首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transthyretin (TTR) is a human disease-associated amyloidogenic protein that has been implicated in senile systemic amyloidosis (SSA) and familial amyloidotic polyneuropathy (FAP). FAP typically results in severe and early-onset disease, and the only therapy established so far is liver transplantation; thus, developing new strategies for treating FAP is of paramount interest. Clusterin has recently been proposed to play a role as an extracellular molecular chaperone, affecting the fibril formation of amyloidogenic proteins. The ability of clusterin to influence amyloid fibril formation prompted us to investigate whether clusterin is capable of inhibiting TTR amyloidosis. Here, we report that clusterin strongly interacts with wild-type TTR and TTR variants V30M and L55P under acidic conditions, and blocks the amyloid fibril formation of TTR variants. In particular, the amyloid fibril formation of V30M TTR in the presence of clusterin is reduced to level similar to wild-type TTR. We also demonstrated that clusterin is an effective inhibitor of L55P TTR amyloidosis, the most aggressive form of TTR diseases. The mechanism by which clusterin inhibits TTR amyloidosis appears to be through stabilization of TTR tetrameric structure. These findings suggest the possibility of using clusterin as a therapeutic agent for TTR amyloidosis.  相似文献   

2.
Only amyloidogenic intermediates of transthyretin induce apoptosis   总被引:2,自引:0,他引:2  
In diseases like Alzheimer's disease and familial amyloidotic polyneuropathy (FAP) amyloid deposits co-localize with areas of neurodegeneration. FAP is associated with mutations of the plasma protein transthyretin (TTR). We can here show an apoptotic effect of amyloidogenic mutants of TTR on a human neuroblastoma cell line. Toxicity could be blocked by catalase indicating a free oxygen radical dependent mechanism. The toxic effect was dependent on the state of aggregation and unexpectedly mature fibrils from FAP-patients who failed to exert an apoptotic response. Morphological studies revealed a correlation between toxicity and the presence of immature amyloid. Thus, we can show that toxicity is associated with early stages of fibril formation and propose that mature full-length fibrils represent an inert end stage, which might serve as a rescue mechanism.  相似文献   

3.
Familial amyloidotic polyneuropathy (FAP) is a hereditary systemic amyloidosis caused by dominantly acting missense mutations in the gene encoding transthyretin (TTR). The most common mutant TTR is of the Val30Met type, which results from a point mutation. Because the major constituent of amyloid fibrils is mutant TTR, agents that selectively suppress mutant TTR expression could be powerful therapeutic tools. This study has been performed to evaluate the use of small interfering RNAs (siRNAs) for the selective silencing of mutant Val30Met TTR in cell culture systems. We have identified an siRNA that specifically inhibits mutant, but not wild-type, TTR expression even in cells expressing both alleles. Thus, this siRNA-based approach may have potential for the gene therapy of FAP.  相似文献   

4.
Familial amyloid polyneuropathy (FAP) is an autosomal dominant disease characterized by deposition of amyloid related to the presence of mutations in the transthyretin (TTR) gene. TTR is mainly synthesized in liver, choroid plexuses of brain and pancreas and secreted to plasma and cerebrospinal fluid (CSF). Although it possesses a sequon for N‐glycosylation N‐D‐S at position 98, it is not secreted as a glycoprotein. The most common FAP‐associated mutation is TTR V30M. In a screening for monoclonal antibodies developed against an amyloidogenic TTR form, we detected a distinct TTR with slower electrophoretic mobility in Western of plasma from carriers of the V30M mutation, not present in normal plasma. Mass spectrometry analyses of this slower migrating TTR (SMT) identified both wild‐type and mutant V30M; SMT was undetectable upon N‐glycosidase F treatment. Furthermore, SMT readily disappeared in the plasma of V30M ‐ FAP patients after liver transplantation and appeared in plasma of transplanted domino individuals that received a V30M liver. SMT was also detected in plasma, but not in CSF of transgenic mice for the human V30M mutation. A hepatoma cell line transduced to express human V30M did not present the SMT modification in secretion media. Glycosylated TTR was absent in fibrils extracted from human kidney V30M autopsy tissue or in TTR aggregates extracted from the intestine of human TTR transgenic mice. Studies on the metabolism of this novel, glycosylated TTR secreted from FAP liver are warranted to provide new mechanisms in protein quality control and etiopathogenesis of the disease.  相似文献   

