首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The initiator protein of the plasmid pPS10, RepA, has a putative helix-turn-helix (HTH) motif at its C-terminal end. RepA dimers bind to an inverted repeat at the repA promoter (repAP) to autoregulate RepA synthesis. [D. García de Viedma, et al. (1996) EMBO J. in press]. RepA monomers bind to four direct repeats at the origin of replication (oriV) to initiate pPS10 replication This report shows that randomly generated mutations in RepA, associated with defficiencies in autoregulation, map either at the putative HTH motif or in its vicinity. These mutant proteins do not promote pPS10 replication and are severely affected in binding to both the repAP and oriV regions in vitro. Revertants of a mutant that map in the vicinity of the HTH motif have been obtained and correspond to a second amino acid substitution far upstream of the motif. However, reversion of mutants that map in the helices of the motif occurs less frequently, at least by an order of magnitude. All these data indicate that the helices of the HTH motif play an essential role in specific RepA-DNA interactions, although additional regions also seem to be involved in DNA binding activity. Some mutations have slightly different effects in replication and autoregulation, suggesting that the role of the HTH motif in the interaction of RepA dimers or monomers with their respective DNA targets (IR or DR) is not the same.  相似文献   

2.
RepA protein is the DNA replication initiator of the Pseudomonas plasmid pPS10. RepA dimers bind to an inversely repeated operator sequence in repA promoter, thus repressing its own synthesis, whereas monomers bind to four directly repeated sequences (iterons) to initiate DNA replication. We had proposed previously that RepA is composed of two winged-helix (WH) domains, a structural unit also present in eukaryotic and archaeal initiators. To bind to the whole iteron sequence through both domains, RepA should couple monomerization to a conformational change in the N-terminal WH, which includes a leucine zipper-like sequence motif. We show for the first time that, by itself, binding to iteron DNA in vitro dissociates RepA dimers into monomers and alters RepA conformation, suggesting an allosteric effect. Furthermore, we also show that similar changes in RepA are promoted by mutations that substitute two Leu residues of the putative leucine zipper by Ala, destabilizing the hydrophobic core of the first WH. We propose that this mutant (RepA-2L2A) resembles a transient folding intermediate in the pathway leading to active monomers. These findings, together with the known activation of other Rep-type proteins by chaperones, are relevant to understand the molecular basis of plasmid DNA replication initiation.  相似文献   

3.
RepA is the DNA replication initiator protein of the Pseudomonas plasmid pPS10. RepA has a dual function: as a dimer, it binds to an inversely-repeated sequence acting as a repressor of its own synthesis; as a monomer, RepA binds to four directly-repeated sequences to constitute a specialized nucleoprotein complex responsible for the initiation of DNA replication. We have previously shown that a Leucine Zipper-like motif (LZ) at the N-terminus of RepA is responsible for protein dimerization. In this paper we characterize the existence in RepA of two protein globular domains C-terminal to the LZ. We propose that dissociation of RepA dimers into monomers results in a conformational change from a compact arrangement of both domains, competent for binding to the operator, to an extended species that is suited for iteron binding. This model establishes the structural basis for the activation of DNA replication initiators in plasmids from Gram-negative bacteria.  相似文献   

4.
Zoueva OP  Iyer VN  Matula TI  Kozlowski M 《Plasmid》2003,49(2):152-159
The broad-host-range replicon of the plasmid pCU1 has three origins of vegetative replication called oriB, oriS, and oriV. In the multi-origin replicon, individual origins can distinguish among replication factors provided by the host. It has been found that during replication in Escherichia coli polA(-) host, oriS was the only active origin of a mutant pCU1 derivative bearing a mutation in the gene encoding replication initiation protein RepA. To further investigate the capacity of oriS to function in an E. coli polA(-) host we constructed a number of clones of the basic replicon of pCU1 containing oriS as the only replication origin. An oriS construct created with pUC18 could transform the polA(-) strain when RepA was supplied in trans. When the oriS region (between nucleotides 290 and 832) was ligated to an antibiotic resistance Omega fragment, the construct could be recovered as a plasmid from polA(+) strain if functional RepA was provided in trans. Our results therefore indicate that the basic replicon of pCU1, containing oriS as the sole origin, does require RepA to initiate plasmid replication in E. coli  相似文献   

