首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dimerization of their two nucleotide binding domains (NBDs) in a so-called "nucleotide-sandwich" is the hallmark of ATP cassette binding (ABC) proteins and the basis of their catalytic activities. The major disease-causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR or ABCC7), deletion of Phe508 in NBD1, does not grossly alter the structure of that domain but prevents conformational maturation of the whole CFTR protein, possibly by disrupting the native interaction between NBD1 and NBD2. However, the role of inter-domain interactions in CFTR folding has been brought into question by a recent report that all CFTR domains fold independently. Here we show that in addition to domain folding, correct inter-domain assembly is essential to form a stable unit that satisfies endoplasmic reticulum (ER) quality control. N-terminal domains depend on their more C-terminal neighbors, most essentially the second membrane-spanning domain (MSD2) but significantly, not NBD2. Wild-type C-terminal truncation constructs, completely devoid of NBD2 are transported out of the ER and to the cell surface where they form characteristic CFTR chloride channels with low open probability. The DeltaNBD2 wild-type protein matures and has similar stability as its full-length counterpart. Therefore, the catalytically crucial inter-NBD associations are not required to satisfy ER quality control mechanisms. The DeltaF508 mutation arrests the maturation of DeltaNBD2 just as it does full-length CFTR, indicating that DeltaF508 perturbs other portions of the molecule in addition to NBD2. We find that the mutation prevents formation of a compact MSD1, reflected in its susceptibility to protease digestion. This perturbation of MSD1 may in turn prevent its normal integration with MSD2. The dispensability of NBD2 in the folding of more N-terminal domains stands in contrast to the known hypersensitivity to proteolysis of NBD2 in the DeltaF508 protein.  相似文献   

2.
Cu-transporting ATPase ATP7B (Wilson disease protein) is essential for the maintenance of intracellular copper concentration. In hepatocytes, ATP7B is required for copper excretion, which is thought to occur via a transient delivery of the ATP7B- and copper-containing vesicles to the apical membrane. The currently available experimental systems do not allow analysis of ATP7B at the cell surface. Using epitope insertion, we identified an extracellular loop into which the HA-epitope can be introduced without inhibiting ATP7B activity. The HA-tagged ATP7B was expressed in Xenopus oocytes and the presence of ATP7B at the plasma membrane was demonstrated by electron microscopy, freeze-fracture experiments, and surface luminescence measurements in intact cells. Neither the deletion of the entire N-terminal copper-binding domain nor the inactivating mutation of catalytic Asp1027 affected delivery to the plasma membrane of oocytes. In contrast, surface targeting was decreased for the ATP7B variants with mutations in the ATP-binding site or the intra-membrane copper-binding site, suggesting that ligand-stabilized conformation(s) are important for ATP7B trafficking. The developed system provides significant advantages for studies that require access to both sides of ATP7B in the membrane.  相似文献   

3.
Ionotropic glutamate receptors (iGluRs) mediate excitatory neurotransmission in the central nervous system and play key roles in brain development and disease. iGluRs have two distinct extracellular domains, but the functional role of the distal N-terminal domain (NTD) is poorly understood. Crystal structures of the NTD from some non-N-methyl-d-aspartate (NMDA) iGluRs are consistent with a rigid body that facilitates receptor assembly but suggest an additional dynamic role that could modulate signaling. Here, we moved beyond spatial and temporal limitations of conventional protein single-molecule spectroscopy by employing correlation analysis of extrinsic oxazine fluorescence fluctuations. We observed nanosecond (ns)-to-microsecond (μs) motions of loop segments and helices within a region of an AMPA-type iGluR NTD, which has been identified previously to be structurally variable. Our data reveal that the AMPA receptor NTD undergoes rapid conformational fluctuations, suggesting an inherent allosteric capacity for this domain in addition to its established assembly function.  相似文献   

