首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Abstract. A southern ridge sandhill site in central Florida, USA, was burned in 1989, 1991, and 1995 after 63 years of fire‐suppression to simulate a pre‐settlement fire regime. Fire changed species abundance and vegetation structure but caused only minimal changes in species turnover and diversity. There was a general trend for an increase in the cover of herbs following fire but this was a statistically significant effect for only one species, Liatris tenuifolia var. tenuifolia. Aristida beyrichiana increased, litter cover and litter depth were significantly reduced, and ground lichens were eliminated in response to burning. Scrub oaks and palmettos in the ground cover and small shrub layers (height ≤ 1 m) either increased or did not respond to burning, reflecting strong post‐fire resprouting. Diversity in the ground cover and small shrub layers were not affected by fire. Scrub oaks and palmettos in the large shrub and overstorey layers (height > 1 m) were reduced in density, basal area, and longest canopy measurements in response to fire. Species diversity also decreased within these layers following fire. Some Pinus elliottii var. densa survived fire, but their density was reduced. All Pinus clausa were eliminated by fire. Periodic burning can suppress the dominance of shrubs (Quercus spp.) while increasing the cover of grasses and herbs in southern ridge sandhill vegetation.  相似文献   

2.
Controls of nitrogen limitation in tallgrass prairie   总被引:5,自引:0,他引:5  
Summary The relationship between fire frequency and N limitation to foliage production in tallgrass prairie was studied with a series of fire and N addition experiments. Results indicated that fire history affected the magnitude of the vegetation response to fire and to N additions. Sites not burned for over 15 years averaged only a 9% increase in foliage biomass in response to N enrichment. In contrast, foliage production increased an average of 68% in response to N additions on annually burned sites, while infrequently burned sites, burned in the year of the study, averaged a 45% increase. These findings are consistent with reports indicating that reduced plant growth on unburned prairie is due to shading and lower soil temperatures, while foliage production on frequently burned areas is constrained by N availability. Infrequent burning of unfertilized prairie therefore results in a maximum production response in the year of burning relative to either annually burned or long-term unburned sites.Foliage biomass of tallgrass prairie is dominated by C4 grasses; however, forb species exhibited stronger production responses to nitrogen additions than did the grasses. After four years of annual N additions, forb biomass exceeded that of grass biomass on unburned plots, and grasses exhibited a negative response to fertilizer, probably due to competition from the forbs. The dominant C4 grasses may out-compete forbs under frequent fire conditions not only because they are better adapted to direct effects of burning, but because they can grow better under low available N regimes created by frequent fire.  相似文献   

3.
Prescribed burning is an important tool for managing and restoring prairies and other ecosystems. One effect of fire is plant litter removal, which can influence seedling establishment. Four experimental treatments (burned, clipped and raked to remove litter, burned with litter reapplied, and unmanipulated) were applied to 2 × 2.5–m plots in three western Oregon, United States, upland prairies to determine how burning affects seedling establishment. Seeds of common exotic and native prairie species were sowed into the experimental plots after treatments. Seedlings were censused the following spring. The experiment was repeated on each of the three sites, representing three common types of prairie vegetation: an Annual Exotic Grass site, a Perennial Exotic Grass site, and a Native Bunchgrass site. In both the Annual Exotic Grass and the Perennial Exotic Grass sites, burning significantly improved native, but not exotic, seedling establishment over those on unburned plots. Litter removal was a significant component of this burn effect, particularly on the Perennial Exotic Grass site. In these winter‐moist systems, the net effect of litter is to inhibit seedling establishment. Burning treatments on the Native Bunchgrass site significantly increased seedling establishment only of short‐lived exotic species. These results suggest that in prairie ecosystems similar to the Annual and Perennial Exotic Grass sites, prescribed burning followed by sowing native seeds can be an effective restoration technique. Burning alone or sowing alone would be counter‐productive, in the first case because increased establishment would come from exotic species and in the second case because establishment rates are low in unburned plots.  相似文献   

4.
Fire is an important agent of disturbance in tropical savannas, but relatively few studies have analyzed how soil-and-litter dwelling arthropods respond to fire disturbance despite the critical role these organisms play in nutrient cycling and other biogeochemical processes. Following the incursion of a fire into a woodland savanna ecological reserve in Central Brazil, we monitored the dynamics of litter-arthropod populations for nearly two years in one burned and one unburned area of the reserve. We also performed a reciprocal transplant experiment to determine the effects of fire and litter type on the dynamics of litter colonization by arthropods. Overall arthropod abundance, the abundance of individual taxa, the richness of taxonomic groups, and the species richness of individual taxa (Formiciade) were lower in the burned site. However, both the ordinal-level composition of the litter arthropod fauna and the species-level composition of the litter ant fauna were not dramatically different in the burned and unburned sites. There is evidence that seasonality of rainfall interacts with fire, as differences in arthropod abundance and diversity were more pronounced in the dry than in the wet season. For many taxa the differences in abundance between burned and unburned sites were maintained even when controlling for litter availability and quality. In contrast, differences in abundance for Collembola, Formicidae, and Thysanoptera were only detected in the unmanipulated samples, which had a lower amount of litter in the burned than in the unburned site throughout most of our study period. Together these results suggest that arthropod density declines in fire-disturbed areas as a result of direct mortality, diminished resources (i.e., reduced litter cover) and less favorable microclimate (i.e., increased litter desiccation due to reduction in tree cover). Although these effects were transitory, there is evidence that the increasingly prevalent fire return interval of only 1–2 years may jeopardize the long-term conservation of litter arthropod communities.  相似文献   

5.
Historic losses and fragmentation of tallgrass prairie habitat to agriculture and urban development have led to declines in diversity and abundance of plants and birds associated with such habitat. Prescribed burning is a management strategy that has potential for restoring and rejuvenating prairies in fragmented landscapes, and through such restoration, might create habitat for birds dependent upon prairies. To provide improved data for management decision-making regarding the use of prescribed fire in tallgrass prairies, we compared responses of plant and bird communities on five burned and five unburned tallgrass prairie fragments at the DeSoto National Wildlife Refuge, Iowa, USA, from 1995 to 1997. Overall species richness and diversity were unaffected by burning, but individual species of plants and birds were affected by year-treatment interactions, including northern bobwhite (Colinus virginianus) and ring-necked pheasant (Phasianus colchicus), which showed time-delayed increases in density on burned sites. Analyses of species/area relationships indicated that, collectively, many small sites did make significant contributions to plant biodiversity at landscape levels, supporting the overall conservation value of prairie fragments. In contrast, most birds species were present on larger sites. Thus, higher biodiversity in bird communities which contain area-sensitive species might require larger sites able to support larger, more stable populations, greater habitat heterogeneity, and greater opportunity for niche separation.  相似文献   

6.
Pocket gopher (Geomyidae) disturbances are created in spatiallypredictable patterns. This may influence resource heterogeneity and affectgrassland vegetation in a unique manner. We attempt to determine the extent towhich density and spatial pattern of soil disturbances influence tallgrassprairie plant community structure and determine how these disturbances interactwith fire. To investigate the effects of explicit disturbance patterns we createdsimulated pocket gopher burrows and mounds in various spatial patterns.Simulated burrows were drilled into the soil at different densities inreplicated plots of burned and unburned prairie. Separate plots of simulatedmounds were created in burned and unburned prairie at low, medium, or high mounddensities in clumped, uniform, or random spatial dispersions. In both burned and unburned plots, increased burrow density decreasedgraminoid biomass and increased forb biomass. Total-plant and graminoid biomasswere higher in burned than unburned plots while forb biomass was higher inunburned plots. Total-plant species richness was not significantly affected byburrow density or burning treatments, but graminoid species richness increasedin unburned plots and forb species richness increased in burned plots. Plant species richness was temporarily reduced directly on mounddisturbances compared to undisturbed prairie. Over time and at larger samplingscales, the interaction of fire and mound disturbance patterns significantlyaffected total-plant and graminoid species richness. The principal effect inburned and unburned prairie was decreased total-plant and graminoid speciesrichness with increased mound disturbance intensity. Although species richness at small patch scales was not increased by anyintensity of disturbance and species composition was not altered by theestablishment of a unique guild of disturbance colonizing plants, our studyrevealed that interactions between soil disturbances and fire alter the plantcommunity dominance structure of North American tallgrass prairie primarily viachanges to graminoids. Moreover, these effects become increasingly pronouncedover time and at larger spatial sampling scales.  相似文献   

