies therapy could be used as potential therapeutic candidates for melanoma therapy. Caring for melanoma patients is one of the important components of melanoma therapy. Caring and training for melanoma patients could contribute to better monitoring of patients in response to various therapeutic options. Here, we summarized various diagnosis approaches such as assessing biopsy, imaging techniques, and utilization of various biomarkers (i.e., proteins, CTCs, cfDNAs, and miRNAs) as a diagnostic biomarker for detection and monitoring patients with melanoma. Moreover, we highlighted various therapeutic options and caring aspects in patients with melanoma.  相似文献   

12.
The use of tissue- and cell-based methods in developing drugs for retinal diseases is inefficient. Consequently, many aspects of ocular drug therapy for retinal diseases are poorly understood. Biomarkers as prognostic indicators of change are needed to optimize the use of drugs. VEGF is considered an important target of drug therapy and VEGF levels in tissue are indicative of solid tumor growth. However, since many aspects of VEGF as a biomarker of ocular disease have not been validated, it has been difficult to ascertain without invasive procedures whether VEGF in the eye is a biomarker of response to drug therapy. Using published papers, registered clinical trials, and proteomic databases we assessed the earlier evidence for VEGF as an exploratory biomarker of proliferative and vasculopathic disease of the retina and asked whether the molecule has been rigorously validated in clinical trials. The emerging use of aqueous humor sampling has made it possible to explore biomarkers in oculo, and determine whether they are predictive of drug efficacy. We present data supporting the use of aqueous humor to validate drug-signaling pathways and biomarkers in the eye. In addition, we recommend convening a collaborative congress to help standardize the identification, validation, and use of biomarkers in retinal disease.  相似文献   

13.
Molecular biomarkers can be used as objective indicators of pathologic processes. Although their levels often change over time, their measurement is often constrained to a single time point. Cumulative biomarker exposure would provide a fundamentally different kind of measurement to what is available in the clinic. Magnetic resonance relaxometry can be used to noninvasively monitor changes in the relaxation properties of antibody-coated magnetic particles when they aggregate upon exposure to a biomarker of interest. We used implantable devices containing such sensors to continuously profile changes in three clinically relevant cardiac biomarkers at physiological levels for up to 72 h. Sensor response differed between experimental and control groups in a mouse model of myocardial infarction and correlated with infarct size. Our prototype for a biomarker monitoring device also detected doxorubicin-induced cardiotoxicity and can be adapted to detect other molecular biomarkers with a sensitivity as low as the pg/ml range.  相似文献   

14.
15.
Combinations of targeted drugs have been employed to treat sarcomas, however, response rates have not improved notably, therefore emphasizing the need for novel treatments. In addition, imaging approaches to assess therapeutic response is lacking, as currently measurable indices, such as volume and/or diameter, do not accurately correlate with changes in tumor biology. In this study, quantitative and profound analyses of magnetic resonance imaging (MRI) were developed to evaluate these as imaging biomarkers for MK1775 and Gem in an osteosarcoma xenotransplant model at early time-points following treatment. Notably, we showed that Gem and Gem+MK1775 groups had significantly inhibited tumor growth by day 4, which was presaged by elevations in mean ADC by 24 hours post treatment. Significant differences were also observed at later time points for the Gem+MK1775 combination and MK1775 therapy. ADC distribution and entropy (randomness of ADC values) were also elevated by 24 hours following therapy. Immunohistochemistry demonstrated that these treatment-related increases in ADC correlated with apoptosis and observed cell condensations (dense- and exploded bodies). These findings underline the role of ADC as a quantitative imaging biomarker for therapy-induced response and show promising clinical relevance in the sarcoma patient population.  相似文献   

