首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Alignment-free classifiers are especially useful in the functional classification of protein classes with variable homology and different domain structures. Thus, the Topological Indices to BioPolymers (TI2BioP) methodology (Agüero-Chapin et al., 2010) inspired in both the TOPS-MODE and the MARCH-INSIDE methodologies allows the calculation of simple topological indices (TIs) as alignment-free classifiers. These indices were derived from the clustering of the amino acids into four classes of hydrophobicity and polarity revealing higher sequence-order information beyond the amino acid composition level. The predictability power of such TIs was evaluated for the first time on the RNase III family, due to the high diversity of its members (primary sequence and domain organization). Three non-linear models were developed for RNase III class prediction: Decision Tree Model (DTM), Artificial Neural Networks (ANN)-model and Hidden Markov Model (HMM). The first two are alignment-free approaches, using TIs as input predictors. Their performances were compared with a non-classical HMM, modified according to our amino acid clustering strategy. The alignment-free models showed similar performances on the training and the test sets reaching values above 90% in the overall classification. The non-classical HMM showed the highest rate in the classification with values above 95% in training and 100% in test. Although the higher accuracy of the HMM, the DTM showed simplicity for the RNase III classification with low computational cost. Such simplicity was evaluated in respect to HMM and ANN models for the functional annotation of a new bacterial RNase III class member, isolated and annotated by our group.  相似文献   

2.
非序列联配的序列分析方法,将序列中特定寡聚核苷酸的kmer统计频率作为特征,在序列间按特征进行比较和分析。这种方法综合考虑了所有变异类型对序列整体特征的影响,因而在组学数据分析上有独特的优势。但是,这类方法在复杂多细胞生物基因组系统发育中的适用性仍然有待检验。在本文中,我们使用基于非序列联配方法的CVTree软件,以45种哺乳动物的蛋白质组数据建立了系统发育关系NJ树,并据此探讨了哺乳动物系统发育的若干问题。在广受关注的真兽下纲四个总目的关系问题上,CVTree支持形态学的普遍结论即上兽类(Epitheria)假说。这与基于序列联配方法支持的外非洲胎盘类(Exafro-placentalia )假说不同。在哺乳动物内部目的层次上,CVTree树的结论与分子和形态所普遍接受的系统发育关系基本一致。但是在目的内部,CVTree树会有较多的差异。研究结果初步显示非序列联配方法在使用复杂多细胞生物的组学数据进行系统发育关系分析中的可行性。对非序列联配方法自身的改进及其与传统基于取代的序列联配方法之间的比较仍有待深入研究。  相似文献   

3.
Bacteriocins are proteinaceous toxins produced and exported by both gram-negative and gram-positive bacteria as a defense mechanism. The bacteriocin protein family is highly diverse, which complicates the identification of bacteriocin-like sequences using alignment approaches. The use of topological indices (TIs) irrespective of sequence similarity can be a promising alternative to predict proteinaceous bacteriocins. Thus, we present Topological Indices to BioPolymers (TI2BioP) as an alignment-free approach inspired in both the Topological Substructural Molecular Design (TOPS-MODE) and Markov Chain Invariants for Network Selection and Design (MARCH-INSIDE) methodology. TI2BioP allows the calculation of the spectral moments as simple TIs to seek quantitative sequence-function relationships (QSFR) models. Since hydrophobicity and basicity are major criteria for the bactericide activity of bacteriocins, the spectral moments (HPμ k ) were derived for the first time from protein artificial secondary structures based on amino acid clustering into a Cartesian system of hydrophobicity and polarity. Several orders of HPμ k characterized numerically 196 bacteriocin-like sequences and a control group made up of 200 representative CATH domains. Subsequently, they were used to develop an alignment-free QSFR model allowing a 76.92% discrimination of bacteriocin proteins from other domains, a relevant result considering the high sequence diversity among the members of both groups. The model showed a prediction overall performance of 72.16%, detecting specifically 66.7% of proteinaceous bacteriocins whereas the InterProScan retrieved just 60.2%. As a practical validation, the model also predicted successfully the cryptic bactericide function of the Cry 1Ab C-terminal domain from Bacillus thuringiensis’s endotoxin, which has not been detected by classical alignment methods.  相似文献   

