首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saccharomyces cerevisiae and other yeast cells harboring the linear double stranded (ds) DNA plasmids pGKL1 and pGKL2 secrete a killer toxin consisting of 97K, 31K and 28K subunits into the culture medium (EMBO J. 5, 1995-2002 (1986), Nucleic Acids Res., 15, 1031-1046 (1987]. The 28K subunit of the killer toxin was successfully expressed in S. cerevisiae when it was cloned on a circular plasmid with its putative promoter region replaced with that of S. cerevisiae chromosomal genes. The expression of the 28K subunit of the killer toxin in killer-sensitive cells resulted in the death of the host cells. This killing activity by the 28K subunit was prevented by the expression of the killer immunity, indicating that the killing activity of the killer toxin complex was carried out by the 28K subunit. Although the 28K subunit was synthesized as a intact precursor protein with its own signal sequence, it was not secreted into the culture medium but remained in the host cells. This indicated that 28K subunit killed host cells from inside of the cells rather than from outside. We further suggested that 28K killer subunit without 97K and 31K subunits did not kill the killer-sensitive cells from outside.  相似文献   

2.
Saccharomyces cerevisiae harboring linear dsDNA plasmids, pGKL1 and pGKL2, secretes a killer toxin consisting of 97, 31 and 28 kilodalton subunits (Nucleic Acids Res., 15, 1031-1046, 1987). We isolated the DNA encoding the N-terminal pre-sequence of the 28K precursor protein and constructed a new secretion vector in S. cerevisiae. Mouse alpha-amylase fused to the 28K signal sequence was secreted into the culture medium with a high efficiency similar to those fused to the mating factor alpha and 97K-31K killer signal sequences. This data clearly indicates that 28K presequence functions as a secretion signal. Glycosylated and nonglycosylated alpha-amylase molecules were detected in the culture medium. The secretion of alpha-amylase was blocked by sec18-1 mutation. The secreted alpha-amylase recovered from the medium was found to migrate faster in SDS-polyacrylamide gel than the precursor form of alpha-amylase synthesized in vitro. These lines of evidence suggest that mouse alpha-amylase fused to 28K killer signal sequence was processed, glycosylated and secreted through the normal secretion pathway of the yeast.  相似文献   

3.
Killer toxin secretion was blocked at the restrictive temperature in Saccharomyces cerevisiae sec mutants with conditional defects in the S. cerevisiae secretory pathway leading to accumulation of endoplasmic reticulum (sec18), Golgi (sec7), or secretory vesicles (sec1). A 43,000-molecular-weight (43K) glycosylated protoxin was found by pulse-labeling in all sec mutants at the restrictive temperature. In sec18 the protoxin was stable after a chase; but in sec7 and sec1 the protoxin was unstable, and in sec1 11K toxin was detected in cell lysates. The chymotrypsin inhibitor tosyl-l-phenylalanyl chloromethyl ketone (TPCK) blocked toxin secretion in vivo in wild-type cells by inhibiting protoxin cleavage. The unstable protoxin in wild-type and in sec7 and sec1 cells at the restrictive temperature was stabilized by TPCK, suggesting that the protoxin cleavage was post-sec18 and was mediated by a TPCK-inhibitable protease. Protoxin glycosylation was inhibited by tunicamycin, and a 36K protoxin was detected in inhibited cells. This 36K protoxin was processed, but toxin secretion was reduced 10-fold. We examined two kex mutants defective in toxin secretion; both synthesized a 43K protoxin, which was stable in kex1 but unstable in kex2. Protoxin stability in kex1 kex2 double mutants indicated the order kex1 --> kex2 in the protoxin processing pathway. TPCK did not block protoxin instability in kex2 mutants. This suggested that the KEX1- and KEX2-dependent steps preceded the sec7 Golgi block. We attempted to localize the protoxin in S. cerevisiae cells. Use of an in vitro rabbit reticulocyte-dog pancreas microsomal membrane system indicated that protoxin synthesized in vitro could be inserted into and glycosylated by the microsomal membranes. This membrane-associated protoxin was protected from trypsin proteolysis. Pulse-chased cells or spheroplasts, with or without TPCK, failed to secrete protoxin. The protoxin may not be secreted into the lumen of the endoplasmic reticulum, but may remain membrane associated and may require endoproteolytic cleavage for toxin secretion.  相似文献   