5.
The hemolysin-determining plasmid pAD1 is a member of a widely disseminated family of highly conjugative elements commonly present in clinical isolates of Enterococcus faecalis. The determinants repA, repB, and repC, as well as adjacent iteron sequences, are believed to play important roles in pAD1 replication and maintenance. The repA gene encodes an initiator protein, whereas repB and repC encode proteins related to stability and copy number. The present study focuses specifically on repA and identifies a replication origin (oriV) within a central region of the repA determinant. A small segment of repA carrying oriV was able to support replication in cis of a plasmid vector otherwise unable to replicate, if an intact RepA was supplied in trans. We demonstrate that under conditions in which RepA is expressed from an artificial promoter, a segment of DNA carrying only repA is sufficient for stable replication in E. faecalis. We also show that RepA binds specifically to oriV DNA at several sites containing inverted repeat sequences (i.e., IR-1) and nonspecifically to single-stranded DNA, and related genetic analyses confirm that these sequences play an important role in replication. Finally, we reveal a relationship between the internal structure of RepA and its ability to recognize oriV. An in-frame deletion within repA resulting in loss of 105 nucleotides, including at least part of oriV, did not eliminate the ability of the altered RepA protein to initiate replication using an intact origin provided in trans. The relationship of RepA to other known initiator proteins is also discussed.  相似文献   

6.
The minimal replication origin of the broad-host-range plasmid RK2, oriV, contains five iterons which are binding sites for the plasmid-encoded replication initiation protein TrfA, four DnaA boxes, which bind the host DnaA protein, and an AT-rich region containing four 13-mer sequences. In this study, 26 mutants with altered sequence and/or spacing of 13-mer motifs have been constructed and analysed for replication activity in vivo and in vitro. The data show that the replacement of oriV 13-mers by similar but not identical 13-mer sequences from Escherichia coli oriC inactivates the origin. In addition, interchanging the positions of the oriV 13-mers results in greatly reduced activity. Mutants with T/A substitutions are also inactive. Furthermore, introduction of single-nucleotide substitutions demonstrates very restricted sequence requirements depending on the 13-mer position. Only two of the mutants are host specific, functional in Pseudomonas aeruginosa but not in E. coli. Our experiments demonstrate considerable complexity in the plasmid AT-rich region architecture required for functionality. It is evident that low internal stability of this region is not the only feature contributing to origin activity. Our studies suggest a requirement for sequence-specific protein interactions within the 13-mers during assembly of replication complexes at the plasmid origin.  相似文献   

7.
8.
We previously identified the origin of replication of p703/5, a small cryptic plasmid from the KBL703 strain of Enterococcus faecalis. The origin of replication contains putative regulatory cis-elements required for replication and a replication initiator (RepA) gene. The replicon of p703/5 is similar in its structural organization to theta-type plasmids, and RepA is homologous to a family of Rep proteins identified in several plasmids from Gram-positive bacteria. Here, we report molecular interactions between RepA and the replication origin of p703/5. DNase I footprinting using recombinant RepA together with electrophoretic mobility shift assays confirmed the binding of RepA to the replication origin of p703/5 via iterons and an inverted repeat. We also demonstrated the formation of RepA dimers and the different binding of RepA to the iteron and the inverted repeat using gel filtration chromatographic analysis, a chemical crosslinking assay, and electrophoretic mobility shift assays in the presence of guanidine hydrochloride. Our results suggest that RepA plays a regulatory role in the replication of the enterococcal plasmid p703/5 via mechanisms similar to those of typical iteron-carrying theta-type plasmids.  相似文献   

9.
Replication initiation of the broad host range plasmid RK2 requires binding of the host-encoded DnaA protein to specific sequences (DnaA boxes) at its replication origin (oriV). In contrast to a chromosomal replication origin, which functionally interacts only with the native DnaA protein of the organism, the ability of RK2 to replicate in a wide range of Gram-negative bacterial hosts requires the interaction of oriV with many different DnaA proteins. In this study we compared the interactions of oriV with five different DnaA proteins. DNase I footprint, gel mobility shift, and surface plasmon resonance analyses showed that the DnaA proteins from Escherichia coli, Pseudomonas putida, and Pseudomonas aeruginosa bind to the DnaA boxes at oriV and are capable of inducing open complex formation, the first step in the replication initiation process. However, DnaA proteins from two Gram-positive bacteria, Bacillus subtilis and Streptomyces lividans, while capable of specifically interacting with the DnaA box sequences at oriV, do not bind stably and fail to induce open complex formation. These results suggest that the inability of the DnaA protein of a host bacterium to form a stable and functional complex with the DnaA boxes at oriV is a limiting step for plasmid host range.  相似文献   

10.
11.
The sequence of a 1823 base-pair region containing the replication functions of pPS10, a narrow host-range plasmid isolated from a strain of Pseudomonas savastanoi, is reported. The origin of replication, oriV, or pPS10 is contained in a 535 base-pair fragment of this sequence that can replicate in the presence of trans-acting function(s) of the plasmid. oriV contains four iterons of 22 base-pairs that are preceded by G+C-rich and A+T-rich regions. A dnaA box located adjacent to the repeats of the origin is dispensable but required for efficient replication of pPS10; A and T are equivalent bases at the 5' end of the box. repA, the gene of a trans-acting replication protein of 26,700 Mr has been identified by genetic and functional analysis. repA is adjacent to the origin of replication and is preceded by the consensus sequences of a typical sigma 70 promoter of Escherichia coli. The RepA protein has been identified, using the minicell system of E. coli, as a polypeptide with an apparent molecular mass of 26,000. A minimal pPS10 replicon has been defined to a continuous 1267 base-pair region of pPS10 that includes the oriV and repA sequences.  相似文献   

12.
The replication initiator protein, π, plays an essential role in the initiation of plasmid R6K replication. Both monomers and dimers of π bind to iterons in the γ origin of plasmid R6K, yet monomers facilitate open complex formation, while dimers, the predominant form in the cell, do not. Consequently, π monomers activate replication, while π dimers inhibit replication. Recently, it was shown that the monomeric form of π binds multiple tandem iterons in a strongly cooperative fashion, which might explain how monomers outcompete dimers for replication initiation when plasmid copy number and π supply are low. Here, we examine cooperative binding of π dimers and explore the role that these interactions may have in the inactivation of γ origin. To examine π dimer/iteron interactions in the absence of competing π monomer/iteron interactions using wild-type π, constructs were made with key base changes to each iteron that eliminate π monomer binding yet have no impact on π dimer binding. Our results indicate that, in the absence of π monomers, π dimers bind with greater cooperativity to alternate iterons than to adjacent iterons, thus preferentially leaving intervening iterons unbound and the origin unsaturated. We discuss new insights into plasmid replication control by π dimers.  相似文献   

13.
14.
The 2,053-bp broad-host-range incompatibility group N replicon of plasmid pCU1 has two components: a region of 1,200 bp that is sufficient for its replication in Escherichia coli PolA+ and PolA- hosts and a regulatory region called the group I iteron region that contains 13 39-bp iterons. Within the 1,200-bp region, there are three replication origins, two of which, called oriB and oriS, function in PolA+ and PolA- hosts and a third, called oriV, which functions only in PolA+ hosts. The region also specifies a protein called RepA. We now show that both oriB and oriS can function in a delta polA strain but that in such a strain, only oriB has an absolute requirement for RepA. oriS can function without RepA and polymerase I provided that the iteron region is deleted and that in this circumstance, it is the only origin, the usage of which is detected. The requirements for oriB usage can thus be distinguished from those for oriS usage. The oriB region can be recovered as a plasmid only if RepA is provided in trans. These complex features of this replicon are also shown to be shared by the IncN replicons of other antibiotic resistance plasmids. Functionally distinguishable origins in a small replicon may be a way of endowing such a replicon with a broad host range.  相似文献   

15.
The origin of replication of the IncL/M plasmid pMU604 was analyzed to identify sequences important for binding of initiator proteins and origin activity. A thrice repeated sequence motif 5'-NANCYGCAA-3' was identified as the binding site (RepA box) of the initiator protein, RepA. All three copies of the RepA box were required for in vivo activity and binding of RepA to these boxes appeared to be cooperative. A DnaA R box (box 1), located immediately upstream of the RepA boxes, was not required for recruitment of DnaA during initiation of replication by RepA of pMU604 unless a DnaA R box located at the distal end of the origin (box 3) had been inactivated. However, DnaA R box 1 was important for recruitment of DnaA to the origin of replication of pMU604 when the initiator RepA was that from a distantly related plasmid, pMU720. A mutation which scrambled DnaA R boxes 1 and 3 and one which scrambled DnaA R boxes 1, 3 and 4 had much more deleterious effects on initiation by RepA of pMU720 than on initiation by RepA of pMU604. Neither Rep protein could initiate replication from the origin of pMU604 in the absence of DnaA, suggesting that the difference between them might lie in the mechanism of recruitment of DnaA to this origin. DnaA protein enhanced the binding and origin unwinding activities of RepA of pMU604, but appeared unable to bind to a linear DNA fragment bearing the origin of replication of pMU604 in the absence of other proteins.  相似文献   

16.
The RepA protein of the plasmid Rts1, consisting of 288 amino acids, is a trans-acting protein essential for initiation of plasmid replication. To study the functional domains of RepA, hybrid proteins of Rts1 RepA with the RepA initiator protein of plasmid P1 were constructed such that the N-terminal portion was from Rts1 RepA and the C-terminal portion was from P1 RepA. Six hybrid proteins were examined for function. The N-terminal region of Rts1 RepA between amino acid residues 113 and 129 was found to be important for Rts1 ori binding in vitro. For activation of the origin in vivo, an Rts1 RepA subregion between residues 177 and 206 as well as the DNA binding domain was required. None of the hybrid initiator proteins activated the P1 origin. Both in vivo and in vitro studies showed, in addition, that a C-terminal portion of Rts1 RepA was required along with the DNA binding and ori activating domains to achieve autorepression, suggesting that the C-terminal region of Rts1 RepA is involved in dimer formation. A hybrid protein consisting of the N-terminal 145 amino acids of Rts1 and the C-terminal 142 amino acids from P1 showed strong interference with both Rts1 and P1 replication, whereas other hybrid proteins showed no or little effect on P1 replication.  相似文献   

17.
Proteins from the Rep family of DNA replication initiators exist mainly as dimers, but only monomers can initiate DNA replication by interaction with the replication origin (ori). In this study, we investigated both the activation (monomerization) and the degradation of the broad‐host‐range plasmid RK2 replication initiation protein TrfA, which we found to be a member of a class of DNA replication initiators containing winged helix (WH) domains. Our in vivo and in vitro experiments demonstrated that the ClpX‐dependent activation of TrfA leading to replicationally active protein monomers and mutations affecting TrfA dimer formation, result in the inhibition of TrfA protein degradation by the ClpXP proteolytic system. These data revealed that the TrfA monomers and dimers are degraded at substantially different rates. Our data also show that the plasmid replication initiator activity and stability in E. coli cells are affected by ClpXP system only when the protein sustains dimeric form.  相似文献   

18.
19.
Boundaries of the pSC101 minimal replicon are conditional.   总被引:5,自引:3,他引:2       下载免费PDF全文
The DNA segment essential for plasmid replication commonly is referred to as the core or minimal replicon. We report here that host and plasmid genes and sites external to the core replicon of plasmid pSC101 determine the boundaries and competence of the replicon and also the efficiency of partitioning. Missense mutations in the plasmid-encoded RepA protein or mutation of the Escherichia coli topoisomerase I gene enable autonomous replication of a 310-bp pSC101 DNA fragment that contains only the actual replication origin plus binding sites for RepA and the host-encoded DnaA protein. However, in the absence of a repA or topA mutation, the DNA-bending protein integration host factor (IHF) and either of two cis-acting elements are required. One of these, the partitioning (par) locus, is known to promote negative DNA supercoiling; our data suggest that the effects of the other element, the inverted repeat (IR) sequences that overlap the repA promoter, are mediated through the IR's ability to bind RepA. The concentrations of RepA and DnaA, which interact with each other and with plasmid DNA in the origin region (T. T. Stenzel, T. MacAllister, and D. Bastia, Genes Dev. 5:1453-1463, 1991), also affect both replication and partitioning. Our results, which indicate that the sequence requirements for replication of pSC101 are conditional rather than absolute, compel reassessment of the definition of a core replicon. Additionally, they provide further evidence that the origin region RepA-DnaA-DNA complex initiating replication of pSC101 also mediates the partitioning of pSC101 plasmids at cell division.  相似文献   

20.
The P1 plasmid origin has an array of five binding sites (iterons) for the plasmid-encoded initiator protein RepA. Saturation of these sites is required for initiation. Iterons can also pair via their bound RepAs. The reaction, called handcuffing, is believed to be the key to control initiation negatively. Here we have determined some of the mechanistic details of the reaction. We show that handcuffed RepA-iteron complexes dissociate when they are diluted or challenged with cold competitor iterons, suggesting spontaneous reversibility of the handcuffing reaction. The complex formation increases with increased RepA binding, but decreases upon saturation of binding. Complex formation also decreases in the presence of molecular chaperones (DnaK and DnaJ) that convert RepA dimers to monomers. This indicates that dimers participate in handcuffing, and that chaperones are involved in reversing handcuffing. They could play a direct role by reducing dimers and an indirect role by increasing monomers that would compete out the weaker binding dimers from the origin. We propose that an increased monomer to dimer ratio is the key to reverse handcuffing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号