首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Basidiospore germination in an ectomycorrhizal ammonia fungus Hebeloma vinosophyllum was stimulated by 10–500 mM NH4Cl aqueous solution at pH 4.5–9.0, but not by pure water. The basidiospores germinated at 10°–35°C with an optimum at 25°–30°C. The highest germination percentage (83.0%) was observed in 100 mM NH4Cl aqueous solution adjusted to pH 8.0 by KOH, when the basidiospores were incubated at a density of 106 spores/ml at 30°C for 14 days. The percent germination value decreased with the increased duration of storage under both dry and wet conditions. Humidity and temperature affected the longevity of H. vinosophyllum basidiospores. The basidiospores maintained their germination ability longer under a dry condition than under a wet condition. The greatest longevity was accomplished by storage at 15°C under a dry condition.  相似文献   

2.
In vitro screening for cold hardiness of raspberry cultivars   总被引:1,自引:0,他引:1  
Raspberry (Rubus idaeus L.) cultivars ‘Festival’, ‘Titan’ and ‘Willamette’ were cultured in vitro on three different media: (A) MS medium supplemented with 1.0 mg l-1 BAP and 0.1 mg l-1 IBA, (B) MS medium without growth regulators, and (C) MS medium with reduced sucrose (10 g l-1), and exposed to different low temperature acclimation treatments: (1) control, no acclimation, (2) 1 week at +15 °C, 1 week at +2 °C, 24 h at -2 °C and 3 days at +2 °C, and (3) 2 weeks at +15 °C, 2 weeks at +2 °C, 24 h at −2 °C and 3 days at +2 °C. After acclimation, shoot moisture content was measured, and cold hardiness (LT50) was determined by controlled freezing. Shoot moisture content was generally lower on culture medium B compared to the other media, but not affected by acclimation treatment. In non-acclimated plants, medium composition had no effect on cold hardiness and no cultivar differences in hardiness were observed. After acclimation, plants on culture medium B were on average more cold hardy than on the other media. Acclimation treatment 3 on media A and B allowed the best discrimination between the hardy cultivar ‘Festival’ and less cold hardy ‘Titan’ and ‘Willamette’. When acclimation treatments were tested further using 11 raspberry cultivars with different levels of cold hardiness, discrimination between cultivars was satisfactory only after acclimation treatment 3 on culture medium B. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Sensitivity to cold and freezing differs between populations within two species of live oaks (Quercus section Virentes Nixon) corresponding to the climates from which they originate. Two populations of Quercus virginiana (originating from North Carolina and north central Florida) and two populations of the sister species, Q. oleoides, (originating from Belize and Costa Rica) were grown under controlled climate regimes simulating tropical and temperate conditions. Three experiments were conducted in order to test for differentiation in cold and freezing tolerance between the two species and between the two populations within each species. In the first experiment, divergences in response to cold were tested for by examining photosystem II (PS II) photosynthetic yield (ΔF/F m′) and non-photochemical quenching (NPQ) of plants in both growing conditions after short-term exposure to three temperatures (6, 15 and 30°C) under moderate light (400 μmol m−2 s−1). Without cold acclimation (tropical treatment), the North Carolina population showed the highest photosynthetic yield in response to chilling temperatures (6°C). Both ecotypes of both species showed maximum ΔF/F m′ and minimum NPQ at their daytime growth temperatures (30°C and 15°C for the tropical and temperate treatments, respectively). Under the temperate treatment where plants were allowed to acclimate to cold, the Q. virginiana populations showed greater NPQ under chilling temperatures than Q. oleoides populations, suggesting enhanced mechanisms of photoprotective energy dissipation in the more temperate species. In the second and third experiments, inter- and intra-specific differentiation in response to freezing was tested for by examining dark-adapted F v/F m before and after overnight freezing cycles. Without cold acclimation, the extent of post-freezing declines in F v/F m were dependent on the minimum freezing temperature (0, −2, −5 or −10°C) for both populations in both species. The most marked declines in F v/F m occurred after freezing at −10°C, measured 24 h after freezing. These declines were continuous and irreversible over the time period. The North Carolina population, however, which represents the northern range limit of Q. virginiana, showed significantly less decline in F v/F m than the north central Florida population, which in turn showed a lower decline in Fv/F m than the two Q. oleoides populations from Belize and Costa Rica. In contrast, after exposure to three months of chilling temperatures (temperate treatment), the two Q. virginiana populations showed no decline in F v/F m after freezing at −10°C, while the two Q. oleoides populations showed declines in F v/F m reaching 0.2 and 0.1 for Costa Rica and Belize, respectively. Under warm growth conditions, the two species showed different F 0 dynamics directly after freezing. The two Q. oleoides populations showed an initial rise in F 0 30 min after freezing, followed by a subsequent decrease, while the Q. virginiana populations showed a continuous decrease in F 0 after freezing. The North Carolina population of Q. virginiana showed a tendency toward deciduousness in response to winter temperatures, dropping 58% of its leaves over the three month winter period compared to only 6% in the tropical treatment. In contrast, the Florida population dropped 38% of its leaves during winter. The two populations of the tropical Q. oleoides showed no change in leaf drop during the 3-months winter (10% and 12%) relative to their leaf drop over the same timecourse in the tropical treatment. These results indicate important ecotypic differences in sensitivity to freezing and cold stress between the two populations of Q. virginiana as well as between the two species, corresponding to their climates of origin.  相似文献   