7.
The effects of fire season on forb diversity patterns, density, and composition were determined for a northern Mixed Prairie site, USA. Repeated spring burns (dormant season), summer burns, fall burns (dormant season), and unburned treatments were compared over a 3-yr period characterized by wet and dry moisture conditions. Alpha and beta diversity were highest on unburned and summer burn treatments, while landscape mosaic diversity was highest on fall burns. Forb density was highest on fall and spring burn sites. Nine forb species comprised 82% of total densities and were significantly affected by fire season and year to year variations in moisture. Forb composition for unburned and spring burn treatments was similar, but both treatments were different from the summer burn and fall burn treatments which were similar to each other. Fire alone did not appear to be an intense enough disturbance to initiate drastic changes in the forb component of vegetation patches. Specific fire seasons did appear to either mask or enhance forb structure arising from other disturbance(s). Fire season also affected the scales of forb organization in the landscape. Contrasting spatial characteristics of the forb component of prairie plant communities may provide a diagnostic technique for exposing the interaction of disturbances at different temporal and spatial scales.  相似文献   

8.
Expansion of woody species into herbaceous wetlands is a serious concern in wetland management. Prescribed fire is often used as a tool to manage woody species, although many species resprout after fire making control problematic. In this study, we assessed the usefulness of repeated dormant season fires for controlling Salix caroliniana (Michx.) in a floodplain marsh in Florida. Salix is a common shrub in southeastern marshes that resprouts prolifically after fire. We compared stem basal area, stem density, and cover of Salix in three adjacent sites in a floodplain marsh in east central Florida. One site was burned once in February 1997, another site was burned in February 1997 and then again in March 1999 and one site was left unburned. At the unburned site, Salix stem basal area, stem density, and cover increased over the course of the study. In the two burned sites, the first fire destroyed large diameter stems and stimulated production of sprouts. As a result, stem basal area and cover decreased but stem density remained unchanged. The second fire caused a decline in stem density and a further decline in cover. Changes in understory species composition and cover could not be attributed to the fires. Our results suggest that dormant season fires are effective in reducing Salix cover and basal area, and that repeated fires have greater effects than a single fire.  相似文献   

9.
Micro-Scale Restoration: A 25-Year History of a Southern Illinois Barrens   总被引:1,自引:0,他引:1  
We studied vegetation change of a remnant barrens in southern Illinois over twenty‐five years. The study area was periodically burned between 1969 and 1993, but fire was excluded for a 16‐year period (1974–1989). During the study, the barrens supported a mixture of species whose preferred habitats ranged from prairie and open woodlands to closed forest communities. The herbaceous vegetation may be on a trajectory characterized by increasing dominance of woodland species and declining prairie species. Fire management temporarily reversed this trend, but it continued once fire was excluded. Reintroduction of prescribed burning in 1990–1993 altered the vegetation trajectory but not back toward a species composition comparable to that present on the site before cessation of fire management after 1973. Following interruption of prescribed burning, tree basal area more than doubled, and density showed a 67% increase between premanagement conditions in 1968 and 1988. Salix humilis (prairie willow) density had significant negative correlations with tree density and basal area. However, there was no consistency in response of shrub species on the site to the varied site conditions over time. Fire management on the site may not recover the historic barrens that occurred on the site. Nevertheless, consistent fire management will drive vegetation changes toward increasing abundance of prairie and open woodland species that would otherwise be lost without burning.  相似文献   

10.
Fire does not alter vegetation in infertile prairie   总被引:1,自引:0,他引:1  
Knops JM 《Oecologia》2006,150(3):477-483
The paradigm in prairie ecology is that fire is one of the key factors determining vegetation composition. Fire can impact grassland ecosystems in various ways, including changing plant species composition and inducing nitrogen loss. I found that 17 years of different burning frequencies in infertile grassland had only a minor impact on the vegetation composition and diversity. The only major impact from increasing the frequency of fires was a decrease of Poa pratensis abundance. However, other plant species did not respond to the change in Poa abundance. This result contrasts with previous studies in savannas and more productive grasslands, where the balance between trees, grasses, and the elimination of the litter layer can result in large vegetation changes. However, in this system primary productivity was low, litter did not accumulate and no major vegetation shifts occurred. Thus, the long-term vegetation impacts of burning in an infertile, low-productivity prairie were minimal.  相似文献   

