首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Hibernating mammals can survive several months without feeding by limiting their carbohydrate catabolism and using triacylglycerols stored in white adipose tissue (WAT) as their primary source of fuel. Here we show that a lipolytic enzyme normally found in the gut, pancreatic triacylglycerol lipase (PTL), is expressed in WAT of hibernating 13-lined ground squirrels (Spermophilus tridecemlineatus). PTL expressed in WAT is encoded by an unusual chimeric retroviral-PTL mRNA approximately 500 bases longer than the predominant PTL message found in other ground squirrel tissues. Seasonal measurements detect the chimeric mRNA and PTL enzymatic activity in WAT before and during hibernation, with both showing their lowest observed levels 1 wk after hibernation concludes in mid-March. PTL is expressed in addition to hormone-sensitive lipase, the enzyme typically responsible for hydrolysis of triacylglycerols in WAT. Because of the distinct catalytic and regulatory properties of both enzymes, this dual-triacylglycerol lipase system provides a means by which the fuel requirements of hibernating 13-lined ground squirrels can be met without interruption.  相似文献   

5.
6.
7.
Pyruvate dehydrogenase (PDH) is a vital regulatory enzyme that catalyzes the conversion of pyruvate into acetyl-CoA and connects anaerobic glycolysis to aerobic TCA cycle. Post-translational inhibition of PDH activity via three serine phosphorylation sites (pS232, pS293, and pS300) regulate the metabolic flux through the TCA cycle, decrease glucose utilization, and facilitate lipid metabolism during times of nutrient deprivation. As metabolic readjustment is necessary to survive hibernation, the purpose of this study was to explore the post-translational regulation of pyruvate dehydrogenase and the expression levels of four mitochondrial serine/threonine kinases (PDHKs), during torpor-arousal cycles in liver, heart, and skeletal muscle of 13-lined ground squirrels. A combination of Luminex multiplex technology and western immunoblotting were used to measure the protein expression levels of total PDH, three phosphorylation sites, S232, 293, 300, and the expression levels of the corresponding PDH kinases (PDHK1-4) during euthermic control, entrance, late torpor, and interbout arousal. Liver and heart showed strong inhibitory PDH regulation, indicating a possible decrease in glucose utilization and a possible preference for β-oxidation of fatty acids during periods of low temperature and starvation. On the contrary, skeletal muscle showed limited PDH regulation via phosphorylation, possibly due to alternate controls. Phosphorylation of PDH may play an important role in regulating aerobic and anaerobic metabolic responses during hibernation in the 13-lined ground squirrel.  相似文献   

8.
Summary The maximum activities of the enzymes of glycolysis of five tissues (cerebrum, heart, liver, kidney cortex and skeletal muscle) were examined in a hibernator, the Arctic ground squirrel, in both the summer-active and hibernating (winter) states. In addition, by observing through electrofocussing the appearance of variants of hepatic pyruvate kinase, an attempt was made to determine the time-course of preparation for hibernation. This process requires about 4 weeks, which is about the same as that for the preparation for emergence from hibernation. The separate tissues responded in individually characteristic fashions, although the enzymes from kidney cortex and liver tended to show a general increase and the enzymes from heart and brain showed a general decrease. The enzyme activities in skeletal muscle changed in seemingly disparate ways with some enzymes increasing in hibernation, while others decreased, and yet others remained unchanged. These results are discussed in the light of the hibernating habit of the mammal.  相似文献   

9.
10.
11.
The isoform composition of myosin light chains and the extent of their phosphorylation in skeletal and cardiac muscles of ground squirrel Citellus undulatus in different periods of hibernation were studied. Regulatory myosin light chains of skeletal muscles of hibernating ground squirrels were completely dephosphorylated, while 25% of these light chains in active animals were phosphorylated. During hibernation, a shift of isoform composition of essential and regulatory skeletal muscle myosin light chains toward slower isoforms was observed, which is evidenced by the data obtained on m. psoas and on the totality of all skeletal muscles. In the atrial myocardium of hibernating ground squirrels, ventricular myosin light chains 1 (up to 60%) were registered. In contrast, during arousal of ground squirrels, in ventricular myocardium the appearance of atrial myosin light chains 1 (up to 30%) was revealed. A possible role of posttranslation changes in myosin light chains and their isoform shifts in the hibernation scenario is discussed.  相似文献   

12.
13.
The citric acid cycle (CAC) is a central metabolic pathway that links carbohydrate, lipid, and amino acid metabolism in the mitochondria and, hence, is a crucial target for metabolic regulation. The α-ketoglutarate dehydrogenase complex (KGDC) is the rate-limiting step of the CAC, the three enzymes of the complex catalyzing the transformation of α-ketoglutarate to succinyl-CoA with the release of CO2 and reduction of NAD to NADH. During hibernation, the metabolic rate of small mammals is suppressed, in part due to reduced body temperature but also active controls that suppress aerobic metabolism. The present study examined KGDC regulation during hibernation in skeletal muscle of the Richardson's ground squirrel (Urocitellus richardsonii). The KGDC was partially purified from skeletal muscle of euthermic and hibernating ground squirrels and kinetic properties were evaluated at 5°, 22°, and 37 °C. KGDC from hibernator muscle at all temperatures compared with euthermic controls exhibited a decreased affinity for CoA as well as reduced activation by Ca2+ ions at 5 °C from both euthermic and hibernating conditions. Co-immunoprecipitation was employed to isolate the E1, E2 and E3 enzymes of the complex (OGDH, DLST, DLD) to allow immunoblot analysis of post-translational modifications (PTMs) of each enzyme. The results showed elevated phospho-tyrosine content on all three enzymes during hibernation as well as increased ADP-ribosylation and succinylation of hibernator OGDH. Taken together these results show that the KGDC is regulated by posttranslational modifications and temperature effects to reorganize enzyme activity and mitochondrial function to aid suppression of mitochondrial activity during hibernation.  相似文献   