5.
Amyloid fibril formation and deposition is a common feature of a wide range of fatal diseases including spongiform encephalopathies, Alzheimer's disease, and familial amyloidotic polyneuropathies (FAP), among many others. In certain forms of FAP, the amyloid fibrils are mostly constituted by variants of transthyretin (TTR), a homotetrameric plasma protein. Recently, we showed that transthyretin in solution may undergo dissociation to a non-native monomer, even under close to physiological conditions of temperature, pH, ionic strength, and protein concentration. We also showed that this non-native monomer is a compact structure, does not behave as a molten globule, and may lead to the formation of partially unfolded monomeric species and high molecular mass soluble aggregates (Quintas, A., Saraiva, M. J. M., and Brito, R. M. M. (1999) J. Biol. Chem. 274, 32943-32949). Here, based on aging experiments of tetrameric TTR and chemically induced protein unfolding experiments of the non-native monomeric forms, we show that tetramer dissociation and partial unfolding of the monomer precedes amyloid fibril formation. We also show that TTR variants with the least thermodynamically stable non-native monomer produce the largest amount of partially unfolded monomeric species and soluble aggregates under conditions that are close to physiological. Additionally, the soluble aggregates formed by the amyloidogenic TTR variants showed morphological and thioflavin-T fluorescence properties characteristic of amyloid. These results allowed us to conclude that amyloid fibril formation by some TTR variants might be triggered by tetramer dissociation to a compact non-native monomer with low conformational stability, which originates partially unfolded monomeric species with a high tendency for ordered aggregation into amyloid fibrils. Thus, partial unfolding and conformational fluctuations of molecular species with marginal thermodynamic stability may play a crucial role on amyloid formation in vivo.  相似文献   

6.
Hou X  Aguilar MI  Small DH 《The FEBS journal》2007,274(7):1637-1650
Familial amyloidotic polyneuropathy (FAP) is an inherited autosomal dominant disease that is commonly caused by accumulation of deposits of transthyretin (TTR) amyloid around peripheral nerves. The only effective treatment for FAP is liver transplantation. However, recent studies on TTR aggregation provide clues to the mechanism of the molecular pathogenesis of FAP and suggest new avenues for therapeutic intervention. It is increasingly recognized that there are common features of a number of protein-misfolding diseases that can lead to neurodegeneration. As for other amyloidogenic proteins, the most toxic forms of aggregated TTR are likely to be the low-molecular-mass diffusible species, and there is increasing evidence that this toxicity is mediated by disturbances in calcium homeostasis. This article reviews what is already known about the mechanism of TTR aggregation in FAP and describes how recent discoveries in other areas of amyloid research, particularly Alzheimer's disease, provide clues to the molecular pathogenesis of FAP.  相似文献   

7.
A variant of human transthyretin(TTR, prealbumin) with methionine for valine substitution at position 30 is a major component of amyloid fibrils found in patients of familial amyloidotic polyneuropathy(FAP) type I, an autosomal dominant genetic disease. But the molecular nature of the variant TTR has been obscure, because most of plasma TTR from FAP patients is a mixture of variant and wild type TTR and no pure preparation of the variant has been available. For this reason, we constructed a system in which the variant type TTR was efficiently synthesized. In this system, the recombinant variant TTR was first synthesized as a fusion protein with E. coli outer membrane protein A (ompA) signal peptide, processed to eliminate the signal peptide and finally secreted to the culture medium. The final concentration of the recombinant variant TTR in the medium was about 5 mg/l. SDS polyacrylamide gel electrophoresis and gel filtration analysis suggested that the recombinant variant TTR can form tetramer as seen for native one. Purification of the protein was accomplished by only two steps of chromatography.  相似文献   

8.
Transthyretin (TTR) is a homotetrameric plasma protein with amyloidogenic properties that has been linked to the development of familial amyloidotic polyneuropathy (FAP), familial amyloidotic cardiomyopathy, and senile systemic amyloidosis. The in vivo role of TTR is associated with transport of thyroxine hormone T4 and retinol-binding protein. Loss of the tetrameric integrity of TTR is a rate-limiting step in the process of TTR amyloid formation, and ligands with the ability to bind within the thyroxin binding site (TBS) can stabilize the tetramer, a feature that is currently used as a therapeutic approach for FAP. Several different flavonoids have recently been identified that impair amyloid formation. The flavonoid luteolin shows therapeutic potential with low incidence of unwanted side effects. In this work, we show that luteolin effectively attenuates the cytotoxic response to TTR in cultured neuronal cells and rescues the phenotype of a Drosophila melanogaster model of FAP. The plant-derived luteolin analogue cynaroside has a glucoside group in position 7 of the flavone A-ring and as opposed to luteolin is unable to stabilize TTR tetramers and thus prevents a cytotoxic effect. We generated high-resolution crystal-structures of both TTR wild type and the amyloidogenic mutant V30M in complex with luteolin. The results show that the A-ring of luteolin, in contrast to what was previously suggested, is buried within the TBS, consequently explaining the lack of activity from cynaroside. The flavonoids represent an interesting group of drug candidates for TTR amyloidosis. The present investigation shows the potential of luteolin as a stabilizer of TTR in vivo. We also show an alternative orientation of luteolin within the TBS which could represent a general mode of binding of flavonoids to TTR and is of importance concerning the future design of tetramer stabilizing drugs.  相似文献   