4.
Hairpin plasmid--a novel linear DNA of perfect hairpin structure.   总被引:10,自引:1,他引:9       下载免费PDF全文
Y Kikuchi  K Hirai  N Gunge    F Hishinuma 《The EMBO journal》1985,4(7):1881-1886
The terminal structures of deletion derivatives of linear DNA killer plasmid from yeast were analyzed. The yeast Kluyveromyces lactis harbors two unique double-stranded linear DNA killer plasmids, pGKL1 of 8.9 kb and pGKL2 of 13.4 kb. The killer toxin and the resistance to the killer are coded by pGKL1, while pGKL2 is required for the maintenance of pGKL1 in the cell. When the pGKL plasmids from K. lactis were transferred into Saccharomyces cerevisiae by transformation, non-killer transformants harboring pGKL2 and new plasmids, F1 of 7.8 kb and F2 of 3.9 kb, were obtained. F2 was shown to be a linear DNA arising from a 5-kb deletion of the right part of pGKL1. F1 was an inverted dimer of F2. Here we show that F2 has two different terminal structures: one end has a protein attached at the 5' terminus whereas the two strands of duplex are linked together at the other end, thus forming a hairpin structure. This is a novel type of autonomously replicating DNA molecule.  相似文献   

5.
The linear DNA killer plasmids (pGKL1 and pGKL2) isolated from a Kluyveromyces lactis killer strain are also maintained and expressed its killer character in Saccharomyces cerevisiae. After these killer plasmid DNAs isolated from S. cerevisiae were treated with alkali, four terminal fragments from each plasmid DNAs were cloned separately. Using these and other cloned DNA fragments, the terminal nucleotide sequences of pGKL2 and the complete nucleotide sequence of pGKL1 were determined. The inverted terminal repetitions of 202 bp and 182 bp were found in pGKL1 and pGKL2, respectively. The pGKL1 sequence showed an extremely high A + T content of 73.2% and it contained five large open reading frames. The largest of these open reading frame was suggested to code for a membrane-bound precursor of glycoprotein subunit of the killer toxin.  相似文献   

6.
M J Stark  A Boyd 《The EMBO journal》1986,5(8):1995-2002
The killer character of the yeast Kluyveromyces lactis is associated with the presence of the linear DNA plasmids k1 and k2 and results from the secretion of a protein toxin into the growth medium. We find that toxin activity co-purifies with three polypeptides which we have termed the alpha- (mol. wt 99,000), beta- (mol. wt 30,000) and gamma- (mol. wt 27,500) subunits. The alpha-subunit appears to contain a single asparagine-linked oligosaccharide chain but neither of the smaller subunits is glycosylated. The N-terminal amino acid sequence of each subunit has been determined. Comparison of these data with the DNA sequence of plasmid k1 indicates that it encodes all three subunits. The alpha- and beta-subunits must be processed from the primary translation product of a single gene by an enzyme related to the KEX2 endopeptidase of Saccharomyces cerevisiae.  相似文献   

7.
The linear double-stranded DNA plasmid pGKL1 in yeast encodes a killer toxin consisting of 97-kDa, 31-kDa and 28-kDa subunits. A 128-kDa protein precursor of the 97-kDa and 31-kDa subunits, was first synthesized with a 29-amino-acid extension at its NH2-terminus as a secretion signal sequence. In the present study, the property of this signal sequence was studied by the analysis of a fusion protein with mouse alpha-amylase. Using the secretion signal sequence of the killer protein, the mouse alpha-amylase was successfully secreted into the culture medium. An intracellular precursor form of alpha-amylase was identified and purified. Analysis of the NH2-terminal sequence of this precursor molecule indicated that it corresponded to the secretory intermediate (pro form) of alpha-amylase with the removal of the hydrophobic segment (Met1-Gly16) of the secretion signal. Both the secretion of alpha-amylase into the culture medium and the detection of the pro-alpha-amylase species in the cells were prohibited by a sec 11 mutation, or by the conversion of Gly to Val at the 16th position of the secretion signal. These results strongly suggest that the cleavage occurs between Gly16 and Leu17 by a signal peptidase, and that this cleavage is required for the secretion of alpha-amylase into the medium. Based on the data from the NH2-terminal amino acid sequences of secreted alpha-amylases, we conclude that the 29-amino-acid secretion signal present in the 128-kDa killer toxin precursor protein is a prepro structure.  相似文献   

