首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
cDNA of human calpastatin, an inhibitor protein specific for calpain (EC 3.4.22.17; Ca2(+)-dependent cysteine proteinase) was isolated by screening of a library prepared from human liver mRNA with pig calpastatin cDNA fragment as a probe. The primary structure of human calpastatin was deduced from the nucleotide sequence of the cDNA and compared with that of pig and rabbit calpastatins already reported. Human calpastatin consisted of 673 amino acid residues and had 78% and 77% identity to pig or rabbit calpastatins, respectively. Human calpastatin had a domain structure with four internally repetitive sequences and one N-terminal non-homologous sequence like the other calpastatins. Human calpastatin had two deletions, 22 and 13 residues long in domain L and domain 1, respectively, compared to pig or rabbit calpastatins.  相似文献   

2.
M Maki  E Takano  H Mori  A Sato  T Murachi  M Hatanaka 《FEBS letters》1987,223(1):174-180
Complementary DNA portions coding for each domain (domain L and internally repetitive domains, domains 1-4, each composed of approximately 140 amino acid residues) of pig calpastatin were subcloned into E. coli plasmids to express the respective portions of the proteinase inhibitor gene in bacteria. Cell extracts of E. coli harboring recombinant plasmids were assayed for calpain inhibition. All four internally repetitive domains showed inhibitory activities, essentially similar to one another, against calpains I and II. No inhibition was observed in the case of the N-terminal non-homologous domain (domain L). These results support our previous conclusion that the repetitive region is a functional unit of the proteinase inhibitor.  相似文献   

3.
Structure-function relationships in pig calpastatin were investigated. Calpastatin is an endogenous inhibitor protein specifically acting on calpains (Ca2+-dependent cysteine endopeptidases). We recently cloned and sequenced the cDNA for pig heart calpastatin and determined the amino acid sequence of the molecule from the nucleotide sequence. Various deletion mutants in one of the four internally repetitive domains (Domain 3, approximately 140 amino acid residues) were created by in vitro site-directed mutagenesis of a cloned cDNA fragment and expressed in Escherichia coli. Deletion of a conserved region on either the amino-terminal or carboxyl-terminal side caused a drastic loss of inhibitory activity against calpain I (low Ca2+-requiring form) and, to a lesser degree, against calpain II (high Ca2+-requiring form). Inhibitory activities were below the detectable level in mutants deleted further toward the central region. Substitution of two amino acids in the latter region of the wild-type Domain 3 protein caused a drastic loss of activity against both calpains. The creation of lowered affinity inhibitors enabled us to perform a conventional kinetic analysis which showed the mode of inhibition to be competitive. Prediction of the secondary structure of Domain 3 suggests that both the amino- and carboxyl-terminal conserved regions form alpha-helical structures, which are largely located in the interior of the calpastatin molecule, whereas the central region does not form alpha-helix or beta-structure. The central region contains a 12-residue consensus sequence common to Domains 1, 2, and 4, and this portion is predicted to be located on the surface of the calpastatin molecule. These results suggest that the central conserved region of each domain of calpastatin is an area for direct interaction either with the active center of calpain or a region in close proximity, and the rest of the domain is a region stabilizing the functionally important tertiary structure of the domain.  相似文献   

4.
Calpastatin, an endogenous inhibitor of calpain, is composed of domain L and four repetitive homologous domains 1-4. Domains 1-4 inhibit calpain, whereas domain L partially reprimes L-type Ca2+ channels for voltage-gated activation. In the present study, the effects on Ca2+ channel activity of four isoforms and a series of fragments of calpastatin domain L were investigated in guinea-pig ventricular myocytes with the patch-clamp method. With one exception, all the isoforms and fragment peptides that contained amino acid residues 54-64 of domain L reprimed the Ca2+ channels to comparable levels (9-15% of control activity) to those observed previously with a full-length form of calpastatin. These results suggest that the region containing amino acid residues 54-64 (EGKPKEHTEPK) is responsible for the Ca2+ channel repriming function of calpastatin domain L.  相似文献   

