首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salmonella enterica serovar Typhimurium encodes two type III secretion systems (TTSSs) within pathogenicity island 1 (SPI-1) and island 2 (SPI-2). These type III protein secretion and translocation systems transport a panel of bacterial effector proteins across both the bacterial and the host cell membranes to promote bacterial entry and subsequent survival inside host cells. Effector proteins contain secretion and translocation signals that are often located at their N termini. We have developed a ruffling-based translocation reporter system that uses the secretion- and translocation-deficient catalytic domain of SopE, SopE78-240, as a reporter. Using this assay, we determined that the N-terminal 45 amino acid residues of Salmonella SopA are necessary and sufficient for directing its secretion and translocation through the SPI-1 TTSS. SopA1-45, but not SopA1-44, is also able to bind to its chaperone, InvB, indicating that SPI-1 type III secretion and translocation of SopA require its chaperone.  相似文献   

2.
Salmonella harbors two type III secretion systems, T3SS1 and T3SS2, encoded on the pathogenicity islands SPI1 and SPI2, respectively. Several effector proteins are secreted through these systems into the eukaryotic host cells. PipB2 is a T3SS2 effector that contributes to the modulation of kinesin-1 motor complex activity. Here, we show that PipB2 is also a substrate of T3SS1. This result was obtained infecting human epithelial HeLa cells for 2 h and was confirmed in murine RAW264.7 macrophages, and rat NRK fibroblasts. Analysis at different time points after infection revealed that translocation of PipB2 is T3SS1-dependent in epithelial cells throughout the infection. In contrast, translocation into macrophages is T3SS1-dependent during invasion but T3SS2-dependent at later time points. The N-terminal 10 amino acid residues contain the signal necessary for translocation through both systems. These results confirm the functional overlap between these virulence-related secretion systems and suggest a new role for the effector PipB2.  相似文献   

3.
The type III secretion system (TTSS) encoded by Salmonella Pathogenicity Island 2 (SPI-2) is required for systemic infection and intracellular replication of Salmonella enterica serovar Typhimurium. The SPI-2 TTSS is activated after internalization of bacteria by host cells, and translocates effector proteins into and across the vacuolar membrane, where they interfere with several host cell functions. Here, we investigated the function of SsaM, a small protein encoded within SPI-2. An ssaM deletion mutant had virulence and intracellular replication defects comparable to those of a SPI-2 TTSS null mutant. Although the ssaM mutant was able to secrete the effector protein SseJ in vitro, it failed to translocate SseJ into host cells, and to secrete the translocon proteins SseB, SseC and SseD in vitro. This phenotype is similar to that of a strain carrying a mutation in the SPI-2 gene spiC, whose product is reported to be an effector involved in trafficking of the Salmonella vacuole in macrophages. Both ssaM and spiC mutants were found to oversecrete the SPI-2 effector proteins SseJ and PipB in vitro. Fractionation assays and immunofluorescence microscopy were used to investigate the localization of SsaM and SpiC in macrophages. No evidence for translocation of these proteins was obtained. The similar phenotypes of the ssaM and spiC mutants suggested that they might be involved in the same function. Pull-down and co-immune precipitation experiments showed that SpiC and SsaM interact within the bacterial cell. We propose that a complex involving SsaM and SpiC distinguishes between translocators and effector proteins, and controls their ordered secretion through the SPI-2 TTSS.  相似文献   

