首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 240 毫秒
1.
The mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and p38, are activated in response to infectious agents and innate immune stimulators such as CpG DNA, and regulate the subsequent initiation and termination of immune responses. CpG DNA activates p38 and ERK with slightly different kinetics in monocytic cells. The present studies investigated the roles of these two key mitogen-activated protein kinases in regulating the CpG DNA-induced production of pro- and anti-inflammatory cytokines in the macrophage-like cell line RAW264.7. p38 activity was essential for the induction of both IL-10 and IL-12 expression by CpG DNA. In contrast, CpG DNA-mediated ERK activation was shown to suppress IL-12 production, but to be essential for the CpG DNA-induced IL-10 production. Studies using rIL-10 and IL-10 gene-deficient mice demonstrated that the inhibitory effect of ERK on CpG DNA-mediated IL-12 production is indirect, due to the role of ERK in mediating IL-10 production. These results demonstrate that ERK and p38 differentially regulate the production of pro- and anti-inflammatory cytokines in APCs that have been activated by CpG DNA. CpG DNA-induced p38 activity is required for the resulting innate immune activation. In contrast, ERK plays a central negative regulatory role in the CpG DNA-mediated Th1 type response by promoting production of the Th2 type cytokine, IL-10.  相似文献   

2.
In response to viral infection, reactive oxygen species (ROS) mediate innate immune signaling or generate danger signals to activate immune cells. The mechanisms of virally induced ROS are poorly defined, however. We demonstrate that ROS are produced within minutes of adenovirus type 5 (Ad5) infection of macrophages and that oxidative stress supports Ad5-induced cytokine secretion. We show that short hairpin RNA (shRNA) knockdown of TLR9 has no effect on ROS production despite observed decreases in Ad-induced cytokine secretion. A major source of ROS in macrophages is NADPH oxidase. However, shRNA knockdown of the NADPH oxidase subunit NOX2 does not attenuate Ad-induced ROS. Induction of ROS is not observed in cells infected with a temperature-sensitive mutant of Ad2, ts1, which is defective in endosomal membrane penetration during cell entry. Further, Ad5, but not ts1, induces the release of lysosomal cathepsin B into the cytoplasm of infected cells. In agreement with this finding, we observe a loss of mitochondrial membrane potential upon Ad infection which requires Ad endosomal membrane penetration and cathepsin B activity. Overexpression of Bcl-2 attenuates Ad5-induced ROS, further supporting the role for mitochondrial membrane destabilization as the source of ROS in response to Ad5 infection. Together, these data suggest that ROS produced in response to Ad5 infection depends on the virally induced endosomal membrane rupture to release lysosomal cathepsins. Furthermore, the release of cathepsins leads to mitochondrial membrane disruption and thus the release of ROS from the mitochondria.  相似文献   

3.
The use of adenovirus vectors for human gene therapy is limited by potent inflammatory responses that result in significant morbidity. In kidney-derived epithelial cells (REC), activation of extracellular signal-regulated kinase 1/2 (ERK) and p38 kinase (p38) pathways occurred within 20 min of transduction with the serotype 5 adenovirus vector AdCMV beta gal. Inhibition of ERK and p38 with U0126 and SB203580, respectively, reduced the expression of IP-10 mRNA following transduction with AdCMV beta gal. To determine the role of the coxsackievirus-adenovirus receptor (CAR) or alpha(v) integrins in the activation of ERK and p38 and the expression of IP-10, REC cells were transduced with the fiber-modified and RGD-deleted adenovirus vectors AdL.F(RAEK-HA) and AdL.PB(HA), respectively. Compared with the wild-type capsid vector Ad5Luc, transduction with AdL.F(RAEK-HA) and AdL.PB(HA) resulted in reduced ERK-p38 activation and less IP-10 mRNA expression. The decreased IP-10 expression induced by the tropism-modified vectors was due to diminished transduction, since increasing multiplicity of infection resulted in increased IP-10 expression. Inhibition of adenovirus penetration with bafilomycin A1 or ammonium chloride attenuated the activation of ERK-p38 and IP-10 mRNA expression following infection, suggesting that endosomal escape was required to trigger these pathways. In vivo, direct inhibition of ERK and p38 signaling pathways inhibited adenovirus vector-induced IP-10 expression in mouse liver 1 h following transduction. These results demonstrate the importance of signaling via ERK and p38 in the early host response to adenovirus vectors and will permit the development of novel strategies to improve the safety and efficacy of these agents in human gene therapy.  相似文献   