4.
The transmembrane (TM) domains in P-glycoprotein (P-gp) contain the drug binding sites and undergo conformational changes driven by nucleotide catalysis to effect translocation. However, our understanding of exactly which regions are involved in such events remains unclear. A site-directed labelling approach was used to attach thiol-reactive probes to cysteines introduced into transmembrane segment 6 (TM6) in order to perturb function and infer involvement of specific residues in drug binding and/or interdomain communication. Covalent attachment of coumarin-maleimide at residue 339C within TM6 resulted in impaired ATP hydrolysis by P-gp. The nature of the effect was to reduce the characteristic modulation of basal activity caused by transported substrates, modulators and the potent inhibitor XR9576. Photoaffinity labelling of P-gp with [(3)H]-azidopine indicated that residue 339C does not alter drug binding per se. However, covalent modification of this residue appears to prevent conformational changes that lead to drug stimulation of ATP hydrolysis.  相似文献   

5.
Rockliffe N  Gawler D 《FEBS letters》2006,580(3):831-838
One prime candidate linking N-methyl-D-aspartate (NMDA) receptors to the regulation of the MAP kinase cascade is SynGAP, a negative regulator of Ras. In order to assess how a physiological stimulus can alter SynGAP activity, an appropriate whole cell system must be used and SynGAP must be specifically extracted from membranes whilst preserving the catalytic activity of the protein. Here, we have achieved this and studied the effect of NMDA/alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and kainate receptor stimulations on SynGAP activity in cortical neurones. Furthermore, we have examined the role of extracellular Ca2+, CaM kinase II and the PSD-95-NR2B subunit interaction in SynGAP activity regulation and propose a novel convergence of signalling between AMPA, kainate and NMDA receptors.  相似文献   

6.
COR15A and COR15B form a tandem repeat of highly homologous genes in Arabidopsis thaliana. Both genes are highly cold induced and the encoded proteins belong to the Pfam LEA_4 group (group 3) of the late embryogenesis abundant (LEA) proteins. Both proteins were predicted to be intrinsically disordered in solution. Only COR15A has previously been characterized and it was shown to be localized in the soluble stroma fraction of chloroplasts. Ectopic expression of COR15A in Arabidopsis resulted in increased freezing tolerance of both chloroplasts after freezing and thawing of intact leaves and of isolated protoplasts frozen and thawed in vitro. In the present study we have generated recombinant mature COR15A and COR15B for a comparative study of their structure and possible function as membrane protectants. CD spectroscopy showed that both proteins are predominantly unstructured in solution and mainly α-helical after drying. Both proteins showed similar effects on the thermotropic phase behavior of dry liposomes. A decrease in the gel to liquid-crystalline phase transition temperature depended on both the unsaturation of the fatty acyl chains and lipid headgroup structure. FTIR spectroscopy indicated no strong interactions between the proteins and the lipid phosphate and carbonyl groups, but significant interactions with the galactose headgroup of the chloroplast lipid monogalactosyldiacylglycerol. These findings were rationalized by modeling the secondary structure of COR15A and COR15B. Helical wheel projection indicated the presence of amphipathic α-helices in both proteins. The helices lacked a clear separation of positive and negative charges on the hydrophilic face, but contained several hydroxylated amino acids.  相似文献   

7.
The cellular molecular motor kinesin-1 mediates the microtubule-dependent transport of a range of cargo. We have previously identified an interaction between the cargo-binding domain of kinesin-1 heavy chain KIF5B and the membrane-associated SNARE proteins SNAP-25 and SNAP-23. In this study we further defined the minimal SNAP-25 binding domain in KIF5B to residues 874-894. Overexpression of a fragment of KIF5B (residues 594-910) resulted in significant colocalization with SNAP-25 with resulting blockage of the trafficking of SNAP-25 to the periphery of cells. This indicates that kinesin-1 facilitates the transport of SNAP-25 containing vesicles as a prerequisite to SNAP-25 driven membrane fusion events.  相似文献   