8.
K1 killer toxin, a pore-forming protein from yeast   总被引:21,自引:0,他引:21  
K1 killer toxin is a secreted, pore-forming protein that kills sensitive yeast cells. The heterodimeric toxin is processed from a precursor in the Golgi, and has allowed identification of the KEX2- and KEX1-encoded proteases. The toxin binds to a glucan receptor on the cell wall of target yeast, and mutational analysis implicates both the alpha- and beta-toxin subunits in receptor binding. Toxin-resistant mutants with altered cell-wall glucans have helped to outline a pathway of assembly of these polysaccharides. Patch-clamp technology has demonstrated the nature of the lethal channel in toxin-treated plasma membranes. The hydrophobic alpha-subunit-encoding region is the site of all mutations affecting channel formation. Immunity to the toxin is conferred by the toxin precursor, and immunity mutations map to the region encoding the alpha subunit. The precursor probably competes with the toxin to prevent channel formation in toxin-producing cells, but the basis of this remains unknown. This toxin/immunity system has a domain structure that differs from that of other characterized toxins and has no known homologues.  相似文献   

9.
Two linear killer plasmids (pGKL1 and pGKL2) from Kluyveromyces lactis stably replicated and expressed the killer phenotype in a neutral petite mutant [( rho0]) of Saccharomyces cerevisiae. However, when cytoplasmic components were introduced by cytoduction from a wild-type [( rho+]) strain of S. cerevisiae, the linear plasmids became unstable and were frequently lost from the cytoductant cells during mitosis, giving rise to nonkiller clones. The phenomenon was ascribed to the incompatibility with the introduced S. cerevisiae mitochondrial DNA (mtDNA), because the plasmid stability was restored by [rho0] mutations in the cytoductant cells. Incompatibility with mtDNA was also apparent for the transmission of plasmids into diploid progeny in crosses between killer cells carrying the pGKL plasmids and [rho+] nonkiller cells lacking the plasmids. High-frequency transmission of the plasmids was observed in crosses lacking mtDNA [( rho0] by [rho0] crosses) and in crosses involving mutated mtDNA with large deletions of various regions of mitochondrial genome. In contrast, mutated mtDNA from various mit- mutations also exerted the incompatibility effect on the transmission of plasmids. Double-stranded RNA killer plasmids were stably maintained and transmitted in the presence of wild-type mtDNA and stably coexisted with pGKL killer plasmids in [rho0] cells of S. cerevisiae.  相似文献   

10.
The NH2-terminal signal region comprising of approximately 70% length of the prepro-sequence of the pGKL killer precursor protein was found to direct an efficient secretion of the mouse alpha-amylase into the culture medium of Saccharomyces cerevisiae. The alpha-amylase molecule secreted into the culture medium was identified by both immuno-blotting and assay of the enzyme activity. The amount of alpha-amylase secreted via the killer toxin signal was comparable to that directed by the leader sequence of mating factor alpha. The secretion of alpha-amylase using the killer toxin signal was blocked at 37C but not at 25C in sec18-1 host, indicating that alpha-amylase is exported through the normal secretion pathway of S. cerevisiae.  相似文献   

11.
Differential centrifugation of an osmotic lysate of K. lactis protoplasts showed that the linear DNA killer plasmids of K. lactis, pGKL1 and pGKL2, are almost exclusively present in the cytoplasmic fraction. This fractionation procedure allows the rapid isolation of large amounts of plasmid DNA without contamination by chromosomal and mitochondrial DNA. With these DNA preparations the size of the terminally bound proteins was estimated to be 28 and 36 kDal for pGKL1 and pGKL2, respectively. The entire pGKL1 sequence (except for 21 base pairs at the right terminus) was cloned in a shuttle vector that permits autonomous replication in the nucleus of K. lactis. However, killer gene expression could not be established in transformants. In connection with the observed cytoplasmic localization, this result suggests that gene expression of the killer DNA plasmids is entirely cytoplasmic.  相似文献   