4.
The temperature dependence of UV effects was studied for Arctic and temperate isolates of the red macrophytes Palmaria palmata, Coccotylus truncatus and Phycodrys rubens. The effects of daily repeated artificial ultraviolet B and A radiation (UVBR: 280–320?nm, UVAR: 320–400?nm) treatments were examined for all isolates at 6, 12 and 18?°C by measuring growth, optimal quantum yield of PSII (Fv/Fm) and cyclobutane-pyrimidine dimer (CPD) accumulation. Furthermore, possible ecotypic differences in UV sensitivity between Arctic and temperate isolates were evaluated. Large species-specific differences in UV sensitivity were observed for all parameters: the lower subtidal species C. truncatus and P. rubens were highly sensitive to the UV treatments, whereas P. palmata, which predominantly occurs in the upper subtidal zone, was not affected by these treatments. Only minor differences were found between Arctic and temperate isolates, suggesting that no differences in UV sensitivity have evolved in these species. Relative growth rates were temperature-dependent, whereas species-specific UV effects on growth rates were relatively independent of temperature. In contrast, the species-specific decrease in Fv/Fm and its subsequent recovery were temperature-dependent in all species. UV effects on Fv/Fm were lower at 12 and 18?°C compared with 6?°C. In addition, UV effects on Fv/Fm decreased in the course of the experiment at all temperatures, indicating acclimation to the UV treatments. CPDs accumulated during the experiment in both isolates of P. rubens, whereas CPD concentrations remained low for the other two species. CPD accumulation appeared to be independent of temperature. The results suggest that summer temperatures occurring in temperate regions facilitate repair of UV-induced damage and acclimation to UV radiation in these algae compared with Arctic temperatures. Because the differences in UV effects on Fv/Fm, growth and CPD accumulation were relatively small over a broad range of temperatures, it was concluded that the influence of temperature on UV effects is small in these species.  相似文献   

5.
The purpose of this study was to measure the acute toxicity of zinc (Zn) on Farfantepenaeus paulensis at different salinities and temperatures by monitoring oxygen consumption. This aspect of the effect of zinc has not been studied in this important commercial species before. First, we examined the acute toxicity of zinc in F. paulensis at 24, 48, 72, and 96?h medium lethal concentration (LC50). One hundred and fifty shrimp were employed for the routine metabolism measurement utilizing sealed respirometers. Ten shrimp were subjected to oxygen consumption measurements in one of the four concentrations of zinc (control, 0.5, 1.0, 2.0, and 3.0 mg?L?1) at three salinities (36, 20, and 5) and three temperatures (25°C, 20°C, and 15°C). Zinc was significantly more toxic at a salinity of 5 than at 20 or 36. The oxygen consumption was estimated through experiments performed on each of the 12 possible combinations of three temperatures (25°C, 20°C, and 15°C) and three salinities (36, 20, and 5). The shrimp showed a significant reduction in oxygen consumption at a salinity of 5. The results show that the oxygen consumption decreases with respect to the zinc concentration in all temperatures studied. At the highest zinc concentration employed (3.0?mg?L?1), the salinity 5 and the temperature at 25°C, oxygen consumption decreases 60.92% in relation to the control. The results show that zinc is more toxic to F. paulensis at lower salinities. The significance of the findings for the biology of the species close to sources of zinc is discussed.  相似文献   

6.
Encarsia tricolor Foërster is a facultative autoparasitoid that develops on the important pestTrialeurodes vaporariorum (Westwood) in outdoor crop conditions, which makes this aphelinid species promising for biological control programs in regions where field and protected crops coexist. In this paper we report the results obtained in the study of daily and totalE. tricolor egg laying and of adult female preference for different host stages in which to lay eggs at constant temperatures in the range 10 to 32 °C. Only whitefly nymphs were present in the searching arena (tomato leaflets). The mean number of eggs laid per female in one day ranged from 4.0 (10 °C and 32 °C) to 15.2 (24 °C). The mean total number of eggs increased with temperature from 10 to 28 °C, reaching a maximum of 123 eggs per female at 28 °C, and decreased sharply from 28 to 32 °C. The relation between the intrinsic rate of increase (rm) and temperature in the range 10 to 28 °C followed a straight line whose equation was rm=?0.076+0.011*T (R2=0.99). The rm ofE. tricolor was greater than the rm ofT. vaporariorum when temperature was higher than 9.2 °C. The preference for any particular host instar in which to lay eggs was not always significant. However, N4 was the host instar preferred whenever preference was statistically significant.  相似文献   

7.
Water hyacinth is considered the most damaging aquatic weed in South Africa. The success of biocontrol initiatives against the weed varies nation-wide, but control remains generally unattainable in higher altitude, temperate regions. Eccritotarsus catarinensis (Hemiptera: Miridae) is a biocontrol agent of water hyacinth that was first released in South Africa in 1996. By 2011, it was established at over 30 sites across the country. These include the Kubusi River, a site with a temperate climate where agent establishment and persistence was unexpected. This study compared the critical thermal limits of the Kubusi River insect population with a laboratory-reared culture to determine whether any physiological plasticity was evident that could account for its unexpected establishment. There were no significant differences in critical thermal maxima (CTmax) or minima (CTmin) between sexes, while the effect of rate of temperature change on the thermal parameters in the experiments had a significant impact in some trials. Both CTmax and CTmin differed significantly between the two populations, with the field individuals tolerating significantly lower temperatures (CTmin: ?0.3°C?±?0.063 [SE], CTmax: 42.8°C?±?0.155 [SE]) than those maintained in the laboratory (CTmin: 1.1°C?±?0.054 [SE], CTmax: 44.9°C?±?0.196 [SE]). Acclimation of each population to the environmental conditions typical of the other for a five-day period illustrated that short-term acclimation accounted for some, but not all of the variation between their lower thermal limits. This study provides evidence for the first cold-adapted strain of E. catarinensis in the field, with potential value for introduction into other colder regions where water hyacinth control is currently unattainable.  相似文献   

