首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We describe a rapid and sensitive method for the detection of population-specific genetic markers in mitochondrial DNA (mtDNA) and the use of such markers to analyse population structure of marine turtles. A series of oligonucleotide primers specific for the amplification of the mtDNA control region in Cheloniid turtles were designed from preliminary sequence data. Using two of these primers, a 384–385-bp sequence was amplified from the 5′ portion of the mtDNA control region of 15 green turtles Chelonia mydas from 12 different Indo-Pacific rookeries. Fourteen of the 15 individuals, including some with identical whole-genome restriction fragment patterns, had sequences that differed by one or more base substitutions. Analysis of sequence variation among individuals identified a total of 41 nucleotide substitutions and a 1-bp insertion/deletion. Comparison with evidence from whole-genome restriction enzyme analysis of the same individuals indicated that this portion of the control region is evolving approximately eight times faster than the average rate and that the sequence analysis detected approximately one fifth of the total variation present in the genome. Restriction enzyme analysis of amplified products from an additional 256 individuals revealed significant geographic structuring in the distribution of mtDNA genotypes among five of the 10 rookeries surveyed extensively. Additional geographic structuring of genotypes was identified through denaturing gradient gel electrophoresis (DGGE) of amplified products. Only two of the 10 rookeries surveyed could not be differentiated, indicating that the Indo-Pacific C. mydas include a number of genetically differentiated populations, with minimal female-mediated gene flow among them. Important applications for genetic markers in the conservation and management of marine turtles include the identification of appropriate demographic units for research and management (i.e. genetically discrete populations) and assessment of the composition of feeding and harvested populations.  相似文献   

2.
Mitochondrial (mt) DNA sequences were analysed to resolve the phylogeography and population genetic structure of Atlantic and Mediterranean populations of green turtles ( Chelonia mydas ). Analysis of sequence variation over 487 base pairs of the control (D-loop) region identified 18 haplotypes among 147 individuals from nine nesting populations. Pairwise comparisons of haplotype frequencies distinguished most nesting colonies, indicating significant genetic differentiation among rookeries and a strong propensity for natal homing behaviour by nesting females. Comparison of control region sequence data to earlier restriction fragment length polymorphism (RFLP) data for the same individuals demonstrates approximately a sixfold higher substitution rate in the 5' end of the control region. The sequence data provide higher resolution both in terms of the number of mtDNA genotype variants and the phylogeographic relationships detected within the Atlantic region, and reveal a gene genealogy that distinguishes two groups of haplotypes corresponding to (i) the western Caribbean and Mediterranean, and (ii) eastern Caribbean, South Atlantic and West Africa. The data suggest that phylogeographic patterns in the Atlantic Ocean may be interpreted in terms of female nest site fidelity and episodic dispersal events. The distribution of mtDNA haplotypes within the region is thus explained by the geological and climatic alternations (glacial and interglacial) over the last million years.  相似文献   

3.
Ecological and genetic studies of marine turtles generally support the hypothesis of natal homing, but leave open the question of the geographical scale of genetic exchange and the capacity of turtles to shift breeding sites. Here we combine analyses of mitochondrial DNA (mtDNA) variation and recapture data to assess the geographical scale of individual breeding populations and the distribution of such populations through Australasia. We conducted multiscale assessments of mtDNA variation among 714 samples from 27 green turtle rookeries and of adult female dispersal among nesting sites in eastern Australia. Many of these rookeries are on shelves that were flooded by rising sea levels less than 10 000 years (c. 450 generations) ago. Analyses of sequence variation among the mtDNA control region revealed 25 haplotypes, and their frequency distributions indicated 17 genetically distinct breeding stocks (Management Units) consisting either of individual rookeries or groups of rookeries in general that are separated by more than 500 km. The population structure inferred from mtDNA was consistent with the scale of movements observed in long-term mark-recapture studies of east Australian rookeries. Phylogenetic analysis of the haplotypes revealed five clades with significant partitioning of sequence diversity (Phi = 68.4) between Pacific Ocean and Southeast Asian/Indian Ocean rookeries. Isolation by distance was indicated for rookeries separated by up to 2000 km but explained only 12% of the genetic structure. The emerging general picture is one of dynamic population structure influenced by the capacity of females to relocate among proximal breeding sites, although this may be conditional on large population sizes as existed historically across this region.  相似文献   