5.
Calpastatin, the inhibitor protein acting specifically on calpain (EC 3.4.22.17; Ca2+-dependent cysteine proteinase), is known to be widely distributed in mammalian and avian cells. Two different molecular species of calpastatin were isolated and purified to homogeneity from pig heart muscle and from pig erythrocytes, and shown to be of 107 kDa and 68 kDa respectively on SDS/polyacrylamide-gel electrophoresis. Both calpastatins had very similar amino acid compositions when expressed as mol per cent of the residues, differed by only 0.1 pH unit in their isoelectric points, and showed immunological cross-reactivity. One molecule of the 107 kDa species could bind approx. 8 calpain molecules, whereas the 68 kDa inhibitor could bind approx. 5 calpain molecules. These findings suggest similar protein structures of the 107 kDa and 68 kDa calpastatins, each being composed of extended multidomains, with unit inhibitor domains aligned along the polypeptide chain of the molecule. The present study does not conclude, however, whether or not the 68 kDa calpastatin found in erythrocytes is a derived product from the 107 kDa species, which is present as such in heart muscle.  相似文献   

6.
Our experimental purpose is to probe the structure(s) of the chorionic proteinase inhibitor and its cDNA sequence(s) and to develop the application of safe medicines for protection of human and other animal bodies from pathogenic microbe attacks. In this study, chorionic proteinase inhibitor protein was isolated, sequenced and used to base the design of PCR primers, which were then used to amplify DNA using RT-PCR. A cDNA clone of the protein which inhibited the activities of serine proteinases and thermolysin was obtained on the basis of mRNA extracted from ovarian tissue of dace, Tribolodon hakonensis, and the deduced amino acid sequence was determined. Chorionic proteinase inhibitor (TribSPI) peptides of about 9.0 kDa (TribSPI) and 14 kDa (TribSPI-S) were purified from vitelline envelope extracts by thermolysin-immobilized affinity-chromatography. The cloned TribSPI cDNA was 1806 bp in length, and the open reading flame (ORF) was 915 bp encoding a protein of 305 amino acid residues. The inhibitor protein had a molecular mass of 33,550 daltons and was composed of five similar domains. Each domain contained eight cysteine residues, and it's deduced amino acid sequence was only 33 approximately 34% identical to those of human and porcine antileukoproteinases (hALP and pALP, respectively). A possible binding-site for serine proteinases, Arg-Ile, was contained in three domains.  相似文献   

7.
Two cysteine proteinase inhibitors, cystatins Sca and Scb, were previously isolated from sunflower seeds [Kouzuma et al. J. Biochem. 119 (1996) 1106-1113]. A cDNA clone encoding a novel phytocystatin with three repetitive cystatin domains was isolated from a cDNA library of sunflower seeds using the Sca cDNA fragment as a hybridization probe. The cDNA insert comprises 1,093 bp and encodes 282 amino acid residues. The deduced amino acid sequences of the domains are highly similar to each other (66-81%), sharing 65-90% identical residues with Sca. The cDNA was expressed in Escherichia coli cells, and then the recombinant sunflower multicystatin (SMC) was purified and its inhibitory activity toward papain was examined. SMC exhibited strong inhibitory activity toward papain, with a stoichiometry of 1:3, indicating that each cystatin domain independently functions as a potent cysteine proteinase inhibitor. Proteolysis of SMC with Asn-specific proteinase suggested that post-translational processing by an Asn-specific proteinase may give rise to mature Sca-like phytocystatins.  相似文献   