8.
Large cytoplasmic domain (LCD) plasma membrane H+-ATPase from S. cerevisiae was expressed as two fusion polypeptides in E. coli: a DNA sequence coding for Leu353-Ileu674 (LCDh), comprising both nucleotide (N) and phosphorylation (P) domains, and a DNA sequence coding for Leu353-Thr543 (LCDΔh, lacking the C-terminus of P domain), were inserted in expression vectors pDEST-17, yielding the respective recombinant plasmids. Overexpressed fusion polypeptides were solubilized with 6 M urea and purified on affinity columns, and urea was removed by dialysis. Their predicted secondary structure contents were confirmed by CD spectra. In addition, both recombinant polypeptides exhibited high-affinity 2′,3′-O-(2,4,6-trinitrophenyl)adenosine-5′-triphosphate (TNP-ATP) binding (Kd = 1.9 μM and 2.9 μM for LCDh and LCDΔh, respectively), suggesting that they have native-like folding. The gel filtration profile (HPLC) of purified LCDh showed two main peaks, with molecular weights of 95 kDa and 39 kDa, compatible with dimeric and monomeric forms, respectively. However, a single elution peak was observed for purified LCDΔh, with an estimated molecular weight of 29 kDa, as expected for a monomer. Together, these data suggest that LCDh exist in monomer-dimer equilibrium, and that the C-terminus of P domain is necessary for self-association. We propose that such association is due to interaction between vicinal P domains, which may be of functional relevance for H+-ATPase in native membranes. We discuss a general dimeric model for P-ATPases with interacting P domains, based on published crystallography and cryo-electron microscopy evidence.  相似文献   

9.
Ionotropic glutamate receptors are functionally diverse but have a common architecture, including the 400-residue amino-terminal domain (ATD). We report a 1.8-Å resolution crystal structure of human GluR2-ATD. This dimeric structure provides a mechanism for how the ATDs can drive receptor assembly and subtype-restricted composition. Lattice contacts in a 4.1-Å resolution crystal form reveal a tetrameric (dimer-dimer) arrangement consistent with previous cellular and cryo-electron microscopic data for full-length AMPA receptors.  相似文献   

10.
Yor1p, a Saccharomyces cerevisiae plasma membrane ABC-transporter, is associated to oligomycin resistance and to rhodamine B transport. Here, by using the overexpressing strain Superyor [A. Decottignies, A.M. Grant, J.W. Nichols, H. de Wet, D.B. McIntosh, A. Goffeau, ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p, J. Biol. Chem. 273 (1998) 12612-12622], we show that Yor1p also confers resistance to rhodamine 6G and to doxorubicin. In addition, Yor1p protects cells, although weakly, against tetracycline, verapamil, eosin Y and ethidium bromide. The basal ATPase activity of the overexpressed form of Yor1p was studied in membrane preparations. This activity is quenched upon addition of micromolar amounts of vanadate. Vmax and Km values of ∼ 0.8 s− 1 and 50 ± 8 μM are measured. Mutations of essential residues in the nucleotide binding domain 2 reduces the activity to that measured with a Δyor1 strain. ATP hydrolysis is strongly inhibited by the addition of potential substrates of the transporter. Covalent reaction of 8-azido-[α-32P]ATP with Yor1p is not sensitive to the presence of excess oligomycin. Thus, competition of the drug with ATP binding is unlikely. Finally, we inspect possible hypotheses accounting for substrate inhibition, rather than stimulation, of ATP hydrolysis by the membrane preparation.  相似文献   

11.
12.
GluR0 from Nostoc punctiforme (NpGluR0) is a bacterial homologue of the ionotropic glutamate receptor (iGluR). We have solved the crystal structure of the ligand-binding core of NpGluR0 in complex with l-glutamate at a resolution of 2.1 Å. The structure exhibits a noncanonical ligand interaction and two distinct subunit interfaces. The side-chain guanidium group of Arg80 forms a salt bridge with the γ-carboxyl group of bound l-glutamate: in GluR0 from Synechocystis (SGluR0) and other iGluRs, the equivalent residues are Asn or Thr, which cannot form a similar interaction. We suggest that the local positively charged environment and the steric constraint created by Arg80 mediate the selectivity of l-glutamate binding by preventing the binding of positively charged and hydrophobic amino acids. In addition, the NpGluR0 ligand-binding core forms a new subunit interface in which the two protomers are arranged differently than the known iGluR and SGluR0 dimer interfaces. The significance of there being two different dimer interfaces was investigated using analytical ultracentrifugation analysis.  相似文献   