4.
The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation2-8.The ITS2 Database9 presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank11 accurately reannotated10. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold12 (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling13. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold.The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST14 search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE15,16 and ProfDistS17 for multiple sequence-structure alignment calculation and Neighbor Joining18 tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure.In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses.  相似文献   

5.
A recent editorial in Journal of Molecular Evolution highlights opportunities and challenges facing molecular evolution in the era of next-generation sequencing. Abundant sequence data should allow more-complex models to be fit at higher confidence, making phylogenetic inference more reliable and improving our understanding of evolution at the molecular level. However, concern that approaches based on multiple sequence alignment may be computationally infeasible for large datasets is driving the development of so-called alignment-free methods for sequence comparison and phylogenetic inference. The recent editorial characterized these approaches as model-free, not based on the concept of homology, and lacking in biological intuition. We argue here that alignment-free methods have not abandoned models or homology, and can be biologically intuitive.  相似文献   

6.
The process of inferring phylogenetic trees from molecular sequences almost always starts with a multiple alignment of these sequences but can also be based on methods that do not involve multiple sequence alignment. Very little is known about the accuracy with which such alignment-free methods recover the correct phylogeny or about the potential for increasing their accuracy. We conducted a large-scale comparison of ten alignment-free methods, among them one new approach that does not calculate distances and a faster variant of our pattern-based approach; all distance-based alignment-free methods are freely available from http://www.bioinformatics.org.au (as Python package decaf+py). We show that most methods exhibit a higher overall reconstruction accuracy in the presence of high among-site rate variation. Under all conditions that we considered, variants of the pattern-based approach were significantly better than the other alignment-free methods. The new pattern-based variant achieved a speed-up of an order of magnitude in the distance calculation step, accompanied by a small loss of tree reconstruction accuracy. A method of Bayesian inference from k-mers did not improve on classical alignment-free (and distance-based) methods but may still offer other advantages due to its Bayesian nature. We found the optimal word length k of word-based methods to be stable across various data sets, and we provide parameter ranges for two different alphabets. The influence of these alphabets was analyzed to reveal a trade-off in reconstruction accuracy between long and short branches. We have mapped the phylogenetic accuracy for many alignment-free methods, among them several recently introduced ones, and increased our understanding of their behavior in response to biologically important parameters. In all experiments, the pattern-based approach emerged as superior, at the expense of higher resource consumption. Nonetheless, no alignment-free method that we examined recovers the correct phylogeny as accurately as does an approach based on maximum-likelihood distance estimates of multiply aligned sequences.  相似文献   

7.
The introduction of two-dimension (2D) graphs and their numerical characterization for comparative analyses of DNA/RNA and protein sequences without the need of sequence alignments is an active yet recent research topic in bioinformatics. Here, we used a 2D artificial representation (four-color maps) with a simple numerical characterization through topological indices (TIs) to aid the discovering of remote homologous of Adenylation domains (A-domains) from the Nonribosomal Peptide Synthetases (NRPS) class in the proteome of the cyanobacteria Microcystis aeruginosa. Cyanobacteria are a rich source of structurally diverse oligopeptides that are predominantly synthesized by NPRS. Several A-domains share amino acid identities lower than 20 % being a possible source of remote homologous. Therefore, A-domains cannot be easily retrieved by BLASTp searches using a single template. To cope with the sequence diversity of the A-domains we have combined homology-search methods with an alignment-free tool that uses protein four-color-maps. TI2BioP (Topological Indices to BioPolymers) version 2.0, available at http://ti2biop.sourceforge.net/ allowed the calculation of simple TIs from the protein sequences (four-color maps). Such TIs were used as input predictors for the statistical estimations required to build the alignment-free models. We concluded that the use of graphical/numerical approaches in cooperation with other sequence search methods, like multi-templates BLASTp and profile HMM, can give the most complete exploration of the repertoire of highly diverse protein families.  相似文献   

8.