9.
Type I familial amyloidotic polyneuropathy (FAP) results from the systemic deposition of a plasma transthyretin (TTR) variant with a Val----Met change at position 30. In an attempt to establish a model of this disease, we generated transgenic mice producing the variant TTR. A DNA fragment containing the mouse metallothionein-I promoter fused to the structural gene coding for the human TTR variant was microinjected into fertilized mouse eggs. Among 72 mice that developed from these eggs, ten carried the fusion gene and three of these showed significant concentrations of the variant TTR in their serum. These mice may be useful in elucidating the pathogenesis of FAP and in establishing a therapy for this intractable disorder.  相似文献   

10.
Familial amyloidotic polyneuropathy is a neurodegenerative disorder characterized by systemic extracellular deposition of transthyretin (TTR) amyloid fibrils. The latter have been proposed to trigger neurodegeneration through engagement of the receptor for advanced glycation end products (RAGE). Here we show that TTR interaction with RAGE is conserved across mouse and human species and is not dependent on RAGE glycosylation. Moreover, strand D of TTR structure seems important for the TTR-RAGE interaction as well as a motif in RAGE (residues 102-118) located within the V-domain; this motif suppressed TTR aggregate-induced cytotoxicity in cell culture.  相似文献   

11.
Summary Familial amyloidotic polyneuropathy (FAP) is an autosomal dominant genetic disease characterized by systemic accumulation of amyloid fibrils. A major component of FAP anyloid has been identified as variant transthyretin (TTR, also called prealbumin). In particular, a variant with the substitution 30ValMet has been commonly found in FAP of various ethnic groups. To understand the origin and spread of the ValMet mutation, we analyzed DNA polymorphisms associated with the TTR gene in six Japanese FAP families and several Portuguese FAP patients. Three distinct haplotypes associated with the ValMet mutation were identified in Japanese FAP families, one of which was also found in Portuguese patients. On the other hand, it was found that the ValMet mutation can be explained by a C-T transition at the CpG dinucleotide sequence of a mutation hot spot. Thus, our findings indicate that the ValMet mutation has probably recurred in the human population, to generate FAP families of independent origin.  相似文献   

12.
Patients with familial amyloid polyneuropathy (FAP) are now cured by liver transplantation, but cardiac amyloidosis would further progress even after liver transplantation in some patients. To clarify the pathological mechanism of the progress of cardiac amyloidosis in FAP, we investigated cardiac tissues obtained from 6 FAP patients with 3 different types of TTR mutations. One of them had undergone liver transplantation and one year later died of cardiac amyloidosis. We determined clinical severity of cardiac involvement of those patients and characterized amyloid fibril proteins depositing in their cardiac muscles by immunohistochemistry, mass spectrometry and isoelectric focusing. All the patients had cardiac dysfunction and increased cardiac weight. Diffuse deposition of TTR-related amyloid was seen in their myocardium on microscopic examination. Amyloid fibrils of the heart were composed of wild-type TTR as well as variant TTR at a ratio of about 1:1 in 5 patients without liver transplantation. In the patient with a transplanted liver, about 80% of the cardiac amyloid consisted of wild-type TTR. Wild-type TTR contributes greatly to the development of amyloid deposition in the heart of FAP patients regardless of the types of TTR mutations.  相似文献   

13.
M J Saraiva 《FEBS letters》2001,498(2-3):201-203
Over 70 transthyretin (TTR) mutations have been associated with hereditary amyloidoses, which are all autosomal dominant disorders with adult age of onset. TTR is the main constituent of amyloid that deposits preferentially in peripheral nerve giving rise to familial amyloid polyneuropathy (FAP), or in the heart leading to familial amyloid cardiomyopathy. Since the beginning of this decade the central question of these types of amyloidoses has been why TTR is an amyloidogenic protein with clinically heterogeneous pathogenic consequences. As a result of amino acid substitutions, conformational changes occur in the molecule, leading to weaker subunit interactions of the tetrameric structure as revealed by X-ray studies of some amyloidogenic mutants. Modified soluble tetramers exposing cryptic epitopes seem to circulate in FAP patients as evidenced by antibody probes recognizing specifically TTR amyloid fibrils, but what triggers dissociation into monomeric and oligomeric intermediates of amyloid fibrils is largely unknown. Avoiding tetramer dissociation and disrupting amyloid fibrils are possible avenues of therapeutic intervention based on current molecular knowledge of TTR amyloidogenesis and fibril structure.  相似文献   

