共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Galis F 《BioEssays : news and reviews in molecular, cellular and developmental biology》2001,23(5):383-387
The evolutionary history of muscle development in the paired fins of teleost fish and the limbs of tetrapod vertebrates is still, to a large extent, uncertain. There has been a consensus, however, that in the vertebrate clade the ancestral mechanism of fin and limb muscle development involves the extension of epithelial tissues from the somite into the fin/limb bud. This mechanism has been documented in chondrichthyan, dipnoan, chondrostean and teleost fishes. It has also been assumed that in amniotes, in contrast, individual progenitor cells of muscles migrate from the somites into the limb buds. Neyt et al. now present the exciting finding that in zebrafishes this presumably derived mechanism involving individual cell migration, is present. They conclude, based on data on sharks, zebrafishes, chickens, quails and mice that the derived mechanism was present in the sarcopterygians. This conclusion, however, may be premature in the light of further data available in the literature, which show a highly mosaic distribution of this character in the vertebrate clade. Furthermore, a developmental mode exists that is intermediate between the supposed ancestral and derived modes in teleosts, reptiles and possibly amphibians. 相似文献
3.
Thomas Desvignes Pierre Pontarotti Christian Fauvel Julien Bobe 《BMC evolutionary biology》2009,9(1):256-25
Background
The Nme family, previously known as Nm23 or NDPK, is involved in various molecular processes including tumor metastasis and some members of the family, but not all, exhibit a Nucleoside Diphosphate Kinase (NDPK) activity. Ten genes are known in humans, in which some members have been extensively studied. In non-mammalian species, the Nme protein family has received, in contrast, far less attention. The picture of the vertebrate Nme family remains thus incomplete and orthology relationships with mammalian counterparts were only partially characterized. The present study therefore aimed at characterizing the Nme gene repertoire in vertebrates with special interest for teleosts, and providing a comprehensive overview of the Nme gene family evolutionary history in vertebrates. 相似文献4.
Dystrophin, a product of the Duchenne muscular dystrophy gene, is a cytoskeletal protein of skeletal and cardiac muscle fibers. Dystrophin-deficient muscle fibers are abnormally vulnerable to mechanical stress including physical exercise, which is a powerful stimulator of mitogen-activated protein kinases (MAPKs). To examine how treadmill exercise affects MAPK family members in dystrophin-deficient skeletal muscle, we subjected both mdx mice, an animal model for Duchenne muscular dystrophy, and C57BL/10 mice to treadmill exercise and examined the phosphorylated protein levels of extracellular-signal regulated kinase (ERK1/2), p38 MAPK and c-Jun N terminal kinase 1 and 2 (JNK1 and JNK2) in the gastrocnemius muscle. Phosphorylation of ERK1/2, p38 MAPK and JNK2, but not JNK1, increased more in the muscles of exercise trained mdx mice than in muscles of trained C57BL/10 or untrained mdx mice. These results show that physical exercise aberrantly up-regulates the phosphorylated form of ERK1/2, p38 MAPK and JNK2 in dystrophin-deficient skeletal muscle and that their up-regulation might play a role in the degeneration and regeneration process of dystrophic features. 相似文献
5.
Mitogen activated protein kinases (MAPKs) are important proteins involved in the signal transduction of extracellular information to intracellular targets, and play a crucial role in the response to biotic and abiotic stresses. Although Arabidopsis MAPKs are used for identification of the putative MAPKs in higher plants, no grapevine MAPK gene nomenclature has yet been appeared in the literature. In this study, we have identified 12 members of grapevine MAPK gene (VvMPK) family via In-silico analysis of current grapevine genome database. The structural comparison of 12 VvMPKs through the analysis of chromosome locations, sequence annotation and paralogous gene pair indicated that VvMPKs have evolved by segmental duplication, rather than by tandem amplification. Although further functional analysis of VvMPKs through in vivo and in vivo experiments will be required, our study provides the basis for future research on the diverse signaling pathways medicated by MAPKs in grapevine. 相似文献
6.