12.
Killer plasmids pGKL1 and pGKL2 of double-stranded linear DNAs were transferred from Kluyveromyces lactis to strains of Kluyveromyces fragilis and Candida pseudotropicalis. The resultant killer strains produced 17-fold and 6-fold larger amounts of killer toxin than K. lactis did, respectively. The killer toxin produced by each species appeared to be a glycoprotein.  相似文献   

13.
A full-length cDNA of the M1 double-stranded RNA killer preprotoxin coding region successfully directed the synthesis of secreted K1 toxin when expressed in Saccharomyces cerevisiae from a plasmid vector. Three protein species immunoreactive with antitoxin antiserum were detected intracellularly in transformants harboring this killer cDNA plasmid. These toxin precursor species were characterized by using secretory-defective hosts, by comparative electrophoretic mobilities, and by tunicamycin susceptibility. Such studies indicate that these three protein species represent intermediates generated by signal cleavage of the preprotoxin and its subsequent glycosylation and provide evidence that these events occur posttranslationally.  相似文献   

14.
The carboxyl-terminal sequences of the two polypeptide chains of the Saccharomyces cerevisiae K1 killer toxin were determined by protein sequencing and amino acid analysis of peptide fragments generated from the mature, secreted toxin. The COOH-terminal amino acid of the beta chain is histidine 316, the final residue encoded by the precursor gene. The COOH terminus of the alpha chain is at alanine 147 of the preprotoxin. Amino acid composition data for the purified toxin are consistent with that predicted from the gene sequence of the preprotoxin where the alpha and beta subunits consist of amino acid residues 45-147 and 234-316, respectively. The molecular weight of the mature alpha beta dimer is about 20,658. The COOH-terminal sequence determination completes the location of the toxin subunits in the precursor, and its configuration may be represented as prepropeptide-Pro-Arg-alpha-Arg-Arg-gamma-Lys-Arg-beta, where gamma represents the interstitial glycosylated peptide. The COOH terminal side of the paired basic residues (Arg-148 Arg-149 and Lys-232 Arg-233 of preprotoxin) are endoproteolytic processing sites for the product of the KEX2 gene (Julius, D., Brake, A., Blair, L., Kunisawa, R., and Thorner, J. (1984) Cell 37, 1075-1089), and thus maturation of the alpha subunit of killer toxin apparently requires a carboxypeptidase B-like activity. A possible candidate for this activity is the product of the KEX1 gene (Dmochowska, A., Dignard, D., Henning, D., Thomas, D.Y., and Bussey, H. (1987) Cell, in press).  相似文献   

15.
Two novel linear deoxyribonucleic acid plasmids, pGKl1 and pGKl2, were isolated from the yeast Kluyveromyces lactis. K. lactis strains harboring the pGK1 plasmids killed a certain group of yeasts, including Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces rouxii, K. lactis, Kluyveromyces thermotolerans, Kluyvermyces vanudenii, Torulopsis glabrata, Candida utilis, and Candida intermedia. In this experiment, the pGKl1 and pGKl2 plasmids were intergenerically transferred from a K. lactis killer strain into a non-killer (killer-sensitive) strain of S. cerevisiae by the use of a protoplast fusion technique. Both of the pGKl plasmids replicated autonomously and stably in the new host cells of S. cerevisiae and could coexist with the resident 2-micrometers deoxyribonucleic acid plasmid. The S. cerevisiae cells which accepted the pGKl plasmids expressed the same killer phenotype as that of the donor K. lactis killer and became resistant to the K. lactis killer. The pGKl plasmids existing in the S. cerevisiae cells were cured by treatment with ethidium bromide, and the killer and resistance characters were simultaneously lost. From there results, it was concluded that both the killer and the resistance genes are located on the pGKl plasmids.  相似文献   