11.
Changes in structural and compositional attributes of shinnery oak (Quercus havardii Rydb.) plant communities have occurred in the twentieth century. These changes may in part relate to altered fire regimes. Our objective was to document effects of prescribed fire in fall (October), winter (February), and spring (April) on plant composition. Three study sites were located in western Oklahoma; each contained 12, 60 × 30‐m plots that were designated, within site, to be seasonally burned, annually burned, or left unburned. Growing season canopy cover for herbaceous and woody species was estimated in 1997–1998 (post‐treatment). At one year post‐fire, burning in any season reduced shrub cover, and spring burns reduced cover most. Winter and annual fires increased cover of rhizomatous tallgrasses, whereas burning in any season decreased little bluestem cover. Perennial forbs increased with fall and winter fire. Shrub stem density increased with fire in any season. Communities returned rapidly to pre‐burn composition with increasing time since fire. Fire effects on herbaceous vegetation appear to be manifested through increases in bare ground and reduction of overstory shrub dominance. Prescribed fire can be used as a tool in restoration efforts to increase or maintain within and between community plant diversity. Our data suggest that some plant species may require or benefit from fire in specific seasons. Additional research is needed to determine the long‐term effects of repeated fire over time.  相似文献   

12.
Dry woodlands frequently experience fire, and the heterogeneous spatial patterning of vegetation cover and fire behavior in these systems can lead to interspersed burned and unburned patches of different vegetation cover types. Biogeochemical processes may differ due to fire and vegetation cover influences on biotic and abiotic conditions, but these persistent influences of fire in the months or years following fire are not as well understood as the immediate impacts of fire. In particular, leaf litter decomposition, a process controlling nutrient availability and soil organic matter accumulation, is poorly understood in drylands but may be sensitive to vegetation cover and fire history. Decomposition is responsive to changes in abiotic drivers or interactions between abiotic conditions and biotic drivers, suggesting that decomposition rates may differ with vegetation cover and fire. The objective of this study was to assess the role of vegetation cover and fire on leaf litter decomposition in a semi-arid pinyon-juniper woodland in southern New Mexico, USA, where prescribed fire is used to combat increasing woody cover. A spatially heterogeneous prescribed burn led to closely co-located but discrete burned and unburned patches of all three dominant vegetation cover types (grass, shrub, tree). Decomposition rates of leaf litter from two species were measured in mesh litterbags deployed in factorial combination of the three vegetation cover types and two fire treatments (burned and unburned patches). For both litter types, decomposition was lower for unburned trees than for unburned grass or shrubs, perhaps due to greater soil–litter mixing and solar radiation away from tree canopies. Fire enhanced litter mass loss under trees, making decomposition rates similarly rapid in burned patches of all three vegetation cover types. Understanding decomposition dynamics in spatially heterogeneous vegetation cover of dry woodlands is critical for understanding biogeochemical process responses to fire in these systems.  相似文献   

13.
Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species richness and community heterogeneity within a mosaic of grassland, oak savanna, oak woodland, and forest communities. Species richness was assessed for all vascular plant species and for three plant functional groups: grasses, forbs, and woody plants. Understory species richness and community heterogeneity were maximized at biennial fire frequencies, consistent with predictions of the intermediate disturbance hypothesis. However, overstory tree species richness was highest in unburned units and declined with increasing fire frequency. Maximum species richness was observed in unburned units for woody species, with biennial fires for forbs, and with near-annual fires for grasses. Savannas and woodlands with intermediate and spatially variable tree canopy cover had greater species richness and community heterogeneity than old-field grasslands or closed-canopy forests. Functional group species richness was positively correlated with functional group cover. Our results suggest that annual to biennial fire frequencies prevent shrubs and trees from competitively excluding grasses and prairie forbs, while spatially variable shading from overstory trees reduces grass dominance and provides a wider range of habitat conditions. Hence, high species richness in savannas is due to both high sample point species richness and high community heterogeneity among sample points, which are maintained by intermediate fire frequencies and variable tree canopy cover.  相似文献   