8.
1. Calpains (calcium-activated cysteine proteinases) have evolved by gene fusion events involving calmodulin-like genes, cysteine proteinase genes and other sequences of unknown origin. 2. The enzymes are composed of two non-identical subunits, each of which contains functional calcium-binding sequences. 3. Calpains are inhibited by the endogenous protein inhibitor, calpastatin and some calmodulin antagonists are also inhibitors of calpain. A number of synthetic proteinase inhibitors also inhibit calpains. 4. Calpains can be activated by phospholipids, an endogenous protein activator and some amino acid derivatives. 5. Various protein substrates for calpains have been recognized in vitro, but the identity of in situ substrates remains unclear. 6. Proposals have been made for calpain function, including involvement in signal transduction, platelet activation, cell fusion, mitosis and cytoskeleton and contractile protein turnover. 7. Calpain and calpastatin expression is altered in a number of abnormal states including muscular dystrophy, muscle denervation and tenotomy, hypertension and platelet abnormalities.  相似文献   

9.
Bombyx cysteine proteinase inhibitor (BCPI) is a novel cysteine proteinase inhibitor. The protein sequence is homologous to the proregions of certain cysteine proteinases. Here we report the mechanism of its inhibition of several cysteine proteinases. BCPI strongly inhibited Bombyx cysteine proteinase (BCP) activity with a K(i) = 5.9 pM, and human cathepsin L with a K(i) = 36 pM. The inhibition obeyed slow-binding kinetics. The inhibition of cathepsin H was much weaker (K(i) = 82 nM), while inhibition of papain (K(i) > 1 microM) and cathepsin B (K(i) > 4 microM) was negligible. Following incubation with BCP, BCPI was first truncated at the C-terminal end, and then gradually degraded over time. The truncation mainly involved two C-terminal amino acid residues. Recombinant BCPI lacking the two C-terminal amino acid residues still retained substantial inhibitory activity. Our results indicate that BCPI is a stable and highly selective inhibitor of cathepsin L-like cysteine proteinases.  相似文献   

10.
Calpastatin is an endogenous inhibitor protein acting specifically on calpain (EC 3.4.22.17; Ca2(+)-dependent cysteine proteinase). The phosphorylation of calpastatin was investigated in human hematopoietic system cell lines. Microheterogeneity of calpastatin was observed, in which 118- and 116-kDa forms were named calpastatin a and b, respectively. The phosphorylation of both calpastatins was identified in all cell lines examined and occurred mainly at serine residues with trace amounts of phosphothreonine in vivo. The incubation of cells with 12-O-tetradecanoylphorbol-13-acetate increased the incorporation of 32P-orthophosphate into calpastatin a. Two-dimensional maps of 32P-labeled phosphopeptide from both calpastatins were identical except for additional minor spots for calpastatin a. [35S]methionine-labeled calpastatins a and b were localized mainly in the cytosol, and only 6% of cellular calpastatins were detected in the membrane fraction. By contrast, more than 30% of the 32P-labeled calpastatins a and b were distributed in the membrane fraction. Thus, the phosphorylation of calpastatin may be involved in regulating the calpain-calpastatin protein kinase system by its subcellular distribution.  相似文献   

11.
A cDNA clone for an inhibitor of Bombyx cysteine proteinase was isolated and sequenced. Active inhibitor proteins were expressed in Escherichia coli using the cDNA. The open reading frame of the cDNA encodes a 105 residues protein with 19 residues of a signal sequence. The inhibitor has amino acid sequences homologous to several cysteine proteinases, but only to their propeptide sequences. The results suggest that some cysteine proteinase proregions may have evolved as autonomous modules and become inhibitor proteins for cysteine proteinases.  相似文献   