13.
DMRP, an ABC transporter encoded by the dMRP/CG6214 gene, is the Drosophila melanogaster orthologue of the “long” human multidrug resistance-associated proteins (MRP1/ABCC1, MRP2/ABCC2, MRP3/ABCC3, MRP6/ABCC6, and MRP7/ABCC10). In order to provide a detailed biochemical characterisation we expressed DMRP in Sf9 insect cell membranes. We demonstrated DMRP as a functional orthologue of its human counterparts capable of transporting several human MRP substrates like β-estradiol 17-β-d-glucuronide, leukotriene C4, calcein, fluo3 and carboxydichlorofluorescein. Unexpectedly, we found DMRP to exhibit an extremely high turnover rate for the substrate transport as compared to its human orthologues. Furthermore, DMRP showed remarkably high basal ATPase activity (68-75 nmol Pi/mg membrane protein/min), which could be further stimulated by probenecid and the glutathione conjugate of N-ethylmaleimide. Surprisingly, this high level basal ATPase activity was inhibited by the transported substrates. We discussed this phenomenon in the light of a potential endogenous substrate (or activator) present in the Sf9 membrane.  相似文献   

14.
The plasma membrane in eukaryotic cells contains microdomains that are enriched in certain glycosphingolipids, gangliosides, and sterols (such as cholesterol) to form membrane/lipid rafts (MLR). These regions exist as caveolae, morphologically observable flask-like invaginations, or as a less easily detectable planar form. MLR are scaffolds for many molecular entities, including signaling receptors and ion channels that communicate extracellular stimuli to the intracellular milieu. Much evidence indicates that this organization and/or the clustering of MLR into more active signaling platforms depends upon interactions with and dynamic rearrangement of the cytoskeleton. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to MLR and help regulate lateral diffusion of membrane proteins and lipids in response to extracellular events (e.g., receptor activation, shear stress, electrical conductance, and nutrient demand). MLR regulate cellular polarity, adherence to the extracellular matrix, signaling events (including ones that affect growth and migration), and are sites of cellular entry of certain pathogens, toxins and nanoparticles. The dynamic interaction between MLR and the underlying cytoskeleton thus regulates many facets of the function of eukaryotic cells and their adaptation to changing environments. Here, we review general features of MLR and caveolae and their role in several aspects of cellular function, including polarity of endothelial and epithelial cells, cell migration, mechanotransduction, lymphocyte activation, neuronal growth and signaling, and a variety of disease settings. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

15.
The hippocampus is a center for learning and memory as well as a target of Alzheimer's disease in aged humans. Synaptic modulation by estrogen is essential to understand the molecular mechanisms of estrogen replacement therapy. Because the local synthesis of estrogen occurs in the hippocampus of both sexes, in addition to the estrogen supply from the gonads, its functions are attracting much attention.  相似文献   

16.
The human multidrug resistance protein MRP1 (or ABCC1) is one of the most important members of the large ABC transporter family, in terms of both its biological (tissue defense) and pharmacological functions. Many studies have investigated the function of MRP1, but structural data remain scarce for this protein. We investigated the structure and dynamics of predicted transmembrane fragment 17 (TM17, from Ala1227 to Ser1251), which contains a single Trp residue (W1246) involved in MRP1 substrate specificity and transport function. We synthesized TM17 and a modified peptide in which Ala1227 was replaced by a charged Lys residue. Both peptides were readily solubilized in dodecylmaltoside (DM) or dodecylphosphocholine (DPC) micelles, as membrane mimics. The interaction of these peptides with DM or DPC micelles was studied by steady-state and time-resolved Trp fluorescence spectroscopy, including experiments in which Trp was quenched by acrylamide or by two brominated analogs of DM. The secondary structure of these peptides was determined by circular dichroism. Overall, the results obtained indicated significant structuring (∼50% α-helix) of TM17 in the presence of either DM or DPC micelles as compared to buffer. A main interfacial location of TM17 is proposed, based on significant accessibility of Trp1246 to brominated alkyl chains of DM and/or acrylamide. The comparison of various fluorescence parameters including λmax, lifetime distributions and Trp rotational mobility with those determined for model fluorescent transmembrane helices in the same detergents is also consistent with the interfacial location of TM17. We therefore suggest that TM17 intrinsic properties may be insufficient for its transmembrane insertion as proposed by the MRP1 consensus topological model. This insertion may also be controlled by additional constraints such as interactions with other TM domains and its position in the protein sequence. The particular pattern of behavior of this predicted transmembrane peptide may be the hallmark of a fragment involved in substrate transport.  相似文献   