14.
Familial amyloidotic polyneuropathy (FAP) is associated with the deposition of an abnormal transthyretin (TTR) molecule. We have studied DNA from a family of Greek descent with FAP. The proband's TTR gene was asymmetrically amplified by using PCR and then was sequenced directly, to reveal a cytosine-for-guanine substitution in codon 36. This substitution removes a recognition site for endonuclease Fnu4HI. Allele-specific PCR was employed for diagnosis of the mutation. The predicted amino acid change of alanine to proline at position 36 was confirmed by protein sequencing of the proband's plasma TTR.  相似文献   

15.
Familial amyloidotic polyneuropathy (FAP) is a neurodegenerative disorder characterized by the extracellular deposition of transthyretin (TTR), especially in the PNS. Given the invasiveness of nerve biopsy, salivary glands (SG) from FAP patients were used previously in microarray analysis; mitogen-activated protein (MAP) kinase phosphatase 1 (MKP-1) was down-regulated in FAP. Results were validated by RT-PCR and immunohistochemistry both in SG and in nerve biopsies of different stages of disease progression. MKP-3 was also down-regulated in FAP SG biopsies. Given the relationship between MKPs and MAPKs, the latter were investigated. Only extracellular signal-regulated kinases 1/2 (ERK1/2) displayed increased activation in FAP SG and nerves. ERK1/2 kinase (MEK1/2) activation was also up-regulated in FAP nerves. In addition, an FAP transgenic mouse model revealed increased ERK1/2 activation in peripheral nerve affected with TTR deposition when compared to control animals. Cultured rat Schwannoma cell line treatment with TTR aggregates stimulated ERK1/2 activation, which was partially mediated by the receptor for advanced glycation end-products (RAGE). Moreover, caspase-3 activation triggered by TTR aggregates was abrogated by U0126, a MEK1/2 inhibitor, indicating that ERK1/2 activation is essential for TTR aggregates-induced cytotoxicity. Taken together, these data suggest that abnormally sustained activation of ERK in FAP may represent an early signaling cascade leading to neurodegeneration.  相似文献   

16.

Background

Familial amyloidotic polyneuropathy (FAP) is a neurodegenerative disease caused by the extracellular deposition of mutant transthyretin (TTR), with special involvement of the peripheral nervous system (PNS). Currently, hepatic transplantation is considered the most efficient therapy to halt the progression of clinical symptoms in FAP since more than 95% of TTR is produced by the liver. However, less invasive and more reliable therapeutic approaches have been proposed for FAP therapy, namely based on drugs acting as inhibitors of amyloid formation or as amyloid disruptors. We have recently reported that epigallocatechin-3-gallate (EGCG), the most abundant catechin in green tea, is able to inhibit TTR aggregation and fibril formation, “in vitro” and in a cellular system, and is also able to disrupt pre-formed amyloid fibrils “in vitro”.

Methodology and Principal Findings

In the present study, we assessed the effect of EGCG subchronic administration on TTR amyloidogenesis “in vivo”, using well characterized animal models for FAP. Semiquantitative immunohistochemistry (SQ-IHC) and Western blot analysis of mice tissues after treatment demonstrated that EGCG inhibits TTR toxic aggregates deposition in about 50% along the gastrointestinal tract (GI) and peripheral nervous system (PNS). Moreover EGCG treatment considerably lowered levels of several biomarkers associated with non-fibrillar TTR deposition, namely endoplasmic reticulum (ER)-stress, protein oxidation and apoptosis markers. Treatment of old FAP mice with EGCG resulted not only in the decrease of non-fibrillar TTR deposition but also in disaggregation of amyloid deposits. Consistently, matrix metalloproteinase (MMP)-9 and serum amyloid P component (SAP), both markers of amyloid deposition, were also found reduced in treated old FAP mice.