14.
火因子对荒漠化草原草本层片植物群落组成的影响   总被引:2,自引:0,他引:2  
火烧是世界许多地区关键的生态因子,也是人工和自然生态系统重要的干扰因素和管理工具,对格局与过程有着深刻的影响。采用人为放火试验研究了春季不同时间火烧对典型温带荒漠化草原草本植物群落组成的影响,结果表明:晚春火烧后当年,草本植物层片物种多度显著高于未火烧样地(P<0.05),而晚春火烧后第2年和早春火烧当年草本植物层片物种多度与未火烧样地差异不显著(P>0.05);晚春火烧后当年和第2年及早春火烧后当年,草本植物物种丰富度、多样性和均匀度均有所降低,且晚春火烧对植物群落组成的影响大于早春火烧。晚春火烧当年草本植物层片地上部分生物量显著大于未火烧样地(P<0.05),而晚春火烧后第2年和早春火烧当年草本植物层片地上部分生物量大于未火烧样地,但差异不显著(P>0.05);不同物种多度、高生长对火因子的响应不同。表明春季不同时间火烧处理对荒漠化草原草本植物层片植物群落组成的影响存在差异。  相似文献   

15.
火烧对内蒙古草原中坚韧胶衣固氮活性的影响   总被引:4,自引:1,他引:3       下载免费PDF全文
 坚韧胶衣(Collema tenax)是干旱和半干旱草原中常见的一种固氮地衣, 是草原生态系统中生物土壤结皮(Biological soil crust)的 主要组成部分, 对生态系统氮循环具有重要的影响。火烧作为一种干扰因子, 是草原生态系统结构和功能维持的重要因素之一。该文采用乙炔 还原法(Acetylene reduction assay), 研究了火烧对内蒙古草原生态系统中坚韧胶衣固氮活性的短期影响。结果表明, 在个体尺度上, 与对照 相比, 火烧区中地衣体烧损的坚韧胶衣固氮活性降低了42.3%, 而无烧损的个体固氮活性则升高了28.4%。这表明火烧对坚韧胶衣的固氮功能在 个体尺度上具有双重影响: 1)通过烧损地衣体、恶化地表温度和水分条件, 而抑制个体的固氮活性; 2)通过改善光照条件, 使表土养分呈现脉 冲式增高, 而促进未烧损个体的固氮活性。在种群尺度上, 火烧与对照之间固氮活性并无显著差异, 这可能是由于火烧在个体尺度上对坚韧胶 衣的固氮活性的双重影响相互抵消所致。  相似文献   

16.
Effects of fire and small-scale soil disturbances on species richness, community heterogeneity, and microsuccession were investigated in a central Oklahoma tallgrass prairie. In the fall of 1985, 0.2 m2 soil disturbances were created on burned and unburned tallgrass prairie. Vegetation on and off disturbances was sampled at monthly intervals over two growing seasons. During the first growing season, the cover of forbs and annuals, and species richness were significantly greater on versus off disturbances, but these differences did not persist through the second year. The variation in species composition among disturbed plots (heterogeneity) was significantly greater compared to undisturbed areas throughout the study. Fire had no consistent effect on richness and heterogeneity of vegetation on soil disturbances but fire reduced heterogeneity on undisturbed vegetation. Rate of succession, based on an increase in cumulative cover of perennial grasses over time, did not differ among treatments during the first growing season. During the second year, rate of succession was significantly greater on burned soil disturbances compared to unburned soil disturbances. These results suggest that while small-scale soil disturbances have primarily short-lived effects on grassland community structure, disturbances do help to maintain spatial and temporal variation in tallgrass prairie communities. Unlike in undisturbed vegetation, however, species richness and heterogeneity on soil disturbances were little effected by fire, but the rate of colonization onto disturbances appeared to be enhanced by fire.  相似文献   