17.
CXCR1 is a receptor for the chemokine interleukin-8 (IL-8), a mediator of immune and inflammatory responses. Strategically located in the cell membrane, CXCR1 binds to IL-8 with high affinity and subsequently transduces a signal across the membrane bilayer to a G-protein-activated second messenger system. Here, we describe NMR studies of the interactions between IL-8 and human CXCR1 in lipid environments. Functional full-length and truncated constructs of CXCR1 and full-length IL-8 were uniformly 15N-labeled by expression in bacteria followed by purification and refolding. The residues responsible for interactions between IL-8 and the N-terminal domain of CXCR1 were identified by specific chemical shift perturbations of assigned resonances on both IL-8 and CXCR1. Solution NMR signals from IL-8 in = 0.1 isotropic bicelles disappeared completely when CXCR1 in lipid bilayers was added in a 1:1 molar ratio, indicating that binding to the receptor-containing bilayers immobilizes IL-8 (on the ∼ 105 Hz timescale) and broadens the signals beyond detection. The same solution NMR signals from IL-8 were less affected by the addition of N-terminal truncated CXCR1 in lipid bilayers, demonstrating that the N-terminal domain of CXCR1 is mainly responsible for binding to IL-8. The interaction is tight enough to immobilize IL-8 along with the receptor in phospholipid bilayers and is specific enough to result in well-aligned samples in oriented sample solid-state NMR spectra. A combination of solution NMR and solid-state NMR studies of IL-8 in the presence of various constructs of CXCR1 enables us to propose a model for the multistep binding process.  相似文献   

18.
The X-ray structure of the ligand-binding core of the kainate receptor GluR5 (GluR5-S1S2) in complex with (S)-glutamate was determined to 1.95 A resolution. The overall GluR5-S1S2 structure comprises two domains and is similar to the related AMPA receptor GluR2-S1S2J. (S)-glutamate binds as in GluR2-S1S2J. Distinct features are observed for Ser741, which stabilizes a highly coordinated network of water molecules and forms an interdomain bridge. The GluR5 complex exhibits a high degree of domain closure (26 degrees) relative to apo GluR2-S1S2J. In addition, GluR5-S1S2 forms a novel dimer interface with a different arrangement of the two protomers compared to GluR2-S1S2J.  相似文献   

19.
The human multidrug resistance-associated protein 1 (hMRP1/ABCC1) belongs to the ATP-binding cassette transporter superfamily. Together with P-glycoprotein (ABCB1) and the breast cancer resistance protein (BCRP/ABCG2), hMRP1 confers resistance to a large number of structurally diverse drugs. The current topological model of hMRP1 includes two cytosolic nucleotide-binding domains and 17 putative transmembrane (TM) helices forming three membrane-spanning domains. Mutagenesis and labeling studies have shown TM16 and TM17 to be important for function. We characterized the insertion of the TM16 fragment into dodecylphosphocholine (DPC) or n-dodecyl-β-d-maltoside (DM) micelles as membrane mimics and extended our previous work on TM17 (Vincent et al., 2007, Biochim. Biophys. Acta 1768, 538). We synthesized TM16 and TM17, with the Trp residues, W1198 in TM16 and W1246 in TM17, acting as an intrinsic fluorescent probe, and TM16 and TM17 Trp variants, to probe different positions in the peptide sequence. We assessed the interaction of peptides with membrane mimics by evaluating the increase in fluorescence intensity resulting from such interactions. In all micelle-bound peptides, the tryptophan residue appeared to be located, on average, in the head group micelle region, as shown by its fluorescence spectrum. Each tryptophan residue was partially accessible to both acrylamide and the brominated acyl chains of two DM analogs, as shown by fluorescence quenching. Tryptophan fluorescence lifetimes were found to depend on the position of the tryptophan residue in the various peptides, probably reflecting differences in local structures. Far UV CD spectra showed that TM16 contained significant β-strand structures. Together with the high Trp correlation times, the presence of these structures suggests that TM16 self-association may occur at the interface. In conclusion, this experimental study suggests an interfacial location for both TM16 and TM17 in membrane mimics. In terms of overall hMRP1 structure, the experimentally demonstrated amphipathic properties of these TM are consistent with a role in the lining of an at least partly hydrophilic transport pore, as suggested by the currently accepted structural model, the final structure being modified by interaction with other TM helices.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号