4.
5.
Type III secretion systems (TTSS) are used by many Gram-negative pathogens for transporting effector proteins into eukaryotic host cells. Two modes of type III effector protein transport can be distinguished: transport into the surrounding medium (secretion) and cell-contact induced injection of effector proteins directly into the host cell cytosol (translocation). Two domains within the N-terminal regions of effector proteins determine the mode of transport. The amino terminal approximately 20 amino acids (N-terminal secretion signal, NSS) mediate secretion. In contrast, translocation generally requires the NSS, the adjacent approximately 100 amino acids (chaperone binding domain, CBD) and binding of the cognate chaperone to this CBD. TTSS are phylogenetically related to flagellar systems. Because both systems are expressed in Salmonella Typhimurium, correct effector protein transport involves at least two decisions: transport via the Salmonella pathogenicity island 1 (SPI-1) but not the flagellar TTSS (= specificity) and translocation into the host cell instead of secretion into the surrounding media (= transport mode). The mechanisms guiding these decisions are poorly understood. We have studied the S. Typhimurium effector protein SopE, which is specifically transported via the SPI-1 TTSS. Secretion and translocation strictly require the cognate chaperone InvB. Alanine replacement of amino acids 30-42 (and to some extent 44-54) abolished tight InvB binding, abolished translocation into the host cell and led to secretion of SopE via both, the flagellar and the SPI-1 TTSS. In clear contrast to wild-type SopE, secretion of SopE(Ala30-42) and SopE(Ala44-54) via the SPI-1 and the flagellar export system did not require InvB. These data reveal a novel function of the CBD: the CBD inhibits secretion of wild-type SopE via the flagellar and the SPI-1 TTSS in the absence of the chaperone InvB. Our data provide new insights into mechanisms ensuring specific effector protein transport by TTSS.  相似文献   

6.
The type III secretion system of Salmonella pathogenicity island 2 (SPI-2) is required for bacterial replication inside macrophages. SseB has been considered a putative target of the secretion system on the basis of its similarity with EspA, a protein secreted by the type III secretion system of enteropathogenic Escherichia coli (EPEC). EspA forms a filamentous structure on the bacterial cell surface and is involved in translocation of proteins into the eukaryotic cytosol. In this paper, we show that SseB is a secreted protein that associates with the surface of the bacterial cell and might, therefore, also be required for delivery of SPI-2 effector proteins to the eukaryotic cell cytosol. SseB begins to accumulate inside the bacterial cell when the culture enters early stationary phase. However, SseB is only secreted if the bacteria are grown at low pH or if the pH is shifted after growth from 7.0 to below pH 5.0. The secretion occurs within minutes of acidification and is totally dependent on a functional SPI-2 type III secretion system. As the pH of the Salmonella-containing vacuole inside host cells has been shown to acidify to between pH 4.0 and 5.0, and as SPI-2 gene expression occurs inside host cells, low pH might be a physiological stimulus for SPI-2-mediated secretion in vivo.  相似文献   

7.
Salmonella enterica has two pathogenicity islands encoding separate type three secretion systems (T3SS). Proteins secreted through these systems facilitate invasion and survival. After entry, Salmonella reside within a membrane bound vacuole, the Salmonella containing vacuole (SCV), where translocation of a second set of effectors by the Salmonella pathogenicity island 2 (SPI-2) T3SS is initiated. SPI-2 secretion in vitro can be induced by conditions that mimic the Salmonella containing vacuole. Utilising high-throughput mass spectrometry, we mapped the surface-attached proteome of S. Typhimurium SL1344 grown in vitro under SPI-2-inducing conditions and identified 108 proteins; using secretion signal prediction software, 43% of proteins identified contained a signal sequence. Of these proteins, 13 were known secreted effector proteins including SPI-2 effector proteins SseB, SseC, SseD, SseL, PipB2 and SteC, although surprisingly five were SPI-1 proteins, SipA, SipB, SipC, SipD and SopD, while 2 proteins SteA and SlrP are secreted by both T3SSs. This is the first in vitro study to demonstrate dual secretion of SPI-1 and SPI-2 proteins by S. Typhimurium and demonstrates the potential of high-throughput LC-ESI/MS/MS sequencing for the identification of novel proteins, providing a platform for subsequent comparative proteomic analysis, which should greatly assist understanding of the pathogenesis and inherent variation between serovars of Salmonella and ultimately help towards development of novel control strategies.  相似文献   

8.
Salmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems, encoded in pathogenicity islands 1 and 2. These systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both type III secretion systems. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in HeLa cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also causes repression of genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. In addition, a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, and decreased cytotoxicity, cell–cell adhesion and migration.  相似文献   