16.
DNA methylation is an epigenetic mechanism regulating gene expression. Changes in DNA methylation were suggested to be useful biomarkers for diagnosis, and for the determination of prognosis and treatment response. Here, we provide an overview of methylation-based biomarkers in colorectal cancer.First, we start with the two methylation-based diagnostic biomarkers already approved for colorectal cancer, SEPT9 and the combination of NDRG4 and BMP3. Then, we provide a list-based overview of new biomarker candidates depending on the sample source including plasma, stool, urine, and surgically removed tumor tissues. The most often identified markers like SDC2, VIM, APC, MGMT, SFRP1, SFRP2, and NDRG4 have distinct functions previously linked to tumor progression.Although numerous studies have identified tumor-specific methylation changes, most of these alterations were observed in a single study only. The lack of validation in independent samples means low reproducibility and is a major limitation. The genome-wide determination of methylation status (methylome) can provide data to solve these issues. In the third section of the review, methylome studies focusing on different aspects related to CRC, including precancerous lesions, CRC-specific changes, molecular subtypes, aging, and chemotherapy response are summarized. Notably, techniques simultaneously analyzing a large set of regions can also uncover epigenetic regulation of genes which have not yet been associated with tumorigenesis previously.A remaining constraint of studies published to date is the low patient number utilized in these preventing the identification of clinically valuable biomarker candidates. Either future large-scale studies or the integration of already available methylome-level data will be necessary to uncover biomarkers sufficiently robust for clinical application.  相似文献   

17.
Exosomes are bioactive lipid bilayer vesicles released by most cells to mediate intercellular signal communication. Tumor cells release exosomes transmitting signals cell-to-cell and between cells and organs, which will promote tumor angiogenesis, regulate tumor stromal response, immune response, and enhance tumor cells resistance, while exosomes-derived from immune cells in tumor microenvironment play a key role in inhibiting tumor growth and killing tumor cells. Programmed cell death protein 1 (PD-1) combined with Programmed cell death protein ligand 1(PD-L1) can inhibit the activation of T cells, for tumor cells achieve immune escape by overexpressing PD-L1 and binding PD-1 on T cells. The use of anti-PD-1 / PD-L1 antibodies prevents their binding to a certain extent and partially restores T cell's activity. This article mainly discusses the role of exosomal PD-L1 in tumor progression and therapeutic efficacy after application of clinical antibodies, as well as the relation between different reactivity and immunity set points in cancer patients of different races, with different types and at different stages. Besides, we propose that exosomal PD-L1 may become targets for anti-PD-1 / PD-L1 antibody therapy, biomarkers for liquid biopsy, and drug carriers.  相似文献   

18.
Lung cancer is the number one cause of cancer death; however, no specific serum biomarker is available till date for detection of early lung cancer. Despite good initial response to chemotherapy, small-cell lung cancer (SCLC) has a poor prognosis. Therefore, it is important to identify molecular markers that might influence survival and may serve as potential therapeutic targets. The review aims to summarize the current knowledge of serum biomarkers in SCLC to improve diagnostic efficiency in the detection of tumor progression in lung cancer. The current knowledge on the known serum cytokines and tumor biomarkers of SCLC is emphasized. Recent findings in the search for novel diagnostic and therapeutic molecular markers using the emerging genomic technology for detecting lung cancer are also described. It is believed that implementing these new research techniques will facilitate and improve early detection, prognostication and better treatment of SCLC.  相似文献   

19.
Female patients affected by Fabry disease, an X-linked lysosomal storage disorder, exhibit a wide spectrum of symptoms, which renders diagnosis, and treatment decisions challenging. No diagnostic test, other than sequencing of the alpha-galactosidase A gene, is available and no biomarker has been proven useful to screen for the disease, predict disease course and monitor response to enzyme replacement therapy. Here, we used urine proteomic analysis based on capillary electrophoresis coupled to mass spectrometry and identified a biomarker profile in adult female Fabry patients. Urine samples were taken from 35 treatment-naïve female Fabry patients and were compared to 89 age-matched healthy controls. We found a diagnostic biomarker pattern that exhibited 88.2% sensitivity and 97.8% specificity when tested in an independent validation cohort consisting of 17 treatment-naïve Fabry patients and 45 controls. The model remained highly specific when applied to additional control patients with a variety of other renal, metabolic and cardiovascular diseases. Several of the 64 identified diagnostic biomarkers showed correlations with measures of disease severity. Notably, most biomarkers responded to enzyme replacement therapy, and 8 of 11 treated patients scored negative for Fabry disease in the diagnostic model. In conclusion, we defined a urinary biomarker model that seems to be of diagnostic use for Fabry disease in female patients and may be used to monitor response to enzyme replacement therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号