14.
A variety of mammals employ torpor as an energy-saving strategy in environments of marginal or severe stress either on a daily basis during their inactive period or on a seasonal basis during prolonged...  相似文献   

15.
Gene up-regulation in heart during mammalian hibernation   总被引:3,自引:0,他引:3  
  相似文献   

16.
Peripheral vascular resistance in the ground squirrel (Spermophilus tridecemlineatus) increases when the animal enters hibernation. The goals of this study were to determine if a change in vascular reactivity contributes to this hemodynamic response, and to compare the effects of temperature on vascular responsiveness in a hibernator (ground squirrel) and a nonhibernating mammal (rat). Helically cut strips of aortae and femoral arteries were mounted in organ chambers (37 degrees C) and isometric contractions were recorded. The arteries were made to contract in response to exogenous norepinephrine (5.9 X 10(-7) M). Cooling the organ chamber (11 degrees C) potentiated contractions to norepinephrine (5-15% increase) in ground squirrel femoral arteries but depressed those (80-100% decrease) in ground squirrel aortae and rat aortae and femoral arteries. Contractions in response to depolarizing concentrations of potassium in ground squirrel femoral arteries were depressed by cooling (11 degrees C), suggesting that the augmented response to norepinephrine at low temperature is specific. Treatment with indomethacin, propanolol, and ouabain did not alter the potentiating effect of temperature on contractions to norepinephrine in ground squirrel femoral arteries. Apparently, the potentiation is not related to prostaglandins generated in the vascular wall, to blockade of beta-adrenergic receptors, nor to inhibition of the electrogenic sodium pump. The observations are consistent with the hypothesis that a change in vascular responsiveness contributes to the regional control of blood flow in hibernation. This adaptive response is specific in that it does not occur in the aorta of the ground squirrel and the response is not present in the vasculature of the rat, a nonhibernating mammal.  相似文献   

17.
Any alteration in oxidative metabolism is coupled with a corresponding response by an antioxidant defense (AD) in appropriate subcellular compartments. Seasonal hibernators pass through circannual metabolic adaptations that allow them to either maintain euthermy (cold acclimation) or enter winter torpor with body temperature falling to low values. The present study aimed to investigate the corresponding pattern of AD enzyme protein expressions associated with these strategies in the main tissues involved in whole animal energy homeostasis: brown and white adipose tissues (BAT and WAT, respectively), liver, and skeletal muscle. European ground squirrels (Spermophilus citellus) were exposed to low temperature (4 ± 1 °C) and then divided into two groups: (1) animals fell into torpor (hibernating group) and (2) animals stayed active and euthermic for 1, 3, 7, 12, or 21 days (cold-exposed group). We examined the effects of cold acclimation and hibernation on the tissue-dependent protein expression of four enzymes which catalyze the two-step detoxification of superoxide to water: superoxide dismutase 1 and 2 (SOD 1 and 2), catalase (CAT), and glutathione peroxidase (GSH-Px). The results showed that hibernation induced an increase of AD enzyme protein expressions in BAT and skeletal muscle. However, AD enzyme contents in liver were largely unaffected during torpor. Under these conditions, different WAT depots responded by elevating the amounts of specific enzymes, as follows: SOD 1 in retroperitoneal WAT, GSH-Px in gonadal WAT, and CAT in subcutaneous WAT. Similar perturbations of AD enzymes contents were seen in all tissues during cold acclimation, often in a time-dependent manner. It can be concluded that BAT and muscle AD capacity undergo the most dramatic changes during both cold acclimation and hibernation, while liver is relatively unaffected by either condition. Additionally, this study provides a basis for further metabolic study that will illuminate the causes of these tissue-specific AD responses, particularly the novel finding of distinct responses by different WAT depots in hibernators.  相似文献   

18.
We compared liver and skeletal muscle mitochondrial function among activity states to characterize regulated reversible metabolic suppression in the mammalian hibernator Spermophilus tridecemlineatus. At 37 degrees C, succinate oxidation was 70% lower in the liver mitochondria from torpid animals than in those from summer-active animals or in animals arousing from torpor. Respiration was very sensitive to temperature (Q(10) 5.8-9.8), and when measured at 25 degrees or 5 degrees C there was no difference among the three states. Liver mitochondria from summer-active animals oxidized pyruvate and beta -hydroxybutyrate at higher rates than those from torpid animals, and flux through complex 4 of the electron transport chain was about three- and fivefold higher than flux through complexes 2-4 and complexes 1-4, respectively. In the hibernating and arousing animals there was no difference in flux through complexes 2-4 and complex 4, suggesting a downregulation of cytochrome c oxidase in liver mitochondria during the hibernation season. Muscle mitochondrial respiration did not differ between the torpid and summer-active states in any of the parameters measured. The data support a regulated, reversible decrease of liver (but not muscle) mitochondrial oxidative phosphorylation in hibernating ground squirrels.  相似文献   

19.
The phospholipid composition of ground squirrel heart muscle changes during hibernation: more lysoglycerophosphatides are found in the hibernating state than in the active state. Phase transitions inferred from spin label motion occur in the usual manner typical of mammalian mitochondria for the mitochondria and mitochondrial lipids from active squirrels. However, a conspicuous absence of a spin label-detectable phase transition is observed in equivalent preparations from hibernating animals. The addition of lysolecithin to preparations from active squirrels removes the break and induces a straight line in the Arrhenius plot. The lack of a spin label-detectable phase transition in hibernating animals, therefore, is attributed to an increased content of lysoglycerophosphatides present in the phospholipids during hibernation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号