9.
Salmonella enterica uses two functionally distinct type III secretion systems encoded on the pathogenicity islands SPI-1 and SPI-2 to transfer effector proteins into host cells. A major function of the SPI-1 secretion system is to enable bacterial invasion of epithelial cells and the principal role of SPI-2 is to facilitate the replication of intracellular bacteria within membrane-bound Salmonella-containing vacuoles (SCVs). Studies of mutant bacteria defective for SPI-2-dependent secretion have revealed a variety of functions that can be attributed to this secretion system. These include an inhibition of various aspects of endocytic trafficking, an avoidance of NADPH oxidase-dependent killing, the induction of a delayed apoptosis-like host cell death, the control of SCV membrane dynamics, the assembly of a meshwork of F-actin around the SCV, an accumulation of cholesterol around the SCV and interference with the localization of inducible nitric oxide synthase to the SCV. Several effector proteins that are translocated across the vacuolar membrane in a SPI-2-dependent manner have now been identified. These are encoded both within and outside SPI-2. The characteristics of these effectors, and their relationship to the physiological functions listed above, are the subject of this review. The emerging picture is of a multifunctional system, whose activities are explained in part by effectors that control interactions between the SCV and intracellular membrane compartments.  相似文献   

10.
11.
Salmonella enterica subspecies 1 serovar Typhimurium encodes a type III secretion system (TTSS) within Salmonella pathogenicity island 1 (SPI-1). This TTSS injects effector proteins into host cells to trigger invasion and inflammatory responses. Effector proteins are recognized by the TTSS via signals encoded in their N termini. Specific chaperones can be involved in this process. The chaperones InvB, SicA, and SicP are encoded in SPI-1 and are required for transport of SPI-1-encoded effectors. Several key effector proteins, like SopE and SopE2, are located outside of SPI-1 but are secreted in an SPI-1-dependent manner. It has not been clear how these effector proteins are recognized by the SPI-1 TTSS. Using pull-down and coimmunoprecipitation assays, we found that SopE is copurified with InvB, the known chaperone for the SPI-1-encoded effector protein Sip/SspA. We also found that InvB is required for secretion and translocation of SopE and SopE2 and for stabilization of SopE2 in the bacterial cytosol. Our data demonstrate that effector proteins encoded within and outside of SPI-1 use the same chaperone for secretion via the SPI-1 TTSS.  相似文献   

12.
Replication of Salmonella typhimurium in host cells depends in part on the action of the Salmonella Pathogenicity Island 2 (SPI-2) type III secretion system (TTSS), which translocates bacterial effector proteins across the membrane of the Salmonella-containing vacuole (SCV). We have shown previously that one activity of the SPI-2 TTSS is the assembly of a coat of F-actin in the vicinity of bacterial microcolonies. To identify proteins involved in SPI-2 dependent actin polymerization, we tested strains carrying mutations in each of several genes whose products are proposed to be secreted through the SPI-2 TTSS, for their ability to assemble F-actin around intracellular bacteria. We found that strains carrying mutations in either sseB, sseC, sseD or spiC were deficient in actin assembly. The phenotypes of the sseB-, sseC- and sseD- mutants can be attributed to their requirement for translocation of SPI-2 effectors. SpiC was investigated further in view of its proposed role as an effector. Transient expression of a myc::SpiC fusion protein in Hela cells did not induce any significant alterations to the host cell cytoskeleton, and failed to restore actin polymerization around intracellular spiC- mutant bacteria. However, the same protein did complement the mutant phenotype when expressed from a plasmid within bacteria. Furthermore, spiC was found to be required for SPI-2 mediated secretion of SseB, SseC and SseD in vitro. An antibody against SpiC detected the protein on immunoblots from total cell lysates of S. typhimurium expressing SpiC from a plasmid, but it was not detected in secreted fractions after exposure of cells to conditions that result in secretion of other SPI-2 effector proteins. Investigation of the trafficking of SCVs containing a spiC- mutant in macrophages revealed only a low level of association with the lysosomal marker cathepsin D, similar to that of wild-type bacteria. Together, these results show that SpiC is involved in the process of SPI-2 secretion and indicate that phenotypes associated with a spiC- mutant are caused by the inability of this strain to translocate effector proteins, thus calling for further investigation into the function(s) of this protein.  相似文献   

