首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The search for druggable pockets on the surface of a protein is often performed on a single conformer, treated as a rigid body. Transient druggable pockets may be missed in this approach. Here, we describe a methodology for systematic in silico analysis of surface clefts across multiple conformers of the metastable protein α(1)-antitrypsin (A1AT). Pathological mutations disturb the conformational landscape of A1AT, triggering polymerisation that leads to emphysema and hepatic cirrhosis. Computational screens for small molecule inhibitors of polymerisation have generally focused on one major druggable site visible in all crystal structures of native A1AT. In an alternative approach, we scan all surface clefts observed in crystal structures of A1AT and in 100 computationally produced conformers, mimicking the native solution ensemble. We assess the persistence, variability and druggability of these pockets. Finally, we employ molecular docking using publicly available libraries of small molecules to explore scaffold preferences for each site. Our approach identifies a number of novel target sites for drug design. In particular one transient site shows favourable characteristics for druggability due to high enclosure and hydrophobicity. Hits against this and other druggable sites achieve docking scores corresponding to a K(d) in the μM-nM range, comparing favourably with a recently identified promising lead. Preliminary ThermoFluor studies support the docking predictions. In conclusion, our strategy shows considerable promise compared with the conventional single pocket/single conformer approach to in silico screening. Our best-scoring ligands warrant further experimental investigation.  相似文献   

2.
Rho GTPases are conformational switches that control a wide variety of signaling pathways critical for eukaryotic cell development and proliferation. They represent attractive targets for drug design as their aberrant function and deregulated activity is associated with many human diseases including cancer. Extensive high-resolution structures (>100) and recent mutagenesis studies have laid the foundation for the design of new structure-based chemotherapeutic strategies. Although the inhibition of Rho signaling with drug-like compounds is an active area of current research, very little attention has been devoted to directly inhibiting Rho by targeting potential allosteric non-nucleotide binding sites. By avoiding the nucleotide binding site, compounds may minimize the potential for undesirable off-target interactions with other ubiquitous GTP and ATP binding proteins. Here we describe the application of molecular dynamics simulations, principal component analysis, sequence conservation analysis, and ensemble small-molecule fragment mapping to provide an extensive mapping of potential small-molecule binding pockets on Rho family members. Characterized sites include novel pockets in the vicinity of the conformationaly responsive switch regions as well as distal sites that appear to be related to the conformations of the nucleotide binding region. Furthermore the use of accelerated molecular dynamics simulation, an advanced sampling method that extends the accessible time-scale of conventional simulations, is found to enhance the characterization of novel binding sites when conformational changes are important for the protein mechanism.  相似文献   

3.
Abstract

Molecular dynamics (MD) simulation using the AMBER force field has been performed on the neurotensin (NT) receptor, a class A type G-protein-coupled receptor in its activated conformation co-crystallized with the non-peptide agonists. For structure-based hit molecule identification via natural chemical compound library, orthosteric sites on NT receptor have been mapped by docking using AutoDock4.0 and Vina with the known agonists and antagonists SR48692, SR142948, ML301 and ML314 of the receptor. Furthermore, clustering analysis on the MD trajectories by SIMULAID has been performed to filter receptor conformations for the allosteric binders from the Otava natural compound library. Comparative mappings of contrasting binding region patterns have been done between the crystal structure orthosteric sites as well as the binding regions in the SIMULAID-based cluster center conformations from MD trajectories with the FTmap server using the small organic molecule fragments as the probes. The distinct binding region in the cluster-based conformations in the extracellular region of the receptor has been identified for targeted docking by Otava natural chemical compound library using AutoDock4.0 and Vina docking suites to obtain putative allosteric binders. A group of compounds from the Otava library has been identified as showing high free energy in both AutoDock4.0 and Vina docking suites. Biophysical assessments on the natural compound computational hit molecules will be done to identify lead structures from the hit molecules.

Communicated by Ramaswamy H. Sarma  相似文献   

4.
Protein-protein interactions are abundant in signal transduction pathways and thus of crucial importance in the regulation of apoptosis. However, designing small-molecule inhibitors for these potential drug targets is very challenging as such proteins often lack well-defined binding pockets. An example for such an interaction is the binding of the anti-apoptotic BIR2 domain of XIAP to the pro-apoptotic caspase-3 that results in the survival of damaged cells. Although small-molecule inhibitors of this interaction have been identified, their exact binding sites on XIAP are not known as its crystal structures reveal no suitable pockets. Here, we apply our previously developed protocol for identifying transient binding pockets to XIAP-BIR2. Transient pockets were identified in snapshots taken during four different molecular dynamics simulations that started from the caspase-3:BIR2 complex or from the unbound BIR2 structure and used water or methanol as solvent. Clustering of these pockets revealed that surprisingly many pockets opened in the flexible linker region that is involved in caspase-3 binding. We docked three known inhibitors into these transient pockets and so determined five putative binding sites. In addition, by docking two inactive compounds of the same series, we show that this protocol is also able to distinguish between binders and nonbinders which was not possible when docking to the crystal structures. These findings represent a first step toward the understanding of the binding of small-molecule XIAP-BIR2 inhibitors on a molecular level and further highlight the importance of considering protein flexibility when designing small-molecule protein-protein interaction inhibitors.  相似文献   

5.
The Ras family small GTPases regulate multiple cellular processes, including cell growth, survival, movement, and gene expression, and are intimately involved in cancer pathogenesis. Activation of these small GTPases is catalyzed by a special class of enzymes, termed guanine nucleotide exchange factors (GEFs). Herein, we developed a small molecule screening platform for identifying lead hits targeting a Ras GEF enzyme, SOS1. We employed an ensemble structure-based virtual screening approach in combination with a multiple tier high throughput experimental screen utilizing two complementary fluorescent guanine nucleotide exchange assays to identify small molecule inhibitors of GEF catalytic activity toward Ras. From a library of 350,000 compounds, we selected a set of 418 candidate compounds predicted to disrupt the GEF-Ras interaction, of which dual wavelength GDP dissociation and GTP-loading experimental screening identified two chemically distinct small molecule inhibitors. Subsequent biochemical validations indicate that they are capable of dose-dependently inhibiting GEF catalytic activity, binding to SOS1 with micromolar affinity, and disrupting GEF-Ras interaction. Mutagenesis studies in conjunction with structure-activity relationship studies mapped both compounds to different sites in the catalytic pocket, and both inhibited Ras signaling in cells. The unique screening platform established here for targeting Ras GEF enzymes could be broadly useful for identifying lead inhibitors for a variety of small GTPase-activating GEF reactions.  相似文献   

6.
Maraviroc is a nonpeptidic small molecule human immunodeficiency virus type 1 (HIV-1) entry inhibitor that has just entered the therapeutic arsenal for the treatment of patients. We recently demonstrated that maraviroc binding to the HIV-1 coreceptor, CC chemokine receptor 5 (CCR5), prevents it from binding the chemokine CCL3 and the viral envelope glycoprotein gp120 by an allosteric mechanism. However, incomplete knowledge of ligand-binding sites and the lack of CCR5 crystal structures have hampered an in-depth molecular understanding of how the inhibitor works. Here, we addressed these issues by combining site-directed mutagenesis (SDM) with homology modeling and docking. Six crystal structures of G-protein-coupled receptors were compared for their suitability for CCR5 modeling. All CCR5 models had equally good geometry, but that built from the recently reported dimeric structure of the other HIV-1 coreceptor CXCR4 bound to the peptide CVX15 (Protein Data Bank code 3OE0) best agreed with the SDM data and discriminated CCR5 from non-CCR5 binders in a virtual screening approach. SDM and automated docking predicted that maraviroc inserts deeply in CCR5 transmembrane cavity where it can occupy three different binding sites, whereas CCL3 and gp120 lie on distinct yet overlapped regions of the CCR5 extracellular loop 2. Data suggesting that the transmembrane cavity remains accessible for maraviroc in CCL3-bound and gp120-bound CCR5 help explain our previous observation that the inhibitor enhances dissociation of preformed ligand-CCR5 complexes. Finally, we identified residues in the predicted CCR5 dimer interface that are mandatory for gp120 binding, suggesting that receptor dimerization might represent a target for new CCR5 entry inhibitors.  相似文献   

7.
8.
Current drug discovery efforts generally focus on a limited number of protein classes, typically including proteins with well-defined catalytic active sites (e.g., kinases) or ligand binding sites (e.g., G protein-coupled receptors). Nevertheless, many clinically important pathways are mediated by proteins with no such obvious targets for small molecule inhibitors. Allosteric inhibitors offer an alternative approach to inhibition of protein activities, particularly for proteins that undergo conformational changes as part of their activity cycle. Proteins regulated by autoinhibitory domains represent one broad class of proteins that meets this criterion. In this article, we discuss the potential of autoinhibited proteins as targets for allosteric inhibitors and describe two examples of small molecules that act by stabilizing native autoinhibited conformations of their targets. We propose that proteins regulated by autoinhibition may be generally amenable to allosteric inhibition by small molecules that stabilize the native, autoinhibited fold.  相似文献   

9.
B-Raf kinase plays a critical role in the Raf-MEK-ERK signaling pathway and inhibitors of B-Raf could be used in the treatment of melanomas, colorectal cancer, and other Ras related human cancers. We have identified novel small molecule pyrazolo[1,5-a]pyrimidine derivatives as B-Raf kinase inhibitors. Structure–activity relationship was generated for various regions of the scaffold to improve the biochemical profile.  相似文献   

10.
A mutation in the allosteric site of the caspase 3 dimer interface of Val266 to histidine abolishes activity of the enzyme, and models predict that the mutation mimics the action of small molecule allosteric inhibitors by preventing formation of the active site. Mutations were coupled to His266 at two sites in the interface, E124A and Y197C. We present results from X-ray crystallography, enzymatic activity and molecular dynamics simulations for seven proteins, consisting of single, double and triple mutants. The results demonstrate that considering allosteric inhibition of caspase 3 as a shift between discrete 'off-state' or 'on-state' conformations is insufficient. Although His266 is accommodated in the interface, the structural defects are propagated to the active site through a helix on the protein surface. A more comprehensive view of allosteric regulation of caspase 3 requires the representation of an ensemble of inactive states and shows that subtle structural changes lead to the population of the inactive ensemble.  相似文献   

11.
Herein we examine the determinants of the allosteric inhibition of the mitochondrial chaperone TRAP1 by a small molecule ligand. The knowledge generated is harnessed into the design of novel derivatives with interesting biological properties.TRAP1 is a member of the Hsp90 family of proteins, which work through sequential steps of ATP processing coupled to client-protein remodeling. Isoform selective inhibition of TRAP1 can provide novel information on the biomolecular mechanisms of molecular chaperones, as well as new insights into the development of small molecules with therapeutic potential.Our analysis of the interactions between an active first-generation allosteric ligand and TRAP1 shows how the small molecule induces long-range perturbations that influence the attainment of reactive poses in the active site. At the same time, the dynamic adaptation of the allosteric binding pocket to the presence of the first-generation compound sets the stage for the design of a set of second-generation ligands: the characterization of the formation/disappearance of pockets around the allosteric site that is used to guide optimize the ligands’ fit for the allosteric site and improve inhibitory activities. The effects of the newly designed molecules are validated experimentally in vitro and in vivo. We discuss the implications of our approach as a promising strategy towards understanding the molecular determinants of allosteric regulation in chemical and molecular biology, and towards speeding up the design of allosteric small molecule modulators.  相似文献   

12.
Ras is a key signal transduction protein in the cell. Mutants of Gly(12) and Gln(61) impair GTPase activity and are found prominently in cancers. In wild type Ras-GTP, an allosteric switch promotes disorder to order transition in switch II, placing Gln(61) in the active site. We show that the "on" and "off" conformations of the allosteric switch can also be attained in RasG12V and RasQ61L. Although both mutants have similarly impaired active sites in the on state, RasQ61L stabilizes an anti-catalytic conformation of switch II in the off state of the allosteric switch when bound to Raf. This translates into more potent activation of the MAPK pathway involving Ras, Raf kinase, MEK, and ERK (Ras/Raf/MEK/ERK) in cells transfected with RasQ61L relative to RasG12V. This differential is not observed in the Raf-independent pathway involving Ras, phosphoinositide 3-kinase (PI3K), and Akt (Ras/PI3K/Akt). Using a combination of structural analysis, hydrolysis rates, and experiments in NIH-3T3 cells, we link the allosteric switch to the control of signaling in the Ras/Raf/MEK/ERK pathway, supporting a GTPase-activating protein-independent model for duration of the Ras-Raf complex.  相似文献   

13.
Small-molecules that inhibit interactions between specific pairs of proteins have long represented a promising avenue for therapeutic intervention in a variety of settings. Structural studies have shown that in many cases, the inhibitor-bound protein adopts a conformation that is distinct from its unbound and its protein-bound conformations. This plasticity of the protein surface presents a major challenge in predicting which members of a protein family will be inhibited by a given ligand. Here, we use biased simulations of Bcl-2-family proteins to generate ensembles of low-energy conformations that contain surface pockets suitable for small molecule binding. We find that the resulting conformational ensembles include surface pockets that mimic those observed in inhibitor-bound crystal structures. Next, we find that the ensembles generated using different members of this protein family are overlapping but distinct, and that the activity of a given compound against a particular family member (ligand selectivity) can be predicted from whether the corresponding ensemble samples a complementary surface pocket. Finally, we find that each ensemble includes certain surface pockets that are not shared by any other family member: while no inhibitors have yet been identified to take advantage of these pockets, we expect that chemical scaffolds complementing these “distinct” pockets will prove highly selective for their targets. The opportunity to achieve target selectivity within a protein family by exploiting differences in surface fluctuations represents a new paradigm that may facilitate design of family-selective small-molecule inhibitors of protein-protein interactions.  相似文献   

14.
The von Willebrand factor (VWF) A1-glycoprotein (GP) Ibα interaction is of major importance during thrombosis mainly at sites of high shear stress. Inhibitors of this interaction prevent platelet-dependent thrombus formation in vivo, without major bleeding complications. However, the size and/or protein nature of the inhibitors currently in development limit oral bioavailability and clinical development. We therefore aimed to search for a small molecule protein-protein interaction inhibitor interfering with the VWF-GPIbα binding. After determination of putative small molecule binding pockets on the surface of VWF-A1 and GPIbα using site-finding algorithms and molecular dynamics, high throughput molecular docking was performed on both binding partners. A selection of compounds showing good in silico docking scores into the predicted pockets was retained for testing their in vitro effect on VWF-GPIbα complex formation, by which we identified a compound that surprisingly stimulated the VWF-GPIbα binding in a ristocetin cofactor ELISA and increased platelet adhesion in whole blood to collagen under arterial shear rate but in contrast inhibited ristocetin-induced platelet aggregation. The selected compound adhering to the predicted binding partner GPIbα could be confirmed by saturation transfer difference NMR spectroscopy. We thus clearly identified a small molecule that modulates VWF-GPIbα binding and that will now serve as a starting point for further studies and chemical modifications to fully characterize the interaction and to manipulate specific activity of the compound.  相似文献   

15.
Epac, a guanine nucleotide exchange factor for the low molecular weight G protein Rap, is an effector of cAMP signaling and has been implicated to have roles in numerous diseases, including diabetes mellitus, heart failure, and cancer. We used a computational molecular modeling approach to predict potential binding sites for allosteric modulators of Epac and to identify molecules that might bind to these regions. This approach revealed that the conserved hinge region of the cyclic nucleotide-binding domain of Epac1 is a potentially druggable region of the protein. Using a bioluminescence resonance energy transfer-based assay (CAMYEL, cAMP sensor using YFP-Epac-Rluc), we assessed the predicted compounds for their ability to bind Epac and modulate its activity. We identified a thiobarbituric acid derivative, 5376753, that allosterically inhibits Epac activity and used Swiss 3T3 and HEK293 cells to test the ability of this compound to modulate the activity of Epac and PKA, as determined by Rap1 activity and vasodilator-stimulated phosphoprotein phosphorylation, respectively. Compound 5376753 selectively inhibited Epac in biochemical and cell migration studies. These results document the utility of a computational approach to identify a domain for allosteric regulation of Epac and a novel compound that prevents the activation of Epac1 by cAMP.  相似文献   

16.
The small GTPase Ras is an important signaling molecule acting as a molecular switch in eukaryotic cells. Recent findings of global conformational exchange and a putative allosteric binding site in the G domain of Ras opened an avenue to understanding novel aspects of Ras function. To facilitate detailed NMR studies of Ras in physiological solution conditions, we performed backbone resonance assignments of Ras bound to slowly hydrolysable GTP mimic, guanosine 5′-[ß, γ-imido]triphosphate at pH 7.2. Out of 163 non-proline residues of the G domain, signals from backbone amide proton, nitrogen and carbon spins of 127 residues were confidently assigned with the remaining unassigned residues mostly located at the exchange-broadened effectors interface.  相似文献   

17.
Inhibitors of the Hsp90 molecular chaperone are showing considerable promise as potential molecular therapeutic agents for the treatment of cancer. Here we describe the identification of novel small molecular weight inhibitors of Hsp90 using a fragment based approach. Fragments were selected by docking, tested in a biochemical assay and the confirmed hits were crystallized. Information gained from X-ray structures of these fragments and other chemotypes was used to drive the fragment evolution process. Optimization of these high μM binders resulted in 3-benzylindazole derivatives with significantly improved affinity and anti-proliferative effects in different human cancer cell lines.  相似文献   

18.
ABCG2 is an ATP-binding cassette transporter that exports a wide range of xenobiotic compounds and has been recognized as a contributing factor for multidrug resistance in cancer cells. Substrate and inhibitor interactions with ABCG2 have been extensively studied and small molecule inhibitors have been developed that prevent the export of anticancer drugs from tumor cells. Here, we explore the potential for inhibitors that target sites other than the substrate binding pocket of ABCG2. We developed novel nanobodies against ABCG2 and used functional analyses to select three inhibitory nanobodies (Nb8, Nb17 and Nb96) for structural studies by single particle cryo-electron microscopy. Our results showed that these nanobodies allosterically bind to different regions of the nucleotide binding domains. Two copies of Nb8 bind to the apex of the NBDs preventing them from fully closing. Nb17 binds near the two-fold axis of the transporter and interacts with both NBDs. Nb96 binds to the side of the NBD and immobilizes a region connected to key motifs involved in ATP binding and hydrolysis. All three nanobodies prevent the transporter from undergoing conformational changes required for substrate transport. These findings advance our understanding of the molecular basis of modulation of ABCG2 by external binders, which may contribute to the development of a new generation of inhibitors. Furthermore, this is the first example of modulation of human multidrug resistance transporters by nanobodies.  相似文献   

19.
Since its discovery in 1992, mGluR5 has attracted significant attention and been linked to several neurological and psychiatric diseases. Ligand development was initially focused on the orthosteric binding pocket, but lack of subtype selective ligands changed the focus to the transmembrane allosteric binding pocket. This strategy has resulted in several drug candidates in clinical testing. In the present article we explore the orthosteric and allosteric binding pockets in terms of structure and ligand recognition across the mGluR subtypes and groups, and discuss the clinical potential of ligands targeting these pockets. We have performed binding mode analyses of non- and group-selective orthosteric ligands based on molecular docking in mGluR crystal structures and models. For the analysis of the allosteric binding pocket we have combined data from all mGluR5-mutagenesis studies, collectively reporting five negative allosteric modulators and 47 unique mutations, and compared it to the closest related homolog, mGluR1.  相似文献   

20.
Levit A  Yarnitzky T  Wiener A  Meidan R  Niv MY 《PloS one》2011,6(11):e27990
BACKGROUND AND MOTIVATION: The Prokineticin receptor (PKR) 1 and 2 subtypes are novel members of family A GPCRs, which exhibit an unusually high degree of sequence similarity. Prokineticins (PKs), their cognate ligands, are small secreted proteins of ~80 amino acids; however, non-peptidic low-molecular weight antagonists have also been identified. PKs and their receptors play important roles under various physiological conditions such as maintaining circadian rhythm and pain perception, as well as regulating angiogenesis and modulating immunity. Identifying binding sites for known antagonists and for additional potential binders will facilitate studying and regulating these novel receptors. Blocking PKRs may serve as a therapeutic tool for various diseases, including acute pain, inflammation and cancer. METHODS AND RESULTS: Ligand-based pharmacophore models were derived from known antagonists, and virtual screening performed on the DrugBank dataset identified potential human PKR (hPKR) ligands with novel scaffolds. Interestingly, these included several HIV protease inhibitors for which endothelial cell dysfunction is a documented side effect. Our results suggest that the side effects might be due to inhibition of the PKR signaling pathway. Docking of known binders to a 3D homology model of hPKR1 is in agreement with the well-established canonical TM-bundle binding site of family A GPCRs. Furthermore, the docking results highlight residues that may form specific contacts with the ligands. These contacts provide structural explanation for the importance of several chemical features that were obtained from the structure-activity analysis of known binders. With the exception of a single loop residue that might be perused in the future for obtaining subtype-specific regulation, the results suggest an identical TM-bundle binding site for hPKR1 and hPKR2. In addition, analysis of the intracellular regions highlights variable regions that may provide subtype specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号