In a phylogenetic analysis of vertebrate transferrins (TFs), six major clades (subfamilies) were identified: (a) S, the mammalian serotransferrins; (b) ICA, the mammalian inhibitor of carbonic anhydrase (ICA) homologs; (c) L, the mammalian lactoferrins; (d) O, the ovotransferrins of birds and reptiles; (e) M, the melanotransferrins of bony fishes, amphibians, reptiles, birds, and mammals; and (f) M-like, a newly identified TF subfamily found in bony fishes, amphibians, reptiles, and birds. A phylogenetic tree based on the joint alignment of N-lobes and C-lobes supported the hypothesis that three separate events of internal duplication occurred in vertebrate TFs: (a) in the common ancestor of the M subfamily, (b) in the common ancestor of the M-like subfamily, and (c) in the common ancestor of other vertebrate TFs. The S, ICA, and L subfamilies were found only in placental mammals, and the phylogenetic analysis supported the hypothesis that these three subfamilies arose by gene duplication after the divergence of placental mammals from marsupials. The M-like subfamily was unusual in several respects, including the presence of a uniquely high proportion of clade-specific conserved residues, including distinctive but conserved residues in the sites homologous to those functioning in carbonate binding of human serotransferrin. The M-like family also showed an unusually high proportion of cationic residues in the positively charged region corresponding to human lactoferrampin, suggesting a distinctive role of this region in the M-like subfamily, perhaps in antimicrobial defense. 相似文献
7.
Bae GS Kim MS Jeong J Lee HY Park KC Koo BS Kim BJ Kim TH Lee SH Hwang SY Shin YK Song HJ Park SJ 《Biochemical and biophysical research communications》2011,(3):382-388
Piperine is a phenolic component of black pepper (Piper nigrum) and long pepper (Piper longum), fruits used in traditional Asian medicine. Our previous study showed that piperine inhibits lipopolysaccharide-induced inflammatory responses. In this study, we investigated whether piperine reduces the severity of cerulein-induced acute pancreatitis (AP). Administration of piperine reduced histologic damage and myeloperoxidase (MPO) activity in the pancreas and ameliorated many of the examined laboratory parameters, including the pancreatic weight (PW) to body weight (BW) ratio, as well as serum levels of amylase and lipase and trypsin activity. Furthermore, piperine pretreatment reduced the production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 during cerulein-induced AP. In accordance with in vivo results, piperine reduced cell death, amylase and lipase activity, and cytokine production in isolated cerulein-treated pancreatic acinar cells. In addition, piperine inhibited the activation of mitogen-activated protein kinases (MAPKs). These findings suggest that the anti-inflammatory effect of piperine in cerulein-induced AP is mediated by inhibiting the activation of MAPKs. Thus, piperine may have a protective effect against AP. 相似文献
8.
Mitogen activated protein kinase (MAPK) cascades are universal signal transduction modules that play crucial role in plant growth and development as well as biotic and abiotic stress responses. 20 and 17 MAPKs have been characterized in Arabidopsis and rice respectively, which are used for identification of the putative MAPKs in other higher plants. However, no MAPK gene sequences have yet been characterized for asexually reproducing plants. We describe the analysis of MAPK EST sequences from Curcuma longa (an asexually reproducible plant of great medicinal and economic significance). The four Curcuma MAPKs contains all 11 MAPK conserved domains and phosphorylation-activation motif, TEY. Phylogenetic analysis grouped them in the subgroup A and C as identified earlier for Arabidopsis. The Curcuma MAPKs identified showed high sequence homology to rice OsMPK3, OsMPK4 and OsMPK5 suggesting the presence of similar key element in signaling biotic and abiotic stress responses. Although further in vivo and in vitro analysis are required to establish the physiological role of Curcuma MAPKs, this study provides the base for future research on diverse signaling pathways mediated by MAPKs in Curcuma longa as well as other asexually reproducing plants. 相似文献
9.