13.
SifA was originally identified as a virulence factor required for formation of Salmonella -induced filaments (Sifs), elongated tubules rich in lysosomal glycoproteins that extend from the Salmonella -containing vacuole in infected epithelial cells. Here, we demonstrate that deletion mutants of ssaR , a component of the SPI-2 type III secretion system, do not form Sifs in HeLa epithelial cells. This suggests that SifA is a translocated effector of this system, acting within host cells to form Sifs. In support of this hypothesis, transfection of HeLa cells with a vector encoding SifA fused to the green fluorescent protein caused extensive vacuolation of LAMP-1-positive compartments. Filamentous tubules that closely resembled Sifs were also observed in transfected cells, demonstrating that SifA is sufficient to initiate alteration of host cell endosomal structures. Δ sifA mutants were impaired in their ability to survive/replicate in RAW 264.7 murine macrophages, a phenotype similar to ssaR mutants. Our findings suggest that SifA is an effector of the SPI-2 type III secretion system and allows colonization of murine macrophages, the host niche exploited during systemic phases of disease in these animals. A family of SifA-related proteins and their importance to Salmonella pathogenesis is also discussed.  相似文献   

14.
15.
Salmonella typhimurium is a facultative intracellular pathogen that utilizes two type III secretion systems to deliver virulence proteins into host cells. These proteins, termed effectors, alter host cell function to allow invasion into and intracellular survival/replication within a vacuolar compartment. Here we describe SopD2, a novel member of the Salmonella translocated effector (STE) family, which share a conserved N-terminal type III secretion signal. Disruption of the sopD2 gene prolonged the survival of mice infected with a lethal dose of Salmonella typhimurium , demonstrating a significant role for this effector in pathogenesis. Expression of sopD2 was induced inside host cells and was dependent on functional ssrA/B and phoP/Q, two component regulatory systems. HA-tagged SopD2 was delivered into HeLa cells in a SPI-2-dependent manner and associated with both the Salmonella -containing vacuole and with swollen endosomes elsewhere in the cell. Subcellular fractionation confirmed that SopD2 was membrane associated in host cells, while the closely related effector SopD was localized to the cytosol. A SopD2 fusion to GFP associated with small tubular structures and large vesicles containing late endocytic markers, including Rab7. Surprisingly, expression of N-terminal amino acids 1–150 of SopD2 fused to GFP was sufficient to mediate both binding to late endosomes/lysosomes and swelling of these compartments. These findings demonstrate that the N-terminus of SopD2 is a bifunctional domain required for both type III secretion out of Salmonella as well as late endosome/lysosome targeting following translocation into host cells .  相似文献   

16.
17.
The Salmonella effector protein SopA is translocated into host cells via the SPI-1 type III secretion system (TTSS) and contributes to enteric disease. We found that the chaperone InvB binds to SopA and slightly stabilizes it in the bacterial cytosol and that it is required for its transport via the SPI-1 TTSS.  相似文献   

18.
Pathogenicity islands (PAIs) are large DNA segments in the genomes of bacterial pathogens that encode virulence factors. Five PAIs have been identified in the Gram-negative bacterium Salmonella enterica. Two of these PAIs, Salmonella pathogenicity island (SPI)-1 and SPI-2, encode type III secretion systems (TTSS), which are essential virulence determinants. These 'molecular syringes' inject effectors directly into the host cell, whereupon they manipulate host cell functions. These effectors are either encoded with their respective TTSS or scattered elsewhere on the Salmonella chromosome. Importantly, SPI-1 and SPI-2 are expressed under distinct environmental conditions: SPI-1 is induced upon initial contact with the host cell, whereas SPI-2 is induced intracellularly. Here, we demonstrate that a single PAI, in this case SPI-5, can encode effectors that are induced by distinct regulatory cues and targeted to different TTSS. SPI-5 encodes the SPI-1 TTSS translocated effector, SigD/SopB. In contrast, we report that the adjacently encoded effector PipB is part of the SPI-2 regulon. PipB is translocated by the SPI-2 TTSS to the Salmonella-containing vacuole and Salmonella-induced filaments. We also show that regions of SPI-5 are not conserved in all Salmonella spp. Although sigD/sopB is present in all Salmonella spp., pipB is not found in Salmonella bongori, which also lacks a functional SPI-2 TTSS. Thus, we demonstrate a functional and regulatory cross-talk between three chromosomal PAIs, SPI-1, SPI-2 and SPI-5, which has significant implications for the evolution and role of PAIs in bacterial pathogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号