8.
Investigations on seeds of Scrophularia marilandica L. were undertaken to determine their germination requirements. Seeds were collected from three naturally occurring sites and one greenhouse-grown population in London, Ontario in September and October of 1997. Some were set to germinate immediately after collection; others were stored in or on soil outside and/or under controlled laboratory conditions before testing. Germination was assessed under two light/temperature regimes (35°C 14 h light, 20°C 10 h dark and 25°C 14 h light, 10°C 10 h dark), in continuous darkness, and in the presence of two germination-promoting chemicals (GA3 and KNO3). Fresh seeds germinated best at 35/20°C, while stored seeds germinated best at 25/10°C. No differences in percent germination were found among three seed-maturity stages. All chemical treatments, except 0.01 M KNO3, increased percent germination. Significant differences were found both among and within sites for most chemical treatments, but exposure to 3 × 10−4 M GA3 caused almost every seed to germinate. When compared to the control, both the gibberellic acid and the soil-storage treatments contributed to faster germination. Exposure of seeds to naturally prevailing conditions on the soil surface followed by testing under the 25/10°C regime produced the highest percent germination. No seeds germinated in the dark. In summary, seeds of S. marilandica exhibit physiological dormancy, which can be alleviated by exposure to light, after-ripening and/or cold stratification. It is probable that the differences in germination response among sites can be attributed to differences in environmental conditions during seed production. These experiments indicate that the seeds of S. marilandica must be buried shortly after dispersal in order to form a persistent seed bank.  相似文献   

9.
Experiments were carried out to investigate the heart rate of Synbranchus marmoratus after changing the temperature of the water contained in the experimental chamber of the acclimated fish (from 25 to 35°C and from 25 to 15°C). Then, an isometric cardiac muscle preparation was used to test the relative importance of Ca2+ released from the sarcoplasmic reticulum and Ca2+ influx across the sarcolemma for the cardiac performance under different thermal conditions: 25°C (acclimation temperature), 15 and 35°C. Adrenaline and ryanodine were used to modulate the Ca2+ flux through the sarcolemma and the sarcoplasmic reticulum, respectively. Ryanodine reduced the peak tension by approximately 47% at 25°C, and by 53% at 35°C; however, it had no effect at 15°C. A high adrenaline concentration was able to ameliorate the negative effects of ryanodine. Despite increasing the peak tension, adrenaline increased the times necessary for contraction and relaxation. We conclude that the sarcoplasmic reticulum is active in contributing Ca2+ to the development of tension at physiological contraction frequencies. The adrenaline-stimulated Ca2+ influx is able to increase the peak tension, even after addition of ryanodine, at physiologically relevant temperatures and pacing frequencies.  相似文献   

10.
The chloroplast F0F1-ATP synthase-ATPase is a tiny rotary motor responsible for coupling ATP synthesis and hydrolysis to the light-driven electrochemical proton gradient. Reversible oxidation/reduction of a dithiol, located within a special regulatory domain of the γ subunit of the chloroplast F1 enzyme, switches the enzyme between an inactive and an active state. This regulatory mechanism is unique to the ATP synthases of higher plants and its physiological significance lies in preventing nonproductive depletion of essential ATP pools in the dark. The three-dimensional structure of the chloroplast F1 gamma subunit has not yet been solved. To examine the mechanism of dithiol regulation, a model of the chloroplast gamma subunit was obtained through segmental homology modeling based on the known structures of the mitochondrial and bacterial γ subunits, together with de novo construction of the unknown regulatory domain. The model has provided considerable insight into how the dithiol might modulate catalytic function. This has, in turn, suggested a mechanism by which rotation of subunits in F0, the transmembrane proton channel portion of the enzyme, can be coupled, via the ε subunit, to rotation of the γ subunit of F1 to achieve the 120° (or 90°+30°) stepping action that is characteristic of F1 γ subunit rotation.  相似文献   

11.
Phosphatidylcholine containing large amounts of long polyunsaturated fatty acid, eicosapentaenoic acid (C20:5) and docosahexaenoic acid (C22:6), was synthesized in isooctane. Immobilized phospholipase A2 was used as a catalyst. A parallel non-enzymatic esterification reaction was investigated in separate experiments.