Kumar D Menon V Ford WR Clanachan AS Jugdutt BI 《Molecular and cellular biochemistry》2004,258(1-2):211-218
Mitogen-activated protein kinases (MAPKs) have been implicated during ischemia-reperfusion (IR) and angiotensin II (AngII) type 2 receptor (AT2R) blockade has been shown to induce cardioprotection involving protein kinase Cepsilon (PKCepsilon) signaling after IR. We examined whether the 3 major MAPKs, p38, c-Jun NH2-terminal kinase (JNK-1 and JNK-2), and extracellular signal regulated kinases (ERK-1 and ERK-2) are activated after IR and whether treatment with the AT2R antagonist PD123,319 (PD) alters their expression. Isolated rat hearts were randomized to control (aerobic perfusion, 80 min), IR (no drug; 50 min of perfusion, 30 min global ischemia and 30 min reperfusion; working mode), and IR + PD (0.3 micromol/l) and left ventricular (LV) work was measured. We measured LV tissue content of p38, p-p38, p-JNK-1 (54 kDa), p-JNK-2 (46 kDa), p-ERK-1 (44 kDa), p-ERK-2 (42 kDa) and PKCepsilon proteins by immunoblotting and cGMP by enzyme immunoassay. IR resulted in significant LV dysfunction, increase in p-p38 and p-JNK-1/-2, no change in p-ERK-1/-2 or PKCepsilon, and decrease in cGMP. PD improved LV recovery after IR, induced a slight increase in p-p38 (p < 0.01 vs. control), normalized p-JNK-1, did not change p-ERK-1/-2, and increased PKCepsilon and cGMP. The overall results suggest that p38 and JNK might play a significant role in acute IR injury and the cardioprotective effect of AT2R blockade independent of ERK. The activation of p38 and JNKs during IR may be linked, in part, to AT2R stimulation. 相似文献
10.
Evolutionary history of the enolase gene family 总被引:4,自引:0,他引:4
The enzyme enolase [EC 4.2.1.11] is found in all organisms, with vertebrates exhibiting tissue-specific isozymes encoded by three genes: alpha (alpha), beta (beta), and gamma (gamma) enolase. Limited taxonomic sampling of enolase has obscured the timing of gene duplication events. To help clarify the evolutionary history of the gene family, cDNAs were sequenced from six taxa representing major lineages of vertebrates: Chiloscyllium punctatum (shark), Amia calva (bowfin), Salmo trutta (trout), Latimeria chalumnae (coelacanth), Lepidosiren paradoxa (South American lungfish), and Neoceratodus forsteri (Australian lungfish). Phylogenetic analysis of all enolase and related gene sequences revealed an early gene duplication event prior to the last common ancestor of living organisms. Several distantly related archaebacterial sequences were designated as 'enolase-2', whereas all other enolase sequences were designated 'enolase-1'. Two of the three isozymes of enolase-1, alpha- and beta-enolase, were discovered in actinopterygian, sarcopterygian, and chondrichthian fishes. Phylogenetic analysis of vertebrate enolases revealed that the two gene duplications leading to the three isozymes of enolase-1 occurred subsequent to the divergence of living agnathans, near the Proterozoic/Phanerozoic boundary (approximately 550Mya). Two copies of enolase, designated alpha(1) and alpha(2), were found in the trout and are presumed to be the result of a genome duplication event. 相似文献
11.
Kevin M Rice Devashish H Desai Sunil K Kakarla Anjaiah Katta Deborah L Preston Paulette Wehner Eric R Blough 《Cardiovascular diabetology》2006,5(1):1-11
Background
Foam cell formation in diabetic patients often occurs in the presence of high insulin and glucose levels. To test whether hyperinsulinemic hyperglycemic conditions affect foam cell differentiation, we examined gene expression, cytokine production, and Akt phosphorylation in human monocyte-derived macrophages incubated with two types of oxidized low density lipoprotein (LDL), minimally modified LDL (mmLDL) and extensively oxidized LDL (OxLDL).Methods and results
Using Affymetrix GeneChip® arrays, we found that several genes directly related to insulin signaling were changed. The insulin receptor and glucose-6-phosphate dehydrogenase were upregulated by mmLDL and OxLDL, whereas insulin-induced gene 1 was significantly down-regulated. In hyperinsulinemic hyperglycemic conditions, modified LDL upregulated Akt phosphorylation and expression of the insulin-regulated aminopeptidase. The level of proinflammatory cytokines, IL-lβ, IL-12, and IL-6, and of a 5-lipoxygenase eicosanoid, 5-hydroxyeicosatetraenoic acid (5-HETE), was also increased.Conclusion
These results suggest that the exposure of macrophages to modified low density lipoproteins in hyperglycemic hyperinsulinemic conditions affects insulin signaling and promotes the release of proinflammatory stimuli, such as cytokines and eicosanoids. These in turn may contribute to the development of insulin resistance. 相似文献12.
《FEBS letters》1994,340(3):269-275
Treatment of Chinese hamster ovary (CHO) cells over-expressing the human insulin receptor (CHO-HIRc) with the insulin mimetic agent, vanadate, resulted in a dose- and time-dependent tyrosine phosphorylation of two proteins with apparent molecular sizes of 42 kDa (p42) and 44 kDa (p44). However, vanadate was unable to stimulate the tyrosyi phosphorylation of theβ-subunit of the insulin receptor. By using myelin basic protein (MBP) as the substrate to measure mitogen-activated protein (MAP) kinase activity in whole cell lysates, vanadate-stimulated tyrosyl phosphorylation of p42 and p44 was associated with a dose- and time-dependent activation of MAP kinase activity. Furthermore, affinity purification of cell lysates on anti-phosphotyrosine agarose column followed by immunoblotting with a specific antibody to MAP kinases demonstrated that vanadate treatment increased the tyrosyl phosphorylation of both p44mapk and p42mapk by several folds, as compared to controls, in concert with MAP kinase activation. In addition, retardation in gel mobility further confirmed that vanadate treatment increased the phosphorylation of p44mapk and p42mapk in CHO-HIRc. A similar effect of vanadate on MAP kinase tyrosyl phosphorylation and activation was also observed in CHO cells over-expressing a protein tyrosine kinase-deficient insulin receptor (CHO-1018). These results demonstrate that the protein tyrosine kinase activity of the insulin receptor may not be required in the signaling pathways leading to the vanadate-mediated tyrosyl phosphorylation and activation of MAP kinases. 相似文献
13.
Role of mitogen activated protein kinases (MAPK) in skeletal muscle differentiation is not fully understood. We investigated subtype-specific functions and their interactions, if any, in the regulation of myogenic differentiation in L6E9 skeletal muscle cells. We show inhibition of extracellular signal-regulated kinase-1 and -2 (ERK-1/-2) and activation of p38 MAP kinase during the differentiation of L6E9 rat skeletal muscle cells under low serum condition. Inhibition of ERK-1/-2 activity dramatically enhanced differentiation as was evident from cellular morphology, expression of muscle differentiation specific marker proteins, suggesting that ERK-1/-2 activation may be inhibitory to initiation and progression of differentiation. In contrast, inhibition of p38 MAP kinase completely prevented differentiation; meaning p38 activation is required from the initiation till terminal differentiation of L6E9 cells. Moreover, inhibition of ERK-1/-2 activities enhanced the activation of p38 MAP kinase that resulted in enhancement of differentiation; whereas inhibition of p38 MAP kinase activity enhanced the ERK-1/-2 activities culminating in abrogation of differentiation. We conclude that ERK-1/-2 and p38 MAP kinase cascades oppositely regulate each other's function(s) thereby regulating L6E9 skeletal muscle differentiation. 相似文献
14.
Mitogen activated protein kinase cascades function in eukaryotic responses to the environment and stress. Trypanosomatid parasites possess protein kinases with sequences characteristic of kinases in such cascades. In this report we use gene knockouts to demonstrate that two mitogen activated kinase kinase genes, MKK1 (Tb927.3.4860) and MKK5 (Tb927.10.5270), are not essential in the pathogenic bloodstream stage of Trypanosoma brucei, either in vitro or in vivo. Bloodstream forms lacking MKK1 showed decreased growth at 39 °C as compared to the parental line. However, unlike its Leishmania orthologue, T. brucei MKK1 does not appear to play a significant role in flagellar biogenesis. 相似文献
15.
16.
The possible role of protein kinase C (PKC) and mitogen activated protein (MAP) kinases in the stimulation of cholesterol esterification by acetylated low density lipoprotein (acLDL) in human monocyte-derived macrophages (HMDM) was studied. Cholesterol esterification, as assessed by the rate of incorporation of [3H]-oleate into cholesteryl ester, was markedly higher in HMDM incubated with acLDL as compared to native LDL (nLDL). In the presence of the phorbol ester, phorbol 12-myristate 13-acetate (PMA, 100 nM), however, the rate of incorporation was reduced by about 50% and 85% in incubations with nLDL and acLDL, respectively. Thus, the difference in the rate of cholesteryl esterification induced by the two types of lipoprotein was abolished by PMA, indicating that PKC activation inhibits the process, and this was confirmed by the finding that the PKC inhibitor calphostin C reversed the PMA-induced inhibition of cholesterol esterification. Incubation of HMDM with PMA was found to cause a considerable increase in the activation of p42/44 extracellular signal-regulated MAP kinases (ERK) and p38 MAP kinases, reaching a maximum at 30 min. In the presence of acLDL, the ERK inhibitor PD98059 decreased cholesterol esterification in HMDM by about 35%. In contrast, the p38 inhibitor SB203580 had no effect. However, when PMA was present in addition to SB203580, esterification was reduced to a level lower than that observed with PMA alone. These findings suggest that activation of ERK, but not p38, MAP kinases is involved in the induction of cholesterol esterification by acLDL in HMDM, while p38 MAP kinases may modulate the inhibitory effect of PKC, and thus provide evidence that MAP kinases play a role in the regulation of foam cell formation in human macrophages. 相似文献
17.
18.
Jürgen Hoppe Viviane Hoppe Thomas-Andreas Karenberg Anke Fenn Andreas Simm Agapios Sachinidis 《Journal of cellular physiology》1994,161(2):342-350
More than 90% of serum-deprived (starved) AKR-2B mouse fibroblasts are stimulated to divide by the addition of platelet-derived growth factor (PDGF)-BB. In density-arrested (nonstarved) cells, PDGF-BB affords protection from cell death without stimulation of cell division. In both cultivation conditions the cells express similar amounts of PDGF β-receptors and the receptor kinase activity was identical as judged by its autophosphorylation capacity. Three signaling pathways were studied in detail: (1) Phospholipase C-γ (PLC-γ) and [Ca2+]i increase, (2) activation of the phosphatidylinositol-3 kinase (PI-3 kinase), and (3) activation of mitogen activated kinases I and II (MAP kinases I and II). There was no difference in starved or nonstarved cells regarding PLC-γ activation, increase of [Ca2+]i, and stimulation of PL-3 kinase activity. But most remarkably the activation of MAP-I was largely suppressed in nonstarved cells. The implications of these signaling pathways in cell protection or cell division are discussed. © 1994 Wiley-Liss, Inc. 相似文献
19.
S M Keyse 《Free radical research》1999,31(4):341-349
It is now established that a family of dual-specificity protein phosphatases are able to interact with mitogen and stress-activated protein kinases in a highly specific manner to differentially regulate these enzymes in mammalian cells. A role for these proteins in negative feedback regulation of MAP kinase activity is also supported by genetic and biochemical studies in yeasts and Drosophila. More recently it has become clear that other classes of protein phosphatase also play key roles in the regulated dephosphorylation of MAP kinases, including tyrosine-specific protein phosphatases and serine/threonine protein phosphatases. It is likely that a complex balance between upstream activators and these different classes of MAP kinase specific phosphatase are responsible for determining, at least in part, the magnitude and duration of MAP kinase activation and hence the physiological outcome of signalling. 相似文献
20.
Scodelaro Bilbao P Boland R Russo de Boland A Santillán G 《Archives of biochemistry and biophysics》2007,466(1):15-23
In the breast tumor cell line MCF-7, extracellular nucleotides induce transient elevations in intracellular calcium concentration ([Ca(2+)](i)). In this study we show that stimulation with ATP or UTP sensitizes MCF-7 cells to mechanical stress leading to an additional transient Ca(2+) influx. ATP> or =ATPgamma-S> or =UTP>ADP=ADPbeta-S elevate [Ca(2+)](i), proving the presence of P2Y(2)/P2Y(4) purinergic receptor subtypes. In addition, cell stimulation with ATP, ATPgamma-S or UTP but not ADPbeta-S induced the phosphorylation of ERK1/2, p38 and JNK1/2 mitogen activated protein kinases (MAPKs). The use of Gd(3+), La(3+) or a Ca(2+)-free medium, inhibited ATP-dependent stress activated Ca(2+) (SAC) influx, but had no effect on MAPK phosphorylation. ATP-induced activation of MAPKs was diminished by two PI-PLC inhibitors and an IP(3) receptor antagonist. These results evidence an ATP-sensitive SAC influx in MCF-7 cells and indicate that phosphorylation of MAPKs by ATP is dependent on PI-PLC/IP(3)/Ca(2+)(i) release but independent of SAC influx in these cells, differently to other cell types. 相似文献