17.
Soil conditions, vegetation features and soil fauna were recorded in montane tall tussock grassland dominated by narrow- leaved snow tussock Chionochloa rigida ssp. rigida up to 30 months after a spring fire. Burning reduced the stature of tussocks and the size and density of tillers in the first growing season. After two growing seasons, tussock canopy development and tiller size remained below those found in the unburnt grassland nearby. New tillers and tussocks established following the prolific fire-induced flowering one year after burning. After the fire and sheep grazing, intertussock cover became progressively dominated by introduced grasses and herbs. While soil pH, moisture content, bulk density, surface litter and total nematodes showed significant treatment (burning) effects, these properties also showed significant year-to-year variation. The greatest increase in any nematode group was in Paratylenchus, a distinctive genus widespread in tussock grasslands and apparently responsive to environmental fluctuation and root development; its population was 100x and 29x greater in the burned area than in the control area 16 and 30 months after burning. Subject to detailed testing, populations of mites and collembola may provide relatively simple indicators of recovery of ecosystem function of such grasslands after burning.  相似文献   

18.
Native unploughed tallgrass prairie from Konza Prairie, Kansas, USA is described with respect to plant species compositional changes over a five year period in response to fire and topography. The principal gradient of variation in the vegetation is related to time since burning. Species show an individualistic response in terms of relative abundance to this gradient. Both the percentage of and cover of C4 species and all grasses decrease as the prairie remains unburnt. Forb and woody plant species numbers and abundance increase along this gradient. A secondary gradient of variation reflects topography (i.e. upland versus lowland soils). Upland soils support a higher species richness and diversity. Upland and lowland plant assemblages are distinct except on annually burnt prairie. The interaction between burning regime, topography and year-to-year climatic variation affects the relative abundance of the plant species differentially. The most dominant species overall, Andropogon gerardii, was affected only by year-to-year variation (i.e. climate). Its position at the top of the species abundance hierarchy was unaffected by burning regime or soil type. The other dominant species showed a suite of varying responses to these factors.Deceased May, 1986.  相似文献   

19.
The effects of high intensity fire on the cycling of nutrients in litter and canopy through fall were studied in pole stand jarrah (E. marginata Bonn ex Sm.) forest near Dwellingup, south-western Australia. In the first year following burning, twice as much litter fell on the burnt site as on an unburnt control site. Concentrations of phosphorus and nitrogen were higher in post-fire litter probably because crown scorch during burning prevented withdrawal of phosphorus and nitrogen into the tree before leaf fall. This, together with the increased weight of litter, resulted in a four-fold increase in the accession of phosphorus and nitrogen to the forest floor in litter one year after the fire on the burnt site. The concentrations of potassium, magnesium, sodium and chlorine in the litter were all significantly lower on the burnt site than on the unburnt site in the first year following burning. During the second year after the fire, significantly less litter fell on the burnt area than on the unburnt control site. Phosphorus concentrations in the litter from the burnt site remained 50% higher than in litter from the control but the other nutrient elements returned to their pre-fire levels. There are indications that more phosphorus and potassium are cycled via canopy leaching immediately after burning. In the second winter following the fire there were no significant differences in the amounts of nutrients in canopy leachate on the burnt and unburnt areas.  相似文献   

20.
Ecosystems in the eastern United States that were shaped by fire over thousands of years of anthropogenic burning recently have been subjected to fire suppression resulting in significant changes in vegetation composition and structure and encroachment by invasive species. Renewed interest in use of fire to manage such ecosystems will require knowledge of effects of fire regime on vegetation. We studied the effects of one aspect of the fire regime, fire frequency, on biomass, cover and diversity of understory vegetation in upland oak forests prescribe-burned for 20 years at different frequencies ranging from zero to five fires per decade. Overstory canopy closure ranged from 88 to 96% and was not affected by fire frequency indicating high tolerance of large trees for even the most frequent burning. Understory species richness and cover was dominated by woody reproduction followed in descending order by forbs, C3 graminoids, C4 grasses, and legumes. Woody plant understory cover did not change with fire frequency and increased 30% from one to three years after a burn. Both forbs and C3 graminoids showed a linear increase in species richness and cover as fire frequency increased. In contrast, C4 grasses and legumes did not show a response to fire frequency. The reduction of litter by fire may have encouraged regeneration of herbaceous plants and helped explain the positive response of forbs and C3 graminoids to increasing fire frequency. Our results showed that herbaceous biomass, cover, and diversity can be managed with long-term prescribed fire under the closed canopy of upland oak forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号