4.
Patterns of mitochondrial DNA (mtDNA) variation were used to analyse the population genetic structure of southwestern Indian Ocean green turtle (Chelonia mydas) populations. Analysis of sequence variation over 396 bp of the mtDNA control region revealed seven haplotypes among 288 individuals from 10 nesting sites in the Southwest Indian Ocean. This is the first time that Atlantic Ocean haplotypes have been recorded among any Indo-Pacific nesting populations. Previous studies indicated that the Cape of Good Hope was a major biogeographical barrier between the Atlantic and Indian Oceans because evidence for gene flow in the last 1.5 million years has yet to emerge. This study, by sampling localities adjacent to this barrier, demonstrates that recent gene flow has occurred from the Atlantic Ocean into the Indian Ocean via the Cape of Good Hope. We also found compelling genetic evidence that green turtles nesting at the rookeries of the South Mozambique Channel (SMC) and those nesting in the North Mozambique Channel (NMC) belong to separate genetic stocks. Furthermore, the SMC could be subdivided in two different genetic stocks, one in Europa and the other one in Juan de Nova. We suggest that this particular genetic pattern along the Mozambique Channel is attributable to a recent colonization from the Atlantic Ocean and is maintained by oceanic conditions in the northern and southern Mozambique Channel that influence early stages in the green turtle life cycle.  相似文献   

5.
We analyzed 88 control region sequences of green sea turtle (Chelonia mydas) from around Hainan Island in the South China Sea. These sequences had a length of 489 bp and revealed 8 mtDNA haplotypes of which four haplotypes (CMC1, CMC4, CMC7, and CMC8) had not been discovered before. Haplotype diversity (h) and nucleotide diversity (π) were 0.45 ± 0.054 and 0.0035 ± 0.0014, respectively. Neighbor-Joining tree based on control region sequences revealed that genetic relationship between green sea turtles from the South China Sea and from Japan Sea were very close. Clustering relationship based on control region sequences indicated that the South China Sea is an important breeding site and feeding habitat for green sea turtles, which connects with the Middle East Pacific, the Southwest Pacific and the Indian Ocean.  相似文献   

6.
Restriction-site analyses of mitochondrial DNA (mtDNA) from the loggerhead sea turtle (Caretta caretta) reveal substantial phylogeographic structure among major nesting populations in the Atlantic, Indian, and Pacific oceans and the Mediterranean sea. Based on 176 samples from eight nesting populations, most breeding colonies were distinguished from other assayed nesting locations by diagnostic and often fixed restriction-site differences, indicating a strong propensity for natal homing by nesting females. Phylogenetic analyses revealed two distinctive matrilines in the loggerhead turtle that differ by a mean estimated sequence divergence p = 0.009, a value similar in magnitude to the deepest intraspecific mtDNA node (p = 0.007) reported in a global survey of the green sea turtle Chelonia mydas. In contrast to the green turtle, where a fundamental phylogenetic split distinguished turtles in the Atlantic Ocean and the Mediterranean Sea from those in the Indian and Pacific oceans, genotypes representing the two primary loggerhead mtDNA lineages were observed in both Atlantic–Mediterranean and Indian-Pacific samples. We attribute this aspect of phylogeographic structure in Caretta caretta to recent interoceanic gene flow, probably mediated by the ability of this temperate-adapted species to utilize habitats around southern Africa. These results demonstrate how differences in the ecology and geographic ranges of marine turtle species can influence their comparative global population structures.  相似文献   

7.
Population genetics and phylogeography of sea turtles   总被引:7,自引:1,他引:6  
Bowen BW  Karl SA 《Molecular ecology》2007,16(23):4886-4907
The seven species of sea turtles occupy a diversity of niches, and have a history tracing back over 100 million years, yet all share basic life-history features, including exceptional navigation skills and periodic migrations from feeding to breeding habitats. Here, we review the biogeographic, behavioural, and ecological factors that shape the distribution of genetic diversity in sea turtles. Natal homing, wherein turtles return to their region of origin for mating and nesting, has been demonstrated with mtDNA sequences. These maternally inherited markers show strong population structure among nesting colonies while nuclear loci reveal a contrasting pattern of male-mediated gene flow, a phenomenon termed 'complex population structure'. Mixed-stock analyses indicate that multiple nesting colonies can contribute to feeding aggregates, such that exploitation of turtles in these habitats can reduce breeding populations across the region. The mtDNA data also demonstrate migrations across entire ocean basins, some of the longest movements of marine vertebrates. Multiple paternity occurs at reported rates of 0-100%, and can vary by as much as 9-100% within species. Hybridization in almost every combination among members of the Cheloniidae has been documented but the frequency and ultimate ramifications of hybridization are not clear. The global phylogeography of sea turtles reveals a gradient based on habitat preference and thermal regime. The cold-tolerant leatherback turtle (Dermochelys coriacea) shows no evolutionary partitions between Indo-Pacific and Atlantic populations, while the tropical green (Chelonia mydas), hawksbill (Eretmochelys imbricata), and ridleys (Lepidochelys olivacea vs. L. kempi) have ancient separations between oceans. Ridleys and loggerhead (Caretta caretta) also show more recent colonization between ocean basins, probably mediated by warm-water gyres that occasionally traverse the frigid upwelling zone in southern Africa. These rare events may be sufficient to prevent allopatric speciation under contemporary geographic and climatic conditions. Genetic studies have advanced our understanding of marine turtle biology and evolution, but significant gaps persist and provide challenges for the next generation of sea turtle geneticists.  相似文献   

