首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine herpesvirus 1 (BHV-1) interferes with peptide translocation by the transporter associated with antigen processing (TAP). Recently, the UL49.5 gene product of BHV-1 was identified as the protein responsible for the observed inhibition of TAP. In BHV-1-infected cells and virions, the UL49.5 protein forms a complex with glycoprotein M (gM). Hence, it was investigated whether UL49.5 can combine the interactions with gM and the TAP complex. In cell lines constitutively expressing both UL49.5 and gM, UL49.5 appears to be required for functional processing of gM. Immunofluorescence-confocal laser scanning microscopy demonstrated that both proteins are interdependent for their redistribution from the endoplasmic reticulum to the trans-Golgi network. Remarkably, expression of cloned gM results in the abrogation of the UL49.5-mediated inhibition of TAP and prevents the degradation of the transporter. However, in BHV-1-infected cells, differences in UL49.5 and gM expression kinetics were seen to create a window of opportunity at the early stages of infection, during which time the UL49.5 protein can act on TAP without gM interference. Moreover, in later periods, non-gM-associated UL49.5 can be detected in addition to the UL49.5/gM complex. Thus, it has been deduced that different functions of UL49.5, editing of gM processing and inhibition of TAP, can be combined during BHV-1 infection.  相似文献   

2.
Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I-restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL 49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL 49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL 49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL 49.5 proteins block TAP as well, these data indicate that UL 49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL 49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL 49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL 49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL 49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL 49.5. Taken together, these results classify the UL 49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms.  相似文献   

3.
Cytotoxic T lymphocytes eliminate infected cells upon surface display of antigenic peptides on major histocompatibility complex I molecules. To promote immune evasion, UL49.5 of several varicelloviruses interferes with the pathway of major histocompatibility complex I antigen processing. However, the inhibition mechanism has not been elucidated yet. Within the macromolecular peptide-loading complex we identified the transporter associated with antigen processing (TAP1 and TAP2) as the prime target of UL49.5. Moreover, we determined the active oligomeric state and crucial elements of the viral factor. Remarkably, the last two residues of the cytosolic tail of UL49.5 are essential for endoplasmic reticulum (ER)-associated proteasomal degradation of TAP. However, this process strictly requires additional signaling of an upstream regulatory element in the ER lumenal domain of UL49.5. Within this new immune evasion mechanism, we show for the first time that additive elements of a small viral factor and their signaling across the ER membrane are essential for targeted degradation of a multi-subunit membrane complex.  相似文献   

4.
The transporter associated with antigen processing (TAP) directly participates in the immune response as a key component of the cytosolic peptide to major histocompatibility complex (MHC) class I protein loading machinery. This makes TAP an important target for viruses avoiding recognition by CD8+ T lymphocytes. Its activity can be suppressed by the UL49.5 protein produced by bovine herpesvirus 1, although the mechanism of this inhibition has not been understood so far.Therefore, the main goal of our study was to investigate the 3D structure of bovine herpesvirus 1 - encoded UL49.5 protein. The final structure of the inhibitor was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane mimetic environments. In NMR studies, UL49.5 was represented by two fragments: the extracellular region (residues 1–35) and the transmembrane-intracellular fragment (residues 36–75), displaying various functions during viral invasion. After the empirical structure determination, a molecular docking procedure was used to predict the complex of UL49.5 with the TAP heterodimer.Our results revealed that UL49.5 adopted a highly flexible membrane-proximal helical structure in the extracellular part. In the transmembrane region, we observed two short α-helices. Furthermore, the cytoplasmic part had an unordered structure. Finally, we propose three different orientations of UL49.5 in the complex with TAP. Our studies provide, for the first time, the experimental structural information on UL49.5 and structure-based insight in its mechanism of action which might be helpful in designing new drugs against viral infections.  相似文献   

5.
The bovine herpesvirus 1 (BHV-1) U(L)3.5 gene encodes a 126-amino-acid tegument protein. Homologs of U(L)3.5 are present in some alphaherpesviruses and have 20 to 30% overall amino acid homology that is concentrated in the N-terminal 50 amino acids. Mutant pseudorabies virus lacking U(L)3.5 is deficient in viral egress but can be complemented by BHV-1 U(L)3.5 (W. Fuchs, H. Granzow, and T. C. Mettenleiter, J. Virol. 71:8886-8892, 1997). The function of BHV-1 U(L)3.5 in BHV-1 replication is not known. To get a better understanding of its function, we sought to identify the proteins that interact with the BHV-1 U(L)3.5 protein. By using an in vitro pull-down assay and matrix-assisted laser desorption ionization mass spectrometry analysis, we identified BHV-1 alpha-transinducing factor (alphaBTIF) as a BHV-1 U(L)3. 5-interacting protein. The interaction was verified by coimmunoprecipitation from virus-infected cells using an antibody to either protein, by indirect immunofluorescence colocalization in both virus-infected and transfected cells, and by the binding of in vitro-translated proteins. In virus-infected cells, U(L)3.5 and alphaBTIF colocalized in a Golgi-like subcellular compartment late in infection. In transfected cells, they colocalized in the nucleus. Deletion of 20 amino acids from the N terminus of U(L)3.5, but not 40 amino acids from the C terminus, abolished the U(L)3.5-alphaBTIF interaction both in vitro and in vivo. The interaction between U(L)3. 5 and alphaBTIF may be important for BHV-1 maturation and regulation of alphaBTIF transactivation activity.  相似文献   

6.
TAP translocates virus-derived peptides from the cytosol into the endoplasmic reticulum, where the peptides are loaded onto MHC class I molecules. This process is crucial for the detection of virus-infected cells by CTL that recognize the MHC class I-peptide complexes at the cell surface. The varicellovirus bovine herpesvirus 1 encodes a protein, UL49.5, that acts as a potent inhibitor of TAP. UL49.5 acts in two ways, as follows: 1) by blocking conformational changes of TAP required for the translocation of peptides into the endoplasmic reticulum, and 2) by targeting TAP1 and TAP2 for proteasomal degradation. At present, it is unknown whether UL49.5 interacts with TAP1, TAP2, or both. The contribution of other members of the peptide-loading complex has not been established. Using TAP-deficient cells reconstituted with wild-type and recombinant forms of TAP1 and TAP2, TAP was defined as the prime target of UL49.5 within the peptide-loading complex. The presence of TAP1 and TAP2 was required for efficient interaction with UL49.5. Using deletion mutants of TAP1 and TAP2, the 6+6 transmembrane core complex of TAP was shown to be sufficient for UL49.5 to interact with TAP and block its function. However, UL49.5-induced inhibition of peptide transport was most efficient in cells expressing full-length TAP1 and TAP2. Inhibition of TAP by UL49.5 appeared to be independent of the presence of other peptide-loading complex components, including tapasin. These results demonstrate that UL49.5 acts directly on the 6+6 transmembrane TAP core complex of TAP by blocking essential conformational transitions required for peptide transport.  相似文献   

7.
Due to unique features, proline residues may control protein structure and function. Here, we investigated the role of 52PPQ54 residues, indicated by the recently established experimental 3D structure of bovine herpesvirus 1-encoded UL49.5 protein as forming a characteristic proline hinge motif in its N-terminal domain. UL49.5 acts as a potent inhibitor of the transporter associated with antigen processing (TAP), which alters the antiviral immune response. Mechanisms employed by UL49.5 to affect TAP remain undetermined on a molecular level. We found that mutations in the 52PPQ54 region had a vast impact on its immunomodulatory function, increasing cell surface MHC class I expression, TAP levels, and peptide transport efficiency. This inhibitory effect was specific for UL49.5 activity towards TAP but not towards the viral glycoprotein M. To get an insight into the impact of proline hinge modifications on structure and dynamics, we performed all-atom and coarse-grained molecular dynamics studies on the native protein and PPQ mutants. The results demonstrated that the proline hinge sequence with its highly rigid conformation served as an anchor into the membrane. This anchor was responsible for the structural and dynamical behavior of the whole protein, constraining the mobility of the C-terminus, increasing the mobility of the transmembrane region, and controlling the accessibility of the C-terminal residues to the cytoplasmic environment. Those features appear crucial for TAP binding and inhibition. Our findings significantly advance the structural understanding of the UL49.5 protein and its functional regions and support the importance of proline motifs for the protein structure.  相似文献   

8.
X Liang  B Chow  C Raggo    L A Babiuk 《Journal of virology》1996,70(3):1448-1454
We previously reported that the genome of bovine herpesvirus 1 (BHV-1) contains an open reading frame (ORF) homologous to the herpes simplex virus UL49.5 ORF, and as with the herpes simplex virus UL49.5 ORF, the deduced amino acid sequence of the BHV-1 UL49.5 homolog (UL49.5h) contains features characteristic of an integral membrane protein, implying that it may constitute a functional gene encoding a novel viral envelope protein. This communication reports on the identification of the BHV-1 UL49.5h gene product. By employing an antibody against a synthetic BHV-1 UL49.5h peptide and an UL49.5h gene deletion mutant, the primary product of BHV-UL49.5h gene was identified as a polypeptide with a size of approximately 9 kDa; in both infected cells and isolated virions, the UL49.5h products were found to exist in three forms; monomer, disulfide-linked homodimer, and disulfide-linked heterodimer containing a second viral protein with a size of about 39 kDa. O-Glycosidase digestion and [3H]glucosamine labelling experiments showed that the UL49.5h protein is not glycosylated. Although the deduced amino acid sequence contains putative sites for myristylation and phosphorylation, we were unable to detect either modification. Surface labelling and trypsin digestion protection experiments showed that the BHV-1 UL49.5h protein was present on the surface of infected cells and on the surface of mature virions. Nonionic detergent partition of isolated virions revealed that the UL49.5h protein is more tightly associated with the virion tegument-nucleocapsid structure than envelope protein gD. The results from this study demonstrate that the BHV-1 UL49.5h gene encodes a nonglycosylated virion envelope protein which may associate with virion internal structures by forming a complex with the 39-kDa virion structural protein.  相似文献   

9.
The human cytomegalovirus (HCMV) protein US6 inhibits the transporter associated with antigen processing (TAP). Since TAP transports antigenic peptides into the endoplasmic reticulum for binding to major histocompatibility class I molecules, inhibition of the transporter by HCMV US6 impairs the presentation of viral antigens to cytotoxic T lymphocytes. HCMV US6 inhibits ATP binding by TAP, hence depriving TAP of the energy source it requires for peptide translocation, yet the molecular basis for the interaction between US6 and TAP is poorly understood. In this study we demonstrate that residues 89 to 108 of the HCMV US6 luminal domain are required for TAP inhibition, whereas sequences that flank this region stabilize the binding of the viral protein to TAP. In parallel, we demonstrate that chimpanzee cytomegalovirus (CCMV) US6 binds, but does not inhibit, human TAP. The sequence of CCMV US6 differs from that of HCMV US6 in the region corresponding to residues 89 to 108 of the HCMV protein. The substitution of this region of CCMV US6 with the corresponding residues from HCMV US6 generates a chimeric protein that inhibits human TAP and provides further evidence for the pivotal role of residues 89 to 108 of HCMV US6 in the inhibition of TAP. On the basis of these observations, we propose that there is a hierarchy of interactions between HCMV US6 and TAP, in which residues 89 to 108 of HCMV US6 interact with and inhibit TAP, whereas other parts of the viral protein also bind to TAP and stabilize this inhibitory interaction.  相似文献   

10.
ICP47 encoded by herpes simplex virus (HSV) is a key factor in the evasion of cellular immune response against HSV-infected cells. By specific inhibition of the transporter associated with antigen processing (TAP), ICP47 prevents peptide transport into the endoplasmic reticulum and subsequent loading of major histocompatibility complex (MHC) class I molecules. Amino acid residues 3-34 have been identified as the active domain. This domain appeared to be unstructured in aqueous solution, whereas after binding to membranes an alpha-helical conformation was observed. Here, we have analyzed the structure of ICP47(2-34) in a lipidlike environment by nuclear magnetic resonance (NMR) spectroscopy. In micellar solution of deuterated sodium dodecyl sulfate, the viral TAP inhibitor adopts an ordered structure. There are two helical regions extending from residues 4 to 15 and from residues 22 to 32. Arg-16 is found on the C-terminus of the first helix, and Gly-33 serves as a terminator of the second helix. A loop between residues 17 and 21 is also evident in the structure. The relative orientation of the helices toward each other, however, could not be determined due to the paucity of NOEs from residues 18-21.  相似文献   

11.
The lifelong infection by varicelloviruses is characterized by a fine balance between the host immune response and immune evasion strategies used by these viruses. Virus-derived peptides are presented to cytotoxic T lymphocytes by major histocompatibility complex (MHC) class I molecules. The transporter associated with antigen processing (TAP) transports the peptides from the cytosol into the endoplasmic reticulum, where the loading of MHC-I molecules occurs. The varicelloviruses bovine herpesvirus 1 (BoHV-1), pseudorabies virus, and equid herpesviruses 1 and 4 have been found to encode a UL49.5 protein that inhibits TAP-mediated peptide transport. To investigate to what extent UL49.5-mediated TAP inhibition is conserved within the family of Alphaherpesvirinae, the homologs of another five varicelloviruses, one mardivirus, and one iltovirus were studied. The UL49.5 proteins of BoHV-5, bubaline herpesvirus 1, cervid herpesvirus 1, and felid herpesvirus 1 were identified as potent TAP inhibitors. The varicella-zoster virus and simian varicellovirus UL49.5 proteins fail to block TAP; this is not due to the absence of viral cofactors that might assist in this process, since cells infected with these viruses did not show reduced TAP function either. The UL49.5 homologs of the mardivirus Marek's disease virus 1 and the iltovirus infectious laryngotracheitis virus did not block TAP, suggesting that the capacity to inhibit TAP via UL49.5 has been acquired by varicelloviruses only. A phylogenetic analysis of viruses that inhibit TAP through their UL49.5 proteins reveals an interesting hereditary pattern, pointing toward the presence of this capacity in defined clades within the genus Varicellovirus.  相似文献   

12.
Herpesviruses are the most prevalent viruses that infect the human and animal body. They can escape a host immune response in numerous ways. One way is to block the TAP complex so that viral peptides, originating from proteasomal degradation, cannot be transported to the endoplasmic reticulum. As a result, a reduced number of MHC class I molecules appear on the surface of infected cells and, thus, the immune system is not efficiently activated. BoHV-1-encoded UL49.5 protein is one such TAP transporter inhibitor. This protein binds to TAP in such a way that its N-terminal fragment interacts with the loops of the TAP complex, and the C-terminus stimulates proteasomal degradation of TAP. Previous studies have indicated certain amino acid residues, especially the RRE(9–11) motif, within the helical structure of the UL49.5 N-terminal fragment, as being crucial to the protein's activity. In this work, we investigated the effects of modifications within the RRE region on the spatial structure of the UL49.5 N-terminal fragment. The introduced RRE(9–11) variations were designed to abolish or stabilize the structure of the α-helix and, consequently, to increase or decrease protein activity compared to the wild type. The terminal structure of the peptides was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane-mimetic or membrane-model environments. Our structural results show that in the RRE(9–11)AAA and E11G peptides the helical structure has been stabilized, whereas for the RRE(9–11)GGG peptide, as expected, the helix structure has partially unfolded compared to the native structure. These RRE modifications, in the context of the entire UL49.5 proteins, slightly altered their biological activity in human cells.  相似文献   

13.
The vaccinia virus B1 gene encodes a 34-kDa protein with homology to protein kinases. In L cells infected nonpermissively with mutants containing lesions in the B1 gene (ts2 and ts25), the infectious cycle arrests prior to DNA replication. In this report, we demonstrate that DNA synthesis ceases when cultures infected with these mutants at 32 degrees C are shifted to the nonpermissive temperature (39.5 degrees C) in the midst of DNA replication. We also show that B1 protein is synthesized transiently during the early phase of infection, even when the progression to later stages of gene expression is prevented. Although wild-type (wt) B1 is stable, the ts B1 proteins are markedly labile in both L and BSC40 cells at both permissive and nonpermissive temperatures. These results suggest that the ts phenotype of the mutants is complex and may in part reflect a temperature-dependent requirement for kinase activity, an induction of temperature sensitivity in B1 substrates under nonpermissive conditions, and/or ts complementation by host factors. To facilitate biochemical analyses, recombinant wt B1, ts2 B1, and ts25 B1 were produced in Escherichia coli. The wt protein was able to phosphorylate serine and threonine residues on several exogenous substrates in vitro. The activity of ts25 B1 was 3% that of the wt enzyme, and no detectable kinase activity was associated with ts2 B1. In light of the inactivity of the ts2 B1 protein in vitro and its extreme lability in vivo, we attempted to isolate a vaccinia virus B1 null mutant by targeted interruption of the B1 gene at 32 degrees C. No null mutants were isolated. These results indicate that the B1 protein kinase provides a vital function which cannot be supplied by the host or circumvented by incubation at 32 degrees C.  相似文献   

14.
The transporter associated with antigen processing (TAP) plays a pivotal role in the major histocompatibility complex (MHC) class I mediated immune response against infected or malignantly transformed cells. It belongs to the ATP-binding cassette (ABC) superfamily and consists of TAP1 (ABCB2) and TAP2 (ABCB3), each of which possesses a transmembrane and a nucleotide-binding domain (NBD). Here we describe the generation of recombinant Fv and Fab antibody fragments to human TAP from a hybridoma cell line expressing the TAP1-specific monoclonal antibody mAb148.3. The epitope of the antibody was mapped to the very last five C-terminal amino acid residues of TAP1 on solid-supported peptide arrays. The recombinant antibody fragments were heterologously expressed in Escherichia coli and purified to homogeneity from periplasmic extracts by affinity chromatography. The monoclonal and recombinant antibodies bind with nanomolar affinity to the last five C-terminal amino acid residues of TAP1 as demonstrated by ELISA and surface plasmon resonance. Strikingly, the recombinant antibody fragments confer thermal stability to the heterodimeric TAP complex. At the same time TAP is arrested in a peptide transport incompetent conformation, although ATP and peptide binding to TAP are not affected. Based on our results we suggest that the C terminus of TAP1 modulates TAP function presumably as part of the dimer interface of the NBDs.  相似文献   

15.
c-Src can disrupt the connexin 43 (Cx43) and zonula occludens-1 (ZO-1) interaction, leading to down-regulation of gap junction intercellular communication. Previously, the authors characterized the interaction of domains from these proteins with the carboxyl terminus of Cx43 (Cx43CT) and found that binding of the c-Src SH3 domain to Cx43CT disrupted the Cx43CT/ZO-1 PDZ-2 domain complex. Because Cx43 and Cx40 form heteromeric connexons and display similar mechanisms of pH regulation, the authors addressed whether Cx40CT interacts with these domains in a similar manner as Cx43CT. Nuclear magnetic resonance (NMR) data indicate that Cx40CT is an intrinsically disordered protein. NMR titrations determined that PDZ-2 affected the last 28 Cx40CT residues and SH3 shifted numerous amino-terminal Cx40CT residues. Finally, the Cx40CT/PDZ-2 complex was unaffected by SH3 and both domains interacted simultaneously with Cx40CT. This result differs from when the same experiment was performed with Cx43CT, suggesting different mechanisms of regulation exist between connexin isoforms, even when involving the same molecular partners.  相似文献   

16.
17.
The transporter associated with antigen processing (TAP) translocates antigenic peptides from the cytosol into the endoplasmic reticular lumen for subsequent loading onto major histocompatibility complex (MHC) class I molecules. These peptide-MHC complexes are inspected at the cell surface by cytotoxic T-lymphocytes. Assembly of the functional peptide transport and loading complex depends on intra- and intermolecular packing of transmembrane helices (TMs). Here, we have examined the membrane topology of human TAP1 within an assembled and functional transport complex by cysteine-scanning mutagenesis. The accessibility of single cysteine residues facing the cytosol or endoplasmic reticular lumen was probed by a minimally invasive approach using membrane-impermeable, thiol-specific fluorophores in semipermeabilized "living" cells. TAP1 contains ten transmembrane segments, which place the N and C termini in the cytosol. The transmembrane domain consists of a translocation core of six TMs, a building block conserved among most ATP-binding cassette transporters, and a unique additional N-terminal domain of four TMs, essential for tapasin binding and assembly of the peptide-loading complex. This study provides a first map of the structural organization of the TAP machinery within the macromolecular MHCI peptide-loading complex.  相似文献   

18.
Regulation of cell-cell communication by the gap junction protein connexin43 can be modulated by a variety of connexin-associating proteins. In particular, c-Src can disrupt the connexin43 (Cx43)-zonula occludens-1 (ZO-1) interaction, leading to down-regulation of gap junction intercellular communication. The binding sites for ZO-1 and c-Src correspond to widely separated Cx43 domains (approximately 100 residues apart); however, little is known about the structural modifications that may allow information to be transferred over this distance. Here, we have characterized the structure of the connexin43 carboxyl-terminal domain (Cx43CT) to assess its ability to interact with domains from ZO-1 and c-Src. NMR data indicate that the Cx43CT exists primarily as an elongated random coil, with two regions of alpha-helical structure. NMR titration experiments determined that the ZO-1 PDZ-2 domain affected the last 19 Cx43CT residues, a region larger than that reported to be required for Cx43CT-ZO-1 binding. The c-Src SH3 domain affected Cx43CT residues Lys-264-Lys-287, Ser-306-Glu-316, His-331-Phe-337, Leu-356-Val-359, and Ala-367-Ser-372. Only region Lys-264-Lys-287 contains the residues previously reported to act as an SH3 binding domain. The specificity of these interactions was verified by peptide competition experiments. Finally, we demonstrated that the SH3 domain could partially displace the Cx43CT-PDZ-2 complex. These studies represent the first structural characterization of a connexin domain when integrated in a multimolecular complex. Furthermore, we demonstrate that the structural characteristics of a disordered Cx43CT are advantageous for signaling between different binding partners that may be important in describing the mechanism of channel closure or internalization in response to pathophysiological stimuli.  相似文献   

19.
Defective variants of human immunodeficiency virus type 1 (HIV-1) protease (HIV PR) have been engineered to inhibit wild-type (wt) HIV PR activity. These variants were designed to promote the formation of heterodimers and to destabilize the formation of inactive variant homodimers of HIV-1 protease through substitutions at Asp-25, Ile-49, and Gly-50 (Babé, L. M., Rosé, J., and Craik, C. S. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 10069-10073; McPhee, F., Good, A. C., Kuntz, I. D., and Craik, C. S. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 11477-11481). The mechanism of action of these dominant-negative inhibitors was established using recombinantly expressed defective monomers. The defective monomers were refolded in vitro in the presence of wt HIV PR and showed dose-dependent inhibition of proteolytic activity. This inhibition was shown to result from the formation of inactive heterodimers between defective and wt HIV PR monomers. Heterodimer formation was detected by (i) isolating refolded, inactive heterodimers using histidine-tagged defective monomers and (ii) isolating heterodimers from bacteria coexpressing both wt and defective variants of HIV PR. Single-chain variants of HIV PR, in which the C terminus of the wt HIV PR monomer was covalently tethered to the N terminus of the defective monomer, were also expressed and analyzed. Thermal denaturation of these single-chain heterodimers using differential scanning calorimetry revealed a 1.5-7.2 degrees C greater thermal stability than single-chain wt HIV PR. The thermodynamic trend shown by these three variants mirrors their relative inhibition in provirus transfection assays. These data support the model that the effects seen both in tissue culture and in vitro arise from an increase in stability conferred on these heterodimers by interface mutations and identifies heterodimer formation as their mechanism of inhibition.  相似文献   

20.
The alphaherpesvirus envelope protein Us9 is a type II viral membrane protein that is required for anterograde spread of bovine herpesvirus 5 (BHV-5) infection from the olfactory receptor neurons to the brain. In a rabbit seizure model, Us9-deleted BHV-5 failed to invade the central nervous system (CNS) following intranasal infection. However, when injected directly into the olfactory bulb, retrograde-spread infection from the olfactory bulb (OB) to the piriform cortex and other areas connected to the OB was not affected. In contrast to BHV-5, wild-type BHV-1 failed to invade the CNS following intranasal infection. In this study, we show that mature BHV-1 Us9 is a 30- to 32-kDa protein, whereas mature BHV-5 Us9 is an 18- to 20-kDa protein. In vitro, BHV-1 Us9 is expressed at 3 h postinfection (hpi), whereas BHV-5 Us9 is expressed at 6 hpi. Despite these differences, BHV-1 Us9 not only complemented for BHV-5 Us9 and rescued the anterograde-spread defect of the BHV-5 Us9-deleted virus but conferred increased neurovirulence and neuroinvasiveness in our rabbit seizure model. Rabbits infected with BHV-5 expressing BHV-1 Us9 showed severe neurological signs at 5 days postinfection, which was 1 to 2 days earlier than BHV-5 wild-type or Us9-reverted BHV-5 virus. The data underscore the importance of both Us9 genes for virion anterograde transport and neuroinvasiveness. However, Us9 is not the determinant of the differential neuropathogenesis of BHV-1 and BHV-5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号