Conclusions and Significance

The dual effect of EGCG both as TTR aggregation inhibitor and amyloid fibril disruptor together with the high tolerability and low toxicity of EGCG in humans, point towards the potential use of this compound, or optimized derivatives, in the treatment of TTR-related amyloidoses.  相似文献   

17.
Transthyretin (TTR) is a plasma protein interacting with thyroxine T4 and retinol binding protein (RBP). Several variants of TTR with single amino acid substitutions have been identified as the major components of the amyloid fibrils of familial amyloidotic polyneuropathy (FAP), a fetal, autosomal dominant genetic disease. The elucidation of the molecular nature of the variants distinct from that of the wild-type TTR is crucial for understanding the amyloidogenesis in FAP, but our understanding is very poor mainly because of the unavailability of pure variant TTRs. In the present study, we used an Escherichia coli OmpA secretion vector (Ghrayeb et al., 1984) and achieved an effective production of the variant TTRs related to FAP including Met-30, Ile-33, Ala-60, Tyr-77, Met-111, and Ile-122 types. The variant TTRs produced in this system were efficiently secreted to the culture media. The chemical analysis showed that the secreted TTR (Met-30 type) has the same N-terminus as the native one. IEF analyses also indicated that the secreted product is properly processed as assessed by its pI. Furthermore, the secreted TTR was shown to have biological activities, namely, the thyroxin binding activity and the ability to associate with retinol binding protein, indicating that the secreted TTR polypeptide is properly folded. The present work also demonstrated that the processing/secretion of the recombinant TTR molecules in E. coli was strongly affected by single amino acid substitutions.  相似文献   

18.
TTR (transthyretin), a β-sheet-rich protein, is the precursor protein of familial amyloidotic polyneuropathy and senile systemic amyloidosis. Although it has been widely accepted that protein misfolding of the monomeric form of TTR is a rate-limiting step for amyloid formation, no effective therapy targeting this misfolding step is available. In the present study, we focused on CyDs (cyclodextrins), cyclic oligosaccharides composed of glucose units, and reported the inhibitory effect of CyDs on TTR amyloid formation. Of various branched β-CyDs, GUG-β-CyD [6-O-α-(4-O-α-D-glucuronyl)-D-glucosyl-β-CyD] showed potent inhibition of TTR amyloid formation. Far-UV CD spectra analysis showed that GUG-β-CyD reduced the conformational change of TTR in the process of amyloid formation. In addition, tryptophan fluorescence and 1H-NMR spectroscopy analyses indicated that GUG-β-CyD stabilized the TTR conformation via interaction with the hydrophobic amino acids of TTR, especially tryptophan. Moreover, GUG-β-CyD exerted its inhibitory effect by reducing TTR deposition in transgenic rats possessing a human variant TTR gene in vivo. Collectively, these results indicate that GUG-β-CyD may inhibit TTR misfolding by stabilizing its conformation, which, in turn, suppresses TTR amyloid formation.  相似文献   

19.
Familial amyloidotic polyneuropathy (FAP) is strictly associated with point mutations of transthyretin (TTR) protein. The Tyr116-->Ser (Y116S) mutant TTR is an important amyloidogenic variant responsible for FAP. Structural dynamics of monomeric TR and its mutant (Y116S) may give some clue relating to amyloid formation. In this study, molecular dynamic simulation at 310 K has been performed on wild-type and mutant (Y116S) 'ITR monomer, which can provide the molecular insight of structural transition in the inner and outer strand of the protein. Results show that mutation in the H-strand (Tyr116-->Ser) leads to disruption of secondary structure and H-bonding pattern of some important parts of the inner DAGH-sheet of the protein. Especially, the residues T106, A108, L110 of G-strand, S117 and T119 of H-strand are affected, which are involved in the binding of thyroxin hormone. This unfolding of mutant structure during dynamics may cause instability in the protein and thus induce amyloidgenesis.  相似文献   

20.
Transthyretin (TTR) is an amyloidogenic protein whose aggregation is responsible for numerous familial amyloid diseases, the exact phenotype being dependent on the sequence deposited. Many familial disease variants display decreased stability in vitro, and early onset pathology in vivo. Only subtle structural differences were observed upon crystallographic comparison of the disease-associated variants to the T119M interallelic trans-suppressor. Herein three human TTR single amino acid variant homotetramers including two familial amyloidotic polyneuropathy (FAP) causing variants (V30M and L55P), and a suppressor variant T119M (known to protect V30M carriers from disease by trans-suppression) were investigated in a residue-specific fashion by monitoring (2)H-(1)H exchange employing NMR spectroscopy. The measured protection factors for slowly exchanging amide hydrogen atoms reveal destabilization of the protein core in the FAP variants, the core consisting of strands A, B, E and G and the loop between strands A and B. The same core exhibits much slower exchange in the suppressor variant. Accelerated exchange rates were observed for residues at the subunit interfaces in L55P, but not in the T119M or V30M TTR. The correlation between destabilization of the TTR core strands and the tendency for amyloid formation supports the view that these strands are involved in amyloidogenicity, consistent with previous (2)H-(1)H exchange analysis of the WT-TTR amyloidogenic intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号