12.
The complete amino acid sequence of barley trypsin inhibitor   总被引:5,自引:0,他引:5  
The amino acid sequence of barley trypsin inhibitor has been determined. The protein is a single polypeptide consisting of 121 amino acid residues and has Mr = 13,305. No free sulfhydryl groups were detected by Ellman's reagent, which indicates the presence of five disulfide bridges in the molecule. The primary site of interaction with trypsin was tentatively assigned to the arginyl-leucyl residues at positions 33 and 34. On comparison of the sequence of this inhibitor with those of other proteinase inhibitors, we found that the barley trypsin inhibitor could not be classified into any of the established families of proteinase inhibitors (Laskowski, M., Jr., and Kato, I. (1980) Annu. Rev. Biochem. 49, 593-626) and that this inhibitor should represent a new inhibitor family. On the other hand, this trypsin inhibitor showed a considerable similarity to wheat alpha-amylase inhibitor (Kashlan, N., and Richardson, M. (1981) Phytochemistry (Oxf.) 20, 1781-1784) throughout the whole sequence, suggesting a common ancestry for both proteins. This is the first case of a possible evolutionary relationship between two inhibitors directed to totally different enzymes, a proteinase and a glycosidase.  相似文献   

13.
Subgenomic mRNA from a virulent isolate of porcine transmissible gastroenteritis virus (TGEV) was used to produce cDNA clones. Part of a new clone and a previously reported clone were sequenced and used to construct the viral gene for integral membrane protein. A single open reading frame (ORF) encoding a polypeptide of 262 amino acids, relative molecular mass (Mr) 29,459, was identified. The positive identification of the polypeptide as the integral membrane protein was demonstrated by the production in E. coli of a chimaeric protein comprising most of the ORF encoding the Mr 29,459 polypeptide and beta-galactosidase. The chimaeric protein reacted with a specific monoclonal antibody to viral integral membrane protein and antibodies raised against the chimaeric protein immune precipitated the viral protein. Comparison with the sequence of an avirulent isolate indicates amino acid residues that may be important in pathogenicity.  相似文献   

14.
A Bauhinia variegata trypsin inhibitor (BvTI) cDNA fragment was cloned into the pCANTAB5E phagemid. The clone pAS 1.1.3 presented a cDNA fragment of 733 bp, including the coding region for a mature BvTI protein comprising 175 amino acid residues. The deduced amino acid sequence for BvTI confirmed it as a member of the Kunitz-type plant serine proteinase inhibitor family. The BvTI cDNA fragment encoding the mature form was cloned into the expression vector, pET-14b, and ex-pressed in E. coli BL21 (DE3) pLysS in an active form. In addition, a BvTI mutant form, r(mut)BvTI, with a Pro residue as the fifth amino acid in place of Leu, was produced. The recombinant proteins, rBvTI and r(mut)BvTI, were purified on a trypsin-Sepharose column, yielding 29 and 1.44 mg/l of active protein, respectively, and showed protein bands of approximately 21.5 kDa by SDS-PAGE. Trypsin inhibition activity was comparable for rBvTI (Ki=4 nM) and r(mut)BvTI (Ki=6 nM). Our data suggest that the Leu to Pro substitution at the fifth amino-terminal residue was not crucial for proteinase inhibition.  相似文献   

15.
With the primers designed basing on the terminal amino acid sequences of rice proteinase inhibitors and the preferred codons of rice genes, a new gene coding for a rice proteinase inhibitor has been amplified and cloned from Oryza sativa var. japonica (cv. Zhonghua 8) using PCR technique. The gene contains 408 basepairs and encodes 133 amino acid residues. The deduced amino acid sequence with duplicated Bowman-Birk type structure and active sites specific to trypsin has relatively high homology with that of proteinase inhibitors from wheats, beans etc. As for rice, the new gene shares 74.8% homology with a rice bran trypsin inhibitor reported previously. The evolutionary characteristics of the proteinase inhibitor family has also been discussed.  相似文献   

16.
The Vicia angustifolia proteinase inhibitor was incubated with p-toluenesulfonyl-L-phenylalanine chloromethyl ketone-trypsin (EC 3.4.21.4) and a main product was isolated. The purified product was different to the first trypsin-modified V. angustifolia inhibitor. The C-terminal residues of the new derivative were arginine, which was also the C-terminal of the cleaved antitryptic site; lysine was a newly exposed C-terminal. These results suggest that the new derivative lacks the C-terminal portion of the native inhibitor, which has asparagine at its C-terminus. The liberated C-terminal peptide had the following amino acid sequence: H-Glu-Glu-Val-Ile-Lys-Asn-OH. The derivative lacking the C-terminal hexapeptide still possesses inhibitory activities against trypsin and alpha-chymotrypsin (EC 3.4.21.1), however, its antichymotryptic activity was inactivated by incubation with chymotrypsin at pH 8.0.  相似文献   