The concentrations of lyso-phosphatidylcholine, polyunsaturated fatty acids, water and the enzyme were varied over wide ranges as were the temperature and the reaction time. The type of enzyme, carrier and immobilization procedure were held constant.

The yield of phosphatidylcholine was relatively high (about 21%) when the concentration of polyunsaturated fatty acids was high (300 mg/g of reaction mixture) and the water content was low (below 30% of the dry immobilized enzyme). The highest yield of phosphatidylcholine was found at 80 hours and 75°C. However, at this temperature an extensive non-enzymatic reaction between polyunsaturated fatty acids and lyso-phosphatidylcholine occurred. At 80°C the polyunsaturated fatty acids were partly oxidized. Therefore, a temperature of 45°C to 65°C is probably the optimum temperature for the reaction.  相似文献   

12.
The heat tolerance of 8 temperate- and 1 subtropical-origin C3 species as well as 17 tropical-origin ones, including C3, C4, and CAM species, was estimated using both F0-T curve and the ratio of chlorophyll fluorescence parameters, prior to and after high temperature treatment. When leaves were heated at the rate of ca. 1 °C min−1 in darkness, the critical temperature (Tc) varied extensively among species. The Tc's of all 8 temperate-origin species ranged between 40–46 °C in winter (mean temperature 16–19 °C), and between 32–48 °C in summer (mean temperature ca. 30 °C). Those for 1 subtropical- and 12 tropical-origin C3 species ranged between 25–44 °C and 35–48 °C, and for 1 CAM and 4 C4 species were 41–47 and 45–46 °C, respectively. Acclimating three C3 herbaceous plants at high temperature (33/28 °C, day/night) for 10 d in winter caused their Tc's rising to nearly the values measured in summer. When leaves were exposed to 45 °C for 20 min and then kept at room temperature in darkness for 1 h, a significant correlation between RFv/m (the ratio of Fv/Fm before and after 45 °C treatment) and Tc was observed for all tested temperate-origin C3 species as well as tropical-origin CAM and C4 species. However, F0 and Fv/Fm of the tropical-origin C3 species were less sensitive to 45 °C treatment, regardless of a large variation of Tc; thus no significant correlation was found between their RFv/m and Tc. Thus Tc might not be a suitable index of heat tolerance for plants with wide range of environmental adaptation. Nevertheless, Tc's of tropical origin C3 species, varying and showing high plasticity to seasonal changes and temperature treatment, appeared suitable for the estimation of the degree of temperature acclimation in the same species.  相似文献   

13.
The chemical composition of agars from Gracilariopsis lemaneiformis, newly reported from Japan, was investigated. Native agars were isolated by a sequential extraction of plants in water at 22 °C and 100 °C, and in boiling 20, 40 and 60° ethanol. Agars in each extract were analyzed by chemical methods, 1H, 13C NMR; and IR spectroscopy. The highest yield of agar (total carbohydrate) was obtained from the 40° ethanol extract (55°). Highest sulfate content was attained in non-alkali treated agars extracted with hot water (4.81°, DS 0.2). The 3,6-anhydrogalactose content was highest in the 40° ethanol extract (36.1° in non-alkali treatment, 40.3° in alkali treatment). The highest methoxyl content (6.51°, DS 0.66) was obtained in the 60° ethanol extract. The G. lemaneiformis agar is composed of the biological precursor to agarobiose repeating units and agarobiose containing 6-O-methyl agarobiose and a small amount of 2-O-methyl-α-l-galactopyranose residues. Alkali treatment improved the chemical quality of the agar fractions, which was comparable with Japanese commercial agar and agarose.  相似文献   

14.
Sporulation in Bacillus megaterium var phosphaticum (PB — 1) was induced using modified nutrient media. This modified medium induced sporulation within 36 h. After spore induction the spores were kept under refrigerated (5°C) and room temperature (32°C) for five months and survival of spores was studied at 15 days intervals by plating them in nutrient agar medium. It was observed that there was not much variation in the storage temperature (5°C & 32°C). The spore cells of Bacillus megaterium var phosphaticum (PB — 1) were observed up to five months of storage under refrigerated (5°C) and room temperature (32°C). Regeneration of spore cells into vegetative cells was studied in tap water, rice gruel, nutrient broth, sterile lignite and sterile water at different concentrations of spore inoculum. The multiplication of sporulated Bacillus megaterium var phosphaticum culture was fast and reached its maximum (29.5 × 108 cfu ml−1) in nutrient broth containing 5 per cent inoculum level.  相似文献   

15.
In order to replace the conventional chemical pesticides, extensive researches have been done on entomopathogenic fungi. Entomopathogenic fungus Beauveria bassiana is an important biocontrol agent against major economic pests and is being employed in Integrated pest management (IPM) along with synthetic pesticides. Cabbage aphid Brevicoryne brassicae L. is one of the important pests of Brassicaceae family. Therefore, in this research, the virulence isolate of B. brassicae (IRAN 429C) was investigated on adults of cabbage aphid under laboratory conditions. The experiments were conducted at 25 ± 2 °C, 60 ± 10 R. H. and a photoperiod of 16:8 (L: D). After preliminary experiments, the adult aphids were treated with fungal concentrations of 1 × 103 to 1 × 107 spores/ml. Probit analysis was conducted to calculate LC50 and LC95 values for the isolate. Positive correlation was observed between concentrations and pest mortality. LC50 and LC95 values calculated for IRAN 429C isolate are 2.04 × 105 and 1.82 × 108, respectively. The mortality was counted one day after the treatment and then continued for 14 days. Cumulative mortality for 14 days after treatment varied from 54% for IRAN 429C at low concentration (103 conidia/ml) to 83% at high concentration (107 conidia/ml). The lowest LT50 was obtained at 7.67 days for IRAN 429C isolate at concentration 1 × 107 spore/ml. According to the insecticidal activity of mentioned fungi on cabbage aphid, it can be used in biocontrol programmes of B. brassicae.  相似文献   

16.
Several studies have shown improved soil stability under elevated atmospheric CO2 caused by increased plant and microbial biomass. These studies have not quantified the mechanisms responsible for soil stabilisation or the effect on water relations. The objective of this study was to assess changes in water repellency under elevated CO2. We hypothesised that increased plant biomass will drive an increase in water repellency, either directly or through secondary microbial processes. Barley plants were grown at ambient (360 ppm) and elevated (720 ppm) CO2 concentrations in controlled chambers. Each plant was grown in a separate tube of 1.2 m length constructed from 22 mm depth × 47 mm width plastic conduit trunk and packed with sieved arable soil to 55% porosity. After 10 weeks growth the soil was dried at 40°C before measuring water sorptivity, ethanol sorptivity and repellency at many depths with a 0.14 mm radius microinfiltrometer. This provided a microscale measure of the capacity of soil to rewet after severe drying. At testing roots extended throughout the depth of the soil in the tube. The depth of the measurement had no effect on sorptivity or repellency. A rise in CO2 resulted in a decrease in water sorptivity from 1.13 ± 0.06 (s.e) mm s−1/2 to 1.00 ± 0.05 mm s−1/2 (P < 0.05) and an increase in water repellency from 1.80 ± 0.09 to 2.07 ± 0.08 (P < 0.05). Ethanol sorptivity was not affected by CO2 concentration, suggesting a similar pore structure. Repellency was therefore the primary cause of decreased water sorptivity. The implications will be both positive and negative, with repellency potentially increasing soil stability but also causing patchier wetting of the root-zone.  相似文献   

17.
We analysed the relative effects of food availability and temperature on rates of growth and development of a predatory planktonic water mite, Piona exigua. Growth in length of mites fed Daphnia, Ceriodaphnia and Chydorus was analysed by Gompertz or von Bertalanffy curves; these curves were compared by parallel curve analysis. Growth rates of nymphs and adult female mites increased with temperature; the duration of the imagochrysalis stage decreased. Females grown at 10 °C were smaller at final size than females grown at 15 °C, 18 °C or 22 °C. Females reared at food levels of 15 or 30 prey l−1 grew more slowly and were smaller than those provided with 60 or 120 prey l−1. Nymphs grew more slowly when Daphnia were the only prey, than when smaller prey were available. Food level did not affect nymph growth at 10 °C or 15 °C, but growth at 18 °C or 22 °C may have been slowed at the lowest food levels. Synergistic effects of temperature and food level on nymph growth were apparent only from analysis of growth curves and not from stage duration data.  相似文献   

18.
A method for measurement of rapid diffusional exchange between external and internal water in lecithin vesicles is described. Paramagnetic ions were inserted inside DPL vesicles and the NMR relaxation times for water protons were measured as a function of temperature. It was found that water diffusion rate is described by a single activation energy of 15±1 kcal/mole in the temperature range 16 – 35°C and exhibits a maximum at 44°C. The permeability of DPL vesicles to water was calculated to 16–18 × 10?4 cm/s at 44°C and 1.7 × 10?4 cm/s at 20°C.  相似文献   

19.
A M Edelman  E G Krebs 《FEBS letters》1982,138(2):293-298
Phosphatidylethanolamine (PE) was isolated from membranes of Bacillus megaterium. The organism was grown at 20°C and 55°C. The phase equilibria in PE/water systems were studied by 2H and 31P nuclear magnetic resonance, and by polarized light microscopy. PE isolated from B. megaterium grown at 20°C forms a lamellar liquid crystalline phase at the growth temperature, and at low water contents a cubic liquid crystalline phase at 58°C. The ratio iso/ante-iso acyl chains was 0.3 in this lipid. PE isolated from this organism grown at 55°C forms only a lamellar liquid crystalline phase up to at least 65°C. In this lipid the ratio iso/ante-iso acyl chains was 3.2.  相似文献   

20.
Rising atmospheric CO2 concentrations have highlighted the importance of being able to understand and predict C fluxes in plant-soil systems. We investigated the responses of the two fluxes contributing to below-ground efflux of plant root-dependent CO2, root respiration and rhizomicrobial respiration of root exudates. Wheat (Triticum aestivum L., var. Consort) plants were grown in hydroponics at 20°C, pulse-labelled with 14CO2 and subjected to two regimes of temperature and light (12 h photoperiod or darkness at either 15°C or 25°C), to alter plant C supply and demand. Root respiration was increased by temperature with a Q 10 of 1.6. Root exudation was, in itself, unaltered by temperature, however, it was reduced when C supply to the roots was reduced and demand for C for respiration was increased by elevated temperature. The rate of exudation responded much more rapidly to the restriction of C input than did respiration and was approximately four times more sensitive to the decline in C supply than respiration. Although temporal responses of exudation and respiration were treatment dependent, at the end of the experimental period (2 days) the relative proportion of C lost by the two processes was conserved despite differences in the magnitude of total root C loss. Approximately 77% of total C and 67% of 14C lost from roots was accounted for by root respiration. The ratio of exudate specific activity to CO2 specific activity converged to a common value for all treatments of 2, suggesting that exudates and respired CO2were not composed of C of the same age. The results suggest that the contributions of root and rhizomicrobial respiration to root-dependent below-ground respiration are conserved and highlight the dangers in estimating short-term respiration and exudation only from measurements of labelled C. The differences in responses over time and in the age of C lost may ultimately prove useful in improving estimates of root and rhizomicrobial respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号