16.
We have identified and partially characterized the Saccharomyces cerevisiae KEX1 gene product, Kex1p, to assess its role in processing secreted protein precursors. Anti-Kex1p antibodies identified a 113-kilodalton protein that was absent in cells in which the KEX1 gene has been disrupted and that was more abundant in cells overexpressing the KEX1 gene. Kex1p was found to be a membrane-associated glycoprotein with N-linked carbohydrate. The N-linked oligosaccharide(s) was modified in a progressive manner after synthesis, causing the glycoprotein to slowly increase in mass to 115 kilodaltons. After a Kex2p-mediated cleavage event at specific pairs of basic amino acids, alpha-factor and K1 killer toxin precursors have COOH-terminal dibasic residue extensions and require a carboxypeptidase B-like enzyme to process the precursors to maturity. A carboxypeptidase activity, with apparent specificity for basic amino acids, was detected in KEX1 cells. Disruption of the KEX1 gene abolished this activity, while overexpression of KEX1 increased it. Our results provide biochemical evidence consistent with earlier genetic work, that KEX1 encodes a serine carboxypeptidase involved in the processing of precursors to secreted mature proteins.  相似文献   

17.
Certain strains of Pichia acaciae and Wingea robertsiae (synonym Debaryomyces robertsiae) harbour extranuclear genetic elements that confer a killer phenotype to their host. Such killer plasmids (pPac1-2 of P. acaciae and pWR1A of W. robertsiae) were sequenced and compared with the zymocin encoding pGKL1 of Kluyveromyces lactis. Both new elements were found to be closely related to each other, but they are only partly similar to pGKL1. As for the latter, they encode functions mediating binding of the toxin to the target cell's chitin and a hydrophobic region potentially involved in uptake of a toxin subunit by target cells. Consistently, mutations affecting the target cell's major chitin synthase (Chs3) protect it from toxin action. Heterologous intracellular expression of respective open reading frames identified cell cycle-arresting toxin subunits deviating structurally from the likewise imported gamma-subunit of the K. lactis zymocin. Accordingly, toxicity of both P. acaciae and Wingea toxins was shown to be independent of RNA polymerase II Elongator, which is indispensable for zymocin action. Thus, P. acaciae and Wingea toxins differ in their mode of action from the G1-arresting zymocin. Fluorescence-activated cell sorting analysis and determination of budding indices have proved that such novel toxins mediate cell cycle arrest post-G1 during the S phase. Concomitantly, the DNA damage checkpoint kinase Rad53 is phosphorylated. As a mutant carrying the checkpoint-deficient allele rad53-11 displays toxin hypersensitivity, damage checkpoint activation apparently contributes to coping with toxin stress, rather than being functionally implemented in toxin action.  相似文献   

18.
19.
20.
An N-terminus sequence of human interleukin 1beta (hIL-1beta) was used as a fusion expression partner for the production of two recombinant therapeutic proteins, human granulocyte-colony stimulating factor (hG-CSF) and human growth hormone (hGH), using Saccharomyces cerevisiae as a host. The expression cassette comprised the leader sequence of killer toxin of Kluyveromyces lactis, the N-terminus 24 amino acids (Ser5-Ala28) of mature hIL-1beta, the KEX2 dibasic endopeptidase cleavage site, and the target protein (hG-CSF or hGH). The gene expression was controlled by the inducible UAS(gal)/MF-alpha1 promoter. With the expression vector above, both recombinant proteins were well secreted into culture medium with high secretion efficiencies, and especially, the recombinant hGH was accumulated up to around 1.3 g/L in the culture broth. This is due presumably to the significant role of fused hIL-1beta as secretion enhancer in the yeast secretory pathway. In our recent report, various immunoblotting analyses have shown that the presence of a core N-glycosylation resident in the hIL-1beta fragment is likely to be of crucial importance in the high-level secretion of hG-CSF from the recombinant S. cerevisiae. When the N-glycosylation was completely blocked with the addition of tunicamycin to the culture, the secretion of hG-CSF and hGH was decreased to a negligible level although the other host-derived proteins were well secreted to the culture broth regardless of the presence of tunicamycin. The N-terminal sequencing of the purified hG-CSF verified that the hIL-1beta fusion peptide was correctly removed by in vivo KEX2 protease upon the exit of fusion protein from Golgi complex. From the results presented in this article, it is strongly suggested that the N-terminus fusion of the hIL-1beta peptide could be utilized as a potent secretion enhancer in the expression systems designed for the secretory production of other heterologous proteins from S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号