4.
The chemokine, mob-1, is involved in inflammatory and immune responses and may be an important mediator of the inflammatory response in the liver. Here, we investigated the upstream signal pathways that could be involved in the regulation of mob-1 expression. We have found that in primary rat hepatocytes the isolation and subsequent culture of these cells induced mob-1 expression. A similar induction of mob-1 mRNA was observed when the hepatocytes were stimulated with interferon-gamma (IFN-gamma). When hepatocytes were stimulated with IFN-gamma or cytokine mixture (IFN-gamma, interleukin-1beta and tumour necrosis factor-alpha), c-Jun N-terminal kinase (JNK), p38 and extracellular-regulated kinase (ERK) were phosphorylated, suggesting an involvement of the mitogen-activated protein kinases (MAPK) in the induction of mob-1 expression. The p38 kinase inhibitor, SB 203580, and the NF-kappaB inhibitor, MG-132, inhibited the induction of mob-1 mRNA and the effects were not additive. These results demonstrate that in primary rat hepatocytes the transient induction of mob-1 expression was regulated by p38 kinase and NF-kappaB through a common regulatory pathway.  相似文献   

5.
Cot is one of the MAP kinase kinase kinases that regulates the ERK1/ERK2 pathway under physiological conditions. Cot is activated by LPS, by inducing its dissociation from the inactive p105 NFkappaB-Cot complex in macrophages. Here, we show that IL-1 promotes a 10-fold increase in endogenous Cot activity and that Cot is the only MAP kinase kinase kinase that activates ERK1/ERK2 in response to this cytokine. Moreover, in cells where the expression of Cot is blocked, IL-1 fails to induce an increase in IL-8 and MIP-1betamRNA levels. The activation of Cot-MKK1-ERK1/ERK2 signalling pathway by IL-1 is dependent on the activity of the transducer protein TRAF6. Most important, IL-1-induced ERK1/ERK2 activation is inhibited by PP1, a known inhibitor of Src tyrosine kinases, but this tyrosine kinase activity is not required for IL-1 to activate other MAP kinases such as p38 and JNK. This Src kinases inhibitor does not block the dissociation and subsequently degradation of Cot in response to IL-1, indicating that other events besides Cot dissociation are required to activate Cot. All these data highlight the specific requirements for activation of the Cot-MKK1-ERK1/ERK2 pathway and provide evidence that Cot controls the functions of IL-1 that are mediated by ERK1/ERK2.  相似文献   

6.
The major outer sheath protein (Msp) of Treponema denticola induces Ca(2+) entry and actin reorganization in cultured fibroblasts, but the pathways by which Msp mediates these responses are not yet defined. We considered that Msp may activate protein kinases as a stress response that precedes actin remodelling. Phospho-kinase screens showed that Msp induced phosphorylation of multiple kinases in pathways that respond to extracellular agonists and regulate actin assembly. 34 kinases were significantly activated, including p38 and ERK 1/2. Accordingly, the expression and phosphorylation of p38 and ERK 1/2 in whole cell lysates were measured by immunoblotting and densitometry. Both kinases responded in a dose- and time-dependent manner to Msp exposure, were inhibited by SB202190 and U1026, respectively, and were unaffected by extracellular Ca(2+). These data indicate that T. denticola Msp may exert transient stress on fibroblasts through activation of MAP kinase pathways.  相似文献   

7.
The gingival epithelium is becoming known as a regulator of the oral innate immune responses to a variety of insults such as bacteria and chemicals, including those chemicals found in cigarette smoke. We investigated the effects of whole cigarette smoke on cell-surface-expressed Toll-like receptors (TLR)-2, −4 and −6, human β-defensin (HBD) and proinflammatory cytokine expression and production in primary human gingival epithelial cells. Whole cigarette smoke was shown to increase TLR2, TLR4 and TLR6 expression. Cigarette smoke led to ERK1/2, p38 and JNK phosphorylation in conjunction with nuclear factor-κB (NFκB) translocation into the nucleus. TLR expression following cigarette smoke exposure was down regulated by the use of ERK1/2, p38, JNK MAP kinases, and NFκB inhibitors, suggesting the involvement of these signaling pathways in the cellular response against cigarette smoke. Cigarette smoke also promoted HBD2, HBD3, IL-1β, and IL-6 expression through the ERK1/2 and NFκB pathways. Interestingly, the modulation of TLR, HBD, and cytokine expression was maintained long after the gingival epithelial cells were exposed to smoke. By promoting TLR, HBDs, and proinflammatory cytokine expression and production, cigarette smoke may contribute to innate immunity dysregulation, which may have a negative effect on human health.  相似文献   

8.
The aim of the present study was to investigate the role of tyrosine phosphorylation pathways in fMLP-induced exocytosis of the different secretory compartments (primary and secondary granules, as well as secretory vesicles) of neutrophils. Genistein, a broad specificity tyrosine kinase inhibitor, blocked the exocytosis of primary and secondary granules, but had only a marginal effect on the release of secretory vesicles. Genistein also inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinases (MAPK), raising the possibility that inhibition of ERK and/or p38 MAPK might be responsible for the effect of the drug on the degranulation response. Indeed, SB203580, an inhibitor of p38 MAPK, decreased the release of primary and secondary granules, but not that of secretory vesicles. However, blocking the ERK pathway with PD98059 had no effect on any of the exocytic responses tested. PP1, an inhibitor of Src family kinases, also attenuated the release of primary and secondary granules, and neutrophils from mice deficient in the Src family kinases Hck, Fgr, and Lyn were also defective in secondary granule release. Furthermore, activation of p38 MAPK was blocked by both PP1 and the hck-/-fgr-/-lyn-/- mutation. Taken together, our data indicate that fMLP-induced degranulation of primary and secondary granules of neutrophils is mediated by p38 MAPK activated via Src family tyrosine kinases. Although piceatannol, a reportedly selective inhibitor of Syk, also prevented degranulation and activation of p38 MAPK, no fMLP-induced phosphorylation of Syk could be observed, raising doubts about the specificity of the inhibitor.  相似文献   

9.
BACKGROUND: Although many teratogens are known to activate apoptotic pathways culminating in abnormal development, little is known about how the embryo transduces a teratogenic exposure into specific responses. Signal reception and transduction are regulated by a number of signal transduction pathways, including the extracellular signal-regulated protein kinases (ERKs), c-Jun N-terminal kinases (JNKs) and the stress-activated protein kinase, p38. METHODS: To analyze the effects of teratogens on MAP kinases, we used whole embryo culture, Western blot analyses, and antibodies recognizing inactive or active MAP kinases, or both. RESULTS: We show that heat shock (HS) induces a rapid, strong, but transient activation of ERK, JNK, and p38 with maximal activation occurring within 30 min of the heat shock. By contrast, cyclophosphamide (CP) and staurosporine (ST) failed to activate ERK or JNK during the time period studied (7. 5 hr). ST and CP did induce a low but reproducible activation of p38 beginning at around 3 hr and 5 hr, respectively, after the initiation of exposure. Previous work has shown that heat shock induces elevated cell death in the embryo, primarily in the developing neuroepithelium, but not in the embryonic heart. Thus, we also compared the activation of these three MAP kinase pathways in heads, hearts, and trunks isolated from day 9 embryos exposed to 43 degrees C for 15 min. The results show that ERK, JNK, and p38 are activated in heads, hearts, and trunks. CONCLUSIONS: Our results show that day 9 embryos do activate MAP kinase signaling pathways in response to teratogenic exposures; however, activation of a particular pathway does not appear to be required for teratogen-induced apoptosis.  相似文献   

10.
11.
Many cell types mount elaborate, compensatory responses to stress that enhance survival; however, the intracellular signals that govern these responses are poorly understood. Cardiotrophin-1 (CT-1), a stress-induced cytokine, belongs to the interleukin-6/glycoprotein 130 receptor-coupled cytokine family. CT-1 is released from the heart in response to hypoxic stress, and it protects cardiac myocytes from hypoxia-induced apoptosis, thus establishing a central role for this cytokine in the cardiac stress response. In the present study, CT-1 activated p38 and ERK MAPKs as well as Akt in cultured cardiac myocytes; these three pathways were activated in a parallel manner. CT-1 also induced the degradation of the NF-kappa B cytosolic anchor, I kappa B, as well as the translocation of the p65 subunit of NF-kappa B to the nucleus and increased expression of an NF-kappa B-dependent reporter gene. Inhibitors of the p38, ERK, or Akt pathways each partially reduced CT-1-mediated NF-kappa B activation, as well as the cytoprotective effects of CT-1 against hypoxic stress. Together, the inhibitors completely blocked CT-1-dependent NF-kappa B activation and cytoprotection. A cell-permeable peptide that selectively disrupted NF-kappa B activation also completely inhibited the cytoprotective effects of CT-1. These results indicate that CT-1 signals through p38, ERK, and Akt in a parallel manner to activate NF-kappa B and that NF-kappa B is required for CT-1 to mediate its full cytoprotective effects in cardiac myocytes.  相似文献   

12.
Early molecular responses to Influenza A (FLUA) virus strain A/X-31 H3N2 in macrophages were explored using J774.A1 and RAW 264.7 murine cell lines. NF-kappa B (NFκB) was reported to be central to FLUA host-response in other cell types. Our data showed that FLUA activation of the classical NFκB dependent pathway in these macrophages was minimal. Regulator proteins, IkappaB-alpha and –beta (IκBα, IκBβ), showed limited degradation peaking at 2 h post FLUA exposure and p65 was not observed to translocate from the cytoplasm to the nucleus. Additionally, the non-canonical NFκB pathway was not activated in response to FLUA. The cells did display early increases in TNFα and other inflammatory cytokine and chemokine production. Mitogen activated phosphokinase (MAPK) signaling pathways are also reported to control production of inflammatory cytokines in response to FLUA. The activation of the MAPKs, cJun kinases 1 and 2 (JNK 1/2), extracellular regulated kinases 1 and 2 (ERK 1/2), and p38 were investigated in both cell lines between 0.25 and 3 h post-infection. Each of these kinases showed increased phosphorylation post FLUA exposure. JNK phosphorylation occurred early while p38 phosphorylation appeared later. Phosphorylation of ERK 1/2 occurred earlier in J774.A1 cells compared to RAW 264.7 cells. Inhibition of MAPK activation resulted in decreased production of most FLUA responsive cytokines and chemokines in these cells. The results suggest that in these monocytic cells the MAPK pathways are important in the early response to FLUA.  相似文献   

13.
14.
The Toll-like receptor 4 (TLR4)-signaling pathway is crucial for activating both innate and adaptive immunity. TLR4 is a promising molecular target for immune-modulating drugs, and TLR4 agonists are of therapeutic potential for treating immune diseases and cancers. Several medicinal herb-derived components have recently been reported to act via TLR4-dependent pathways, suggesting that medicinal plants are potential resources for identifying TLR4 activators. We have applied a screening procedure to systematically identify herbal constituents that activate TLR4. To exclude possible LPS contamination in these plant-derived components, a LPS inhibitor, polymyxin B, was added during screening. One of the plant components we identified from the screening was dioscorin, the glycoprotein isolated from Dioscorea alata. It induced TLR4-downstream cytokine expression in bone marrow cells isolated from TLR4-functional C3H/HeN mice but not from TLR4-defective C3H/HeJ mice. Dioscorin also stimulated multiple signaling molecules (NF-kappaB, ERK, JNK, and p38) and induced the expression of cytokines (TNF-alpha, IL-1beta, and IL-6) in murine RAW 264.7 macrophages. Furthermore, the ERK, p38, JNK, and NF-kappaB-mediated pathways are all involved in dioscorin-mediated TNF-alpha production. In summary, our results demonstrate that dioscorin is a novel TLR4 activator and induces macrophage activation via typical TLR4-signaling pathways.  相似文献   

15.
In contrast to the role of lipopolysaccharide from Gram-negative bacteria, the role of Gram-positive bacterial components in inducing inflammation in the CNS remains controversial. We studied the potency of highly purified lipoteichoic acid and muramyl dipeptide isolated from Staphylococcus aureus to activate primary cultures of rat microglia. Exposure of pure microglial cultures to lipoteichoic acid triggered a significant time- and dose-dependent production of pro-inflammatory cytokines (tumour-necrosis factor-alpha, interleukin-1beta, interleukin-6) and nitric oxide. Muramyl dipeptide strongly and selectively potentiated lipoteichoic acid-induced inducible nitric oxide synthase expression and nitric oxide production. However, it did not have any significant influence on the production of pro-inflammatory cytokines. As bacterial components are recognised by the innate immunity through Toll-like receptors (TLRs) we showed that lipoteichoic acid was recognised in microglia by the TLR2 and lipopolysaccharide by the TLR4, as cells isolated from mice lacking TLR2 or TLR4 did not produce pro-inflammatory cytokines and nitric oxide upon lipoteichoic acid or lipopolysaccharide stimulation, respectively. Lipoteichoic acid-induced glia activation was mediated by p38 and ERK1/2 MAP kinases, as pretreatment with inhibitor of p38 or ERK1/2 decreased lipoteichoic acid-induced cytokine release, iNOS mRNA expression and nitric oxide production. The observed pro-inflammatory response induced by lipoteichoic acid-activated microglia could play a major role in the inflammatory response of CNS induced by Gram-positive bacteria.  相似文献   

16.
17.
We previously demonstrated that the phytosphingosine-induced apoptosis was accompanied by the concomitant induction of both the caspase-8-mediated and mitochondrial activation-mediated apoptosis pathways. In the present study, we investigated the role of mitogen-activated protein kinases (MAPKs) in the activation of these two distinct cell death pathways induced by phytosphingosine in human cancer cells. Phytosphingosine caused strong induction of caspase-8 activity and caspase-independent Bax translocation to the mitochondria. A rapid decrease of phosphorylated ERK1/2 and a marked increase of p38 MAPK phosphorylation were observed within 10 min after phytosphingosine treatment. Activation of ERK1/2 by pretreatment with phorbol 12-myristate 13-acetate or forced expression of ERK1/2 attenuated phytosphingosine-induced caspase-8 activation. However, Bax translocation and caspase-9 activation was unaffected, indicating that down-regulation of the ERK activity is specifically required for the phytosphingosine-induced caspase-8-dependent cell death pathway. On the other hand, treatment with SB203580, a p38 MAPK-specific inhibitor, or expression of a dominant negative form of p38 MAPK suppressed phytosphingosine-induced translocation of the proapoptotic protein, Bax, from the cytosol to mitochondria, cytochrome c release, and subsequent caspase-9 activation but did not affect caspase-8 activation, indicating that activation of p38 MAPK is involved in the mitochondrial activation-mediated cell death pathway. Our results suggest that phytosphingosine can utilize two different MAPK signaling pathways for amplifying the apoptosis cascade, enhancing the understanding of the molecular mechanisms utilized by naturally occurring metabolites to regulate cell death. Molecular dissection of the signaling pathways that activate the apoptotic cell death machinery is critical for both our understanding of cell death events and development of cancer therapeutic agents.  相似文献   

18.
The CC chemokine eotaxin plays a pivotal role in local accumulation of eosinophils. Very little is known about the eotaxin signaling in eosinophils except the activation of the mitogen-activated protein (MAP) kinase family. The p21 G protein Rho and its substrate Rho-associated coiled-coil forming protein kinase (ROCK) regulate the formation of stress fibers and focal adhesions. In the present study, we studied the functional relevance of Rho and ROCK in eosinophils using the ROCK inhibitor (Y-27632) and exoenzyme C3, a specific Rho inhibitor. Eotaxin stimulates activation of Rho A and ROCK II in eosinophils. Exoenzyme C3 almost completely inhibited the ROCK activity, indicating that ROCK is downstream of Rho. We then examined the role of Rho and ROCK in eosinophil chemotaxis. The eotaxin-induced eosinophil chemotaxis was significantly inhibited by exoenzyme C3 or Y-27632. Because extracellular signal-regulated kinase (ERK)1/2 and p38 MAP kinases are activated by eotaxin and are critical for eosinophil chemotaxis, we investigated whether Rho and ROCK are upstream of these MAP kinases. C3 partially inhibited eotaxin-induced phosphorylation of ERK1/2 but not p38. In contrast, neither ERK1/2 nor p38 phosphorylation was abrogated by Y-27632. Both C3 and Y-27632 reduced reactive oxygen species production from eosinophils. We conclude that both Rho and ROCK are important for eosinophil chemotaxis and reactive oxygen species production. There is a dichotomy of downstream signaling pathways of Rho, namely, Rho-ROCK and Rho-ERK pathways. Taken together, eosinophil chemotaxis is regulated by multiple signaling pathways that involve at least ROCK, ERK, and p38 MAP kinase.  相似文献   

19.
Human neutrophil peptides (HNP) kill microorganisms but also modulate immune responses through upregulation of the chemokine IL-8 by activation of the nucleotide P2Y(6) receptor. However, the intracellular signaling mechanisms remain yet to be determined. Human lung epithelial cells (A549) and monocytes (U937) were stimulated with HNP in the absence and presence of the specific kinase inhibitors for Src, extracellular signal-regulated kinase-1 and -2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinases (JNK), and Akt. HNP induced a rapid phosphorylation of the kinases in both cell types associated with a dose-dependent, selective production of IL-8 among 10 cytokines assayed. The HNP-induced IL-8 production was blocked by the Src tyrosine kinase inhibitor PP2, MEK1/2 inhibitor U0126, and the phosphatidylinositol 3 kinase (PI3K) inhibitor LY294002, but not by the JNK inhibitor SP600125 in both cell types. Treatment with the p38 inhibitor SB203580 attenuated the HNP-induced IL-8 production only in monocytes. Blockade of Src kinase blunted HNP-induced phosphorylation of the ERK1/2 and Akt but not p38 in monocytes. In contrast, Src inhibition had no effect on phosphorylation of the other kinases in the lung epithelial cells. We conclude that the activation of ERK1/2 and PI3K/Akt pathways is required for HNP-induced IL-8 release which occurs in a Src-independent manner in lung epithelial cells, while is Src-dependent in monocytes.  相似文献   

20.
Mitogen-activated protein (MAP) kinases are serine/threonine kinases that mediate intracellular signal transduction pathways. Pyridinyl imidazole compounds block pro-inflammatory cytokine production and are specific p38 kinase inhibitors. ERK2 is related to p38 in sequence and structure, but is not inhibited by pyridinyl imidazole inhibitors. Crystal structures of two pyridinyl imidazoles complexed with p38 revealed these compounds bind in the ATP site. Mutagenesis data suggested a single residue difference at threonine 106 between p38 and other MAP kinases is sufficient to confer selectivity of pyridinyl imidazoles. We have changed the equivalent residue in human ERK2, Q105, into threonine and alanine, and substituted four additional ATP binding site residues. The single residue change Q105A in ERK2 enhances the binding of SB202190 at least 25,000-fold compared to wild-type ERK2. We report enzymatic analyses of wild-type ERK2 and the mutant proteins, and the crystal structure of a pyridinyl imidazole, SB203580, bound to an ERK2 pentamutant, I103L, Q105T, D106H, E109G. T110A. These ATP binding site substitutions induce low nanomolar sensitivity to pyridinyl imidazoles. Furthermore, we identified 5-iodotubercidin as a potent ERK2 inhibitor, which may help reveal the role of ERK2 in cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号