Background  

The vast sequence divergence among different virus groups has presented a great challenge to alignment-based analysis of virus phylogeny. Due to the problems caused by the uncertainty in alignment, existing tools for phylogenetic analysis based on multiple alignment could not be directly applied to the whole-genome comparison and phylogenomic studies of viruses. There has been a growing interest in alignment-free methods for phylogenetic analysis using complete genome data. Among the alignment-free methods, a dynamical language (DL) method proposed by our group has successfully been applied to the phylogenetic analysis of bacteria and chloroplast genomes.  相似文献   

9.
5.8S-28S rRNA interaction and HMM-based ITS2 annotation   总被引:2,自引:0,他引:2  
The internal transcribed spacer 2 (ITS2) of the nuclear ribosomal repeat unit is one of the most commonly applied phylogenetic markers. It is a fast evolving locus, which makes it appropriate for studies at low taxonomic levels, whereas its secondary structure is well conserved, and tree reconstructions are possible at higher taxonomic levels. However, annotation of start and end positions of the ITS2 differs markedly between studies. This is a severe shortcoming, as prediction of a correct secondary structure by standard ab initio folding programs requires accurate identification of the marker in question. Furthermore, the correct structure is essential for multiple sequence alignments based on individual structural features. The present study describes a new tool for the delimitation and identification of the ITS2. It is based on hidden Markov models (HMMs) and verifies annotations by comparison to a conserved structural motif in the 5.8S/28S rRNA regions. Our method was able to identify and delimit the ITS2 in more than 30 000 entries lacking start and end annotations in GenBank. Furthermore, 45 000 ITS2 sequences with a questionable annotation were re-annotated. Approximately 30 000 entries from the ITS2-DB, that uses a homology-based method for structure prediction, were re-annotated. We show that the method is able to correctly annotate an ITS2 as small as 58 nt from Giardia lamblia and an ITS2 as large as 1160 nt from humans. Thus, our method should be a valuable guide during the first and crucial step in any ITS2-based phylogenetic analysis: the delineation of the correct sequence. Sequences can be submitted to the following website for HMM-based ITS2 delineation: http://its2.bioapps.biozentrum.uni-wuerzburg.de.  相似文献   

10.
Ribosomal ITS sequences and plant phylogenetic inference   总被引:27,自引:0,他引:27  
One of the most popular sequences for phylogenetic inference at the generic and infrageneric levels in plants is the internal transcribed spacer (ITS) region of the 18S-5.8S-26S nuclear ribosomal cistron. The prominence of this source of nuclear DNA sequence data is underscored by a survey of phylogenetic publications involving comparisons at the genus level or below, which reveals that of 244 papers published over the last five years, 66% included ITS sequence data. Perhaps even more striking is the fact that 34% of all published phylogenetic hypothesis have been based exclusively on ITS sequences. Notwithstanding the many important contributions of ITS sequence data to phylogenetic understanding and knowledge of genome relationships, a number of molecular genetic processes impact ITS sequences in ways that may mislead phylogenetic inference. These molecular genetic processes are reviewed here, drawing attention to both underlying mechanism and phylogenetic implications. Among the most prevalent complications for phylogenetic inference is the existence in many plant genomes of extensive sequence variation, arising from ancient or recent array duplication events, genomic harboring of pseudogenes in various states of decay, and/or incomplete intra- or inter-array homogenization. These phenomena separately and collectively create a network of paralogous sequence relationships potentially confounding accurate phylogenetic reconstruction. Homoplasy is shown to be higher in ITS than in other DNA sequence data sets, most likely because of orthology/paralogy conflation, compensatory base changes, problems in alignment due to indel accumulation, sequencing errors, or some combination of these phenomena. Despite the near-universal usage of ITS sequence data in plant phylogenetic studies, its complex and unpredictable evolutionary behavior reduce its utility for phylogenetic analysis. It is suggested that more robust insights are likely to emerge from the use of single-copy or low-copy nuclear genes.  相似文献   

11.
It is at present difficult to accurately position gaps in sequence alignment and to determine substructural homology in structure alignment when reconstructing phylogenies based on highly divergent sequences. Therefore, we have developed a new strategy for inferring phylogenies based on highly divergent sequences. In this new strategy, the whole secondary structure presented as a string in bracket notation is used as phylogenetic characters to infer phylogenetic relationships. It is no longer necessary to decompose the secondary structure into homologous substructural components. In this study, reliable phylogenetic relationships of eight species in Pectinidae were inferred from the structure alignment, but not from sequence alignment, even with the aid of structural information. The results suggest that this new strategy should be useful for inferring phylogenetic relationships based on highly divergent sequences. Moreover, the structural evolution of ITS1 in Pectinidae was also investigated. The whole ITS1 structure could be divided into four structural domains. Compensatory changes were found in all four structural domains. Structural motifs in these domains were identified further. These motifs, especially those in D2 and D3, may have important functions in the maturation of rRNAs.  相似文献   

12.
Orostachys (Crassulaceae) is a small genus of succulent plants having a predominantly East Asian distribution. Recent DNA sequence comparisons revealed polyphyletic nature of the genus and found distant relationship between its infrageneric taxa. Here we present the first molecular phylogeny of Orostachys subsection Appendiculatae based on a large number of ITS rDNA sequences representing most currently recognized members of the subsection and utilizing secondary structure information. Ribosomal spacer was a highly informative marker and provided a phylogenetic signal sufficient to resolve relationships at different scales, from affinities between species to a fine geographic structure in broadly sampled species. It was also conservative enough to allow unambiguous alignment and construction of consensus secondary structure models for ITS1 and ITS2. These models displayed a number of molecular synapomorphies defining most lineages established in our analyses. We revealed a major split in the subsection placing three species, O. spinosa, O. japonica and O. chanetii, into a strongly supported clade to the exclusion of O. thyrsiflora. Phenotypically distinct monotypic genus Meterostachys was also resolved as a part of the subsection’s clade and showed affinity to O. thyrsiflora. Our data suggested that morphology-based species concept for O. thyrsiflora requires reassessment.  相似文献   

13.
14.
马雅军  瞿逢伊 《昆虫知识》2002,39(3):209-214
测定了我国赫坎按蚊复合体 9成员种的核糖体DNA第二内转录间隔区 (rDNA ITS2 )序列 ,根据序列差异分析各蚊种间的系统发育关系。结果显示 :( 1 )ITS2区序列最长的是中华按蚊 ( 4 6 8bp) ,最短的是克劳按蚊和赫坎按蚊 ( 4 36bp) ;GC含量为 4 4 9%~ 4 6 8% ;( 2 )发现该复合体 4成员种的ITS2区序列存在种内个体间差异 ,幅度为 0~ 3 8% ,明显小于种间差异 ;( 3)将各蚊种的ITS2区序列进行同源排序比较 ,发现其变异大多是简单重复单元的拷贝数不同 ;种间差异性最大的是克劳按蚊与嗜人按蚊( 32 3% ) ,最小的是贵阳按蚊与凉山按蚊 ( 9 0 % )平均差异率为 2 2 3% ;( 4 )根据ITS2区序列特征 ,用 3种方法构建的树状图拟合一致。以上结果表明赫坎按蚊复合体各成员种rDNA ITS2序列在种内非常保守 ,以种间序列差异分析为基础的分子鉴别技术是甄别蚊种分类地位混淆和错误的有效方法。  相似文献   

15.
The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML) and Bayesian (BA) methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA) and coalescent based (BA) approaches and consistently supported three main clades: (i) Crassostrea, (ii) Saccostrea, and (iii) an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassotreinae (including Crassostrea), Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea) and Ostreinae (including Ostreinae and Lophinae taxa) are recognized. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics.  相似文献   

16.
Endophytic fungi are inhabitants of plants, living most part of their lifecycle asymptomatically which mainly confer protection and ecological advantages to the host plant. In this present study, 48 endophytic fungi were isolated from the leaves of three medicinal plants and characterized based on ITS2 sequence – secondary structure analysis. ITS2 secondary structures were elucidated with minimum free energy method (MFOLD version 3.1) and consensus structure of each genus was generated by 4SALE. ProfDistS was used to generate ITS2 sequence structure based phylogenetic tree respectively. Our elucidated isolates were belonging to Ascomycetes family, representing 5 orders and 6 genera. Colletotrichum/Glomerella spp., Diaporthae/Phomopsis spp., and Alternaria spp., were predominantly observed while Cochliobolus sp., Cladosporium sp., and Emericella sp., were represented by singletons. The constructed phylogenetic tree has well resolved monophyletic groups with >50% bootstrap value support. Secondary structures based fungal systematics improves not only the stability; it also increases the precision of phylogenetic inference. Above ITS2 based phylogenetic analysis was performed for our 48 isolates along with sequences of known ex-types taken from GenBank which confirms the efficiency of the proposed method. Further, we propose it as superlative marker for reconstructing phylogenetic relationships at different taxonomic levels due to their lesser length.  相似文献   

17.
Identification of ectomycorrhizal (ECM) fungi is often achieved through comparisons of ribosomal DNA internal transcribed spacer (ITS) sequences with accessioned sequences deposited in public databases. A major problem encountered is that annotation of the sequences in these databases is not always complete or trustworthy. In order to overcome this deficiency, we report on UNITE, an open-access database. UNITE comprises well annotated fungal ITS sequences from well defined herbarium specimens that include full herbarium reference identification data, collector/source and ecological data. At present UNITE contains 758 ITS sequences from 455 species and 67 genera of ECM fungi. UNITE can be searched by taxon name, via sequence similarity using blastn, and via phylogenetic sequence identification using galaxie. Following implementation, galaxie performs a phylogenetic analysis of the query sequence after alignment either to pre-existing generic alignments, or to matches retrieved from a blast search on the UNITE data. It should be noted that the current version of UNITE is dedicated to the reliable identification of ECM fungi. The UNITE database is accessible through the URL http://unite.zbi.ee  相似文献   

18.
A new species of Pythium collected from grapevine roots (Vitis vinifera) in South Africa and roots of common beet (Beta vulgaris) in Majorca, Spain, is described. The phylogenetic position of the new species was investigated by multigene sequence analyses of the internal transcribed spacers (ITS1 and ITS2) of the rDNA region, as well as three other nuclear and three mitochondrial coding genes. Maximum likelihood phylogenetic analyses based on ITS rDNA and concatenated beta-tubulin and cytrochrome c oxidase II alignment place Pythium recalcitrans together with P. sylvaticum and P. intermedium. Pythium recalcitrans sp. nov. is morphologically almost indistinguishable from other Pythium species that only form hyphal swellings in culture. However its species status is justified by the distinctiveness of the DNA sequences in all the genes examined. In culture P. recalcitrans exhibits fast radial growth, abundant spherical to subglobose hyphal swellings but produces no zoosporangia. Sexual structures are not seen in agar media but form in autoclaved grass blades floated on water. Multiple antheridia (1-7) are encountered with most of them diclinous and crook-necked. Oospores are thin-walled and either aplerotic or plerotic. P. recalcitrans was pathogenic to seedlings of Beta vulgaris and Solanum lycopersicum.  相似文献   

19.

Background  

Phylogenetic analysis can be used to divide a protein family into subfamilies in the absence of experimental information. Most phylogenetic analysis methods utilize multiple alignment of sequences and are based on an evolutionary model. However, multiple alignment is not an automated procedure and requires human intervention to maintain alignment integrity and to produce phylogenies consistent with the functional splits in underlying sequences. To address this problem, we propose to use the alignment-free Relative Complexity Measure (RCM) combined with reduced amino acid alphabets to cluster protein families into functional subtypes purely on sequence criteria. Comparison with an alignment-based approach was also carried out to test the quality of the clustering.  相似文献   

20.
The first step of any molecular phylogenetic analysis is the selection of the species and sequences to be included, the taxon sampling. Already here different pitfalls exist. Sequences can contain errors, annotations in databases can be inaccurate and even the taxonomic classification of a species can be wrong. Usually, these artefacts become evident only after calculation of the phylogenetic tree. Following, the taxon sampling has to be corrected iteratively. This can become tedious and time consuming, as in most cases the taxon sampling is de-coupled from the further steps of the phylogenetic analysis. Here, we present the ITS2 Workbench (http://its2.bioapps.biozentrum.uni-wuerzburg.de/), which eliminates this problem by a tight integration of taxon sampling, secondary structure prediction, multiple alignment and phylogenetic tree calculation. The ITS2 Workbench has access to more than 280,000 ITS2 sequences and their structures provided by the ITS2 database enabling sequence-structure based alignment and tree reconstruction. This allows the interactive improvement of the taxon sampling throughout the whole phylogenetic tree reconstruction process. Thus, the ITS2 Workbench enables a fast, interactive and iterative taxon sampling leading to more accurate ITS2 based phylogenies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号