17.
Seeds of Wisteria floribunda contain several kinds of cysteine proteinase inhibitor (cystatin). We purified and characterized one of these inhibitors, named WCPI-3. The molecular weight of WCPI-3 was estimated to be 17,500 and 15,700 by gel filtration and SDS-PAGE, respectively. The isoelectric point was 5.7. WCPI-3 formed an equimolar complex with native papain and the dissociation constant was estimated to be 6.1 nM. Complex formation between WCPI-3 and Cys25-modified papain, such as S-carboxy-methylated or S-carbamoylmethylated papain, could not be observed by gel filtration or native PAGE analysis. A peptide fragment derived from WCPI-3 digested by Achromobacter proteinase (lysyl endopeptidase) had the amino acid sequence of VVAGVNYRFVLK. The VVAG sequence in this fragment corresponds to the conserved sequence QVVAG which is considered to be one of binding regions to cysteine proteinases. The amino acid sequence of the amino-terminal portion (34 residues) of WCPI-3 was highly homologous to that of oryzacystatin from rice seeds.  相似文献   

18.
Three different forms of thiol proteinase inhibitor (TPI) were isolated from newborn rat epidermis, in which two forms, TPI-1 and TPI-2, inhibited a proteinase activity, but another newly detected one (designated as TPI-3), showed no inhibitory effect. The complete amino acid sequence of TPI-2 and the sequence of the first seventeen residues from the NH2-terminus of TPI-3 were determined. The sequence shows that TPI-2 lacks in the first six (or four) residues from the NH2-terminus of intact inhibitor, TPI-1, whereas TPI-3 is devoid of its fifteen amino acid residues. These results indicate a high and specific susceptibility of TPI to proteolysis. Most significantly, the NH2-terminal region of TPI appears to be essential for inhibition of proteinase activity.  相似文献   

19.
一种水稻蛋白酶抑制剂基因的克隆及其结构分析   总被引:3,自引:0,他引:3  
参照水稻蛋白酶抑制剂部分氨基酸序列 ,利用水稻偏爱密码子设计引物 ,经 PCR扩增 ,从我国水稻 (Oryza sativa)品种“中花 8号”中克隆到一个长 40 8bp的基因。序列测定和分析表明 ,克隆到的是一个未见报道的新的水稻蛋白酶抑制剂基因 ,该基因编码了一个由 1 33个氨基酸组成 ,具有重复双功能结构域和以抑制胰蛋白酶为主的活性中心的包曼 -伯克 (Bowman- Birk)型蛋白酶抑制剂 ,该基因推导的氨基酸序列与大麦、小麦、豆类等的某些蛋白酶抑制剂的氨基酸序列具有较高的同源性 ,与该家族的水稻的一种胰蛋白酶抑制剂氨基酸全序列同源性高达 75%。  相似文献   

20.
The complete amino acid sequence of winged bean chymotrypsin inhibitor 3 (WCI-3) was determined by the conventional methods. WCI-3 consisted of 183 amino acid residues, but was heterogeneous in the carboxyl terminal region owing to the loss of one to four carboxyl terminal amino acid residues. The sequence of WCI-3 was highly homologous with those of soybean trypsin inhibitor Tia, winged bean trypsin inhibitor WTI-1, and Erythrina latissima trypsin inhibitor DE-3. One of the reactive site peptide bonds of WCI-3 was identified as Leu(65)-Ser(66), which was located at the same position as those of the other Kunitz-family leguminous proteinase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号