8.
Aim This study examines the relationship between the distribution of existing sea turtle nesting sites and historical patterns of tropical cyclone events to investigate whether cyclones influence the current distribution of sea turtle nesting sites. The results, together with information on predicted cyclone activity and other key environmental variables, will help in the identification and prediction of future nesting sites for sea turtles as changes to the coastal environment continue. Location Queensland, Australia. Methods We used data on the nesting distribution of seven populations of four species of sea turtles [green (Chelonia mydas), flatback (Natator depressus), hawksbill (Eretmochelys imbricata) and loggerhead (Caretta caretta)] from the eastern Queensland coast, and tropical cyclone track data from 1969 to 2007 to explore the relationship between (1) sea turtle nesting phenology and cyclone season, and (2) sea turtle nesting sites and cyclone distribution. Furthermore, using two green turtle populations as a case study, we investigated the relationship between cyclone disturbance and sea turtle reproductive output, nesting site and season. Bootstrapping was used to explore if current sea turtle nesting sites are located in areas with lower or higher cyclone frequency than areas where turtles are currently not nesting. Results All populations of sea turtles studied here were disturbed by cyclone activity during the study period. The exposure (frequency) of tropical cyclones that crossed each nesting site varied greatly among and within the various sea turtle populations. This was mainly a result of the spatial distribution of each population’s nesting sites. Bootstrapping indicated that nesting sites generally have experienced lower cyclone activity than other areas that are available for nesting. Main conclusions Tropical cyclones might have been sufficiently detrimental to sea turtle hatching success on the eastern Queensland coast that through a natural selection process turtles in this region are now nesting in areas with lower cyclone activity. Therefore, it is important that future studies that predict climate or range shifts for sea turtle nesting distributions consider future cyclone activity as one of the variables in their model.  相似文献   

9.
The main continental nesting rookeries of the east Pacific green turtle (EPGT), Chelonia mydas, on the Michoacan (Mexico) coast suffered drastic population declines following intense exploitation in the 1960s--1970s with annual abundance of nesting females plummeting from about 25,000 to an average of about 1400 between 1982 and 2001. Analyses of data from three nDNA microsatellite loci and 400 bp mtDNA control region sequences from a total of 123 nesting females sampled from four Michoacan rookeries found no evidence of population sub-structuring. The recent order of magnitude reduction in the population size shows no apparent impact on genetic diversity in either control region sequences (overall h = 0.48; pi = 0.0036) or microsatellite loci (overall Na = 20.8; Hexp = 0.895). Our estimates of annual effective female population size (Nef; from theta = 2Nemicron) of 1.9-2.3 x 10(3), in spite of being an order of magnitude below historical records, appear to be sufficient to allow recovery of this population without significant loss of genetic diversity. These findings highlight the importance of continued conservation to reverse the decline of this population before it becomes vulnerable to genetic erosion.  相似文献   

10.
The leatherback sea turtle (Dermochelys coriacea) population that nests in Brazil is restricted to a few individuals, but high densities of pelagic individuals are observed along the southern and southeastern Brazilian coast. We investigated the diversity of the mitochondrial DNA (mtDNA) control region in order to understand the relationship between nesting and pelagic leatherbacks from Brazil and elsewhere. High-quality 711-bp sequences were generated, analyzed, and compared with published data from worldwide populations. We detected the presence of shared haplotypes between nesting and pelagic aggregates from Brazil, as well as haplotypes shared with other nesting areas from the Atlantic and Pacific. Furthermore, the use of longer control region sequences allowed the subdivision of the common Atlantic haplotype A into 3 different haplotypes (A1, A3, and A4), thus improving the resolution of mtDNA-based leatherback phylogeography. The use of longer sequences partially supported a closer association between nesting and pelagic individuals from Brazil and pointed to a complex origin for the pelagic individuals in the Brazilian coast.  相似文献   

11.
Complex population structure can result from either sex-biased gene flow or population overlap during migrations. Loggerhead turtles (Caretta caretta) have both traits, providing an instructive case history for wildlife management. Based on surveys of maternally inherited mtDNA, pelagic post-hatchlings show no population structure across the northern Atlantic (phi(ST) < 0.001, P = 0.919), subadults in coastal habitat show low structure among locations (phi(ST) = 0.01, P < 0.005), and nesting colonies along the southeastern coast of the United States have strong structure (phi(ST) = 0.42, P < 0.001). Thus the level of population structure increases through progressive life history stages. In contrast, a survey of biparentally inherited microsatellite DNA shows no significant population structure: R(ST) < 0.001; F(ST) = 0.002 (P > 0.05) across the same nesting colonies. These results indicate that loggerhead females home faithfully to their natal nesting colony, but males provide an avenue of gene flow between regional nesting colonies, probably via opportunistic mating in migratory corridors. As a result, all breeding populations in the southeastern United States have similar levels of microsatellite diversity (H(E) = 0.70-0.89), whereas mtDNA haplotype diversity varies dramatically (h = 0.00-0.66). Under a conventional interpretation of the nuclear DNA data, the entire southeastern United States would be regarded as a single management unit, yet the mtDNA data indicate multiple isolated populations. This complex population structure mandates a different management strategy at each life stage. Perturbations to pelagic juveniles will have a diffuse impact on Atlantic nesting colonies, mortality of subadults will have a more focused impact on nearby breeding populations, and disturbances to adults will have pinpoint impact on corresponding breeding populations. These findings demonstrate that surveys of multiple life stages are desirable to resolve management units in migratory marine species.  相似文献   

12.
Aim A key life‐history component for many animals is the need for movement between different geographical locations at particular times. Green turtle (Chelonia mydas) hatchlings disperse from their natal location to spend an early pelagic stage in the ocean, followed by a neritic stage where small juveniles settle in coastal areas. In this study, we combined genetic and Lagrangian drifter data to investigate the connectivity between natal and foraging locations. In particular we focus on the evidence for transatlantic transport. Location Atlantic Ocean. Methods We used mitochondrial DNA (mtDNA) sequences (n = 1567) from foraging groups (n = 8) and nesting populations (n = 12) on both sides of the Atlantic. Genetic data were obtained for Cape Verde juvenile turtles, a foraging group not previously sampled for genetic study. Various statistical methods were used to explore spatial genetics and population genetic structure (e.g. exact tests of differentiation, Geneland and analysis of molecular variance). Many‐to‐many mixed stock analysis estimated the connectivity between nesting and foraging groups. Results Our key new finding is robust evidence for connectivity between a nesting population on the South American coast (25% of the Surinam nesting population are estimated to go to Cape Verde) and a foraging group off the coast of West Africa (38% of Cape Verde juveniles are estimated to originate from Surinam), thus extending the results of previous investigations by confirming that there is substantial transatlantic dispersal in both directions. Lagrangian drifter data demonstrated that transport by drift across the Atlantic within a few years is possible. Main conclusions Small juvenile green turtles seem capable of dispersing extensively, and can drop out of the pelagic phase on a transatlantic scale (the average distance between natal and foraging locations was 3048 km). Nevertheless, we also find support for the ‘closest‐to‐home’ hypothesis in that the degree of contribution from a nesting population to a foraging group is correlated with proximity. Larger‐sized turtles appear to feed closer to their natal breeding grounds (the average distance was 1133 km), indicating that those that have been initially transported to far‐flung foraging grounds may still be able to move nearer to home as they grow larger.  相似文献   

13.
Climate, behavior, ecology, and oceanography shape patterns of biodiversity in marine faunas in the absence of obvious geographic barriers. Marine turtles are an example of highly migratory creatures with deep evolutionary lineages and complex life histories that span both terrestrial and marine environments. Previous studies have focused on the deep isolation of evolutionary lineages (>3 mya) through vicariance; however, little attention has been given to the pathways of colonization of the eastern Pacific and the processes that have shaped diversity within the most recent evolutionary time. We sequenced 770 bp of the mtDNA control region to examine the stock structure and phylogeography of 545 green turtles from eight different rookeries in the central and eastern Pacific. We found significant differentiation between the geographically separated nesting populations and identified five distinct stocks (FST = 0.08–0.44, P < 0.005). Central and eastern Pacific Chelonia mydas form a monophyletic group containing 3 subclades, with Hawaii more closely related to the eastern Pacific than western Pacific populations. The split between sampled central/eastern and western Pacific haplotypes was estimated at around 0.34 mya, suggesting that the Pacific region west of Hawaii has been a more formidable barrier to gene flow in C. mydas than the East Pacific Barrier. Our results suggest that the eastern Pacific was colonized from the western Pacific via the Central North Pacific and that the Revillagigedos Islands provided a stepping‐stone for radiation of green turtles from the Hawaiian Archipelago to the eastern Pacific. Our results fit with a broader paradigm that has been described for marine biodiversity, where oceanic islands, such as Hawaii and Revillagigedo, rather than being peripheral evolutionary “graveyards”, serve as sources and recipients of diversity and provide a mechanism for further radiation.  相似文献   

14.
To address aspects of the evolution and natural history of green turtles, we assayed mitochondrial (mt) DNA genotypes from 226 specimens representing 15 major rookeries around the world. Phylogenetic analyses of these data revealed (1) a comparatively low level of mtDNA variability and a slow mtDNA evolutionary rate (relative to estimates for many other vertebrates); (2) a fundamental phylogenetic split distinguishing all green turtles in the Atlantic-Mediterranean from those in the Indian-Pacific Oceans; (3) no evidence for matrilineal distinctiveness of a commonly recognized taxonomic form in the East Pacific (the black turtle C.m. agassizi or C. agassizi); (4) in opposition to published hypotheses, a recent origin for the Ascension Island rookery, and its close genetic relationship to a geographically proximate rookery in Brazil; and (5) a geographic population substructure within each ocean basin (typically involving fixed or nearly fixed genotypic differences between nesting populations) that suggests a strong propensity for natal homing by females. Overall, the global matriarchal phylogeny of Chelonia mydas appears to have been shaped by both geography (ocean basin separations) and behavior (natal homing on regional or rookery-specific scales). The shallow evolutionary population structure within ocean basins likely results from demographic turnover (extinction and colonization) of rookeries over time frames that are short by evolutionary standards but long by ecological standards.  相似文献   

15.
This study presents a comprehensive genetic analysis of stock structure for leatherback turtles (Dermochelys coriacea), combining 17 microsatellite loci and 763 bp of the mtDNA control region. Recently discovered eastern Atlantic nesting populations of this critically endangered species were absent in a previous survey that found little ocean-wide mtDNA variation. We added rookeries in West Africa and Brazil and generated longer sequences for previously analyzed samples. A total of 1,417 individuals were sampled from nine nesting sites in the Atlantic and SW Indian Ocean. We detected additional mtDNA variation with the longer sequences, identifying ten polymorphic sites that resolved a total of ten haplotypes, including three new variants of haplotypes previously described by shorter sequences. Population differentiation was substantial between all but two adjacent rookery pairs, and F ST values ranged from 0.034 to 0.676 and 0.004 to 0.205 for mtDNA and microsatellite data respectively, suggesting that male-mediated gene flow is not as widespread as previously assumed. We detected weak (F ST = 0.008 and 0.006) but significant differentiation with microsatellites between the two population pairs that were indistinguishable with mtDNA data. POWSIM analysis showed that our mtDNA marker had very low statistical power to detect weak structure (F ST < 0.005), while our microsatellite marker array had high power. We conclude that the weak differentiation detected with microsatellites reflects a fine scale level of demographic independence that warrants recognition, and that all nine of the nesting colonies should be considered as demographically independent populations for conservation. Our findings illustrate the importance of evaluating the power of specific genetic markers to detect structure in order to correctly identify the appropriate population units to conserve.  相似文献   

16.
The koala, Phascolarctos cinereus, is a geographically widespread species endemic to Australia, with three currently recognized subspecies: P.c. adustus, P.c. cinereus, and P.c. victor. Intraspecific variation in the mitochondrial DNA (mtDNA) control region was examined in over 200 animals from 16 representative populations throughout the species’ range. Eighteen different haplotypes were defined in the ≈ 860 bp mtDNA control region, as determined by heteroduplex analysis/temperature gradient gel electrophoresis (HDA/TGGE). Any single population typically possessed only one or two haplotypes yielding an average within-population haplotypic diversity of 0.180 ± 0.003, and nucleotide diversity of 0.16%. Overall, mtDNA control region sequence diversity between populations averaged 0.67%, and ranged from 0% to 1.56%. Nucleotide divergence between populations averaged 0.51%, and ranged from 0% to 1.53%. Neighbour-joining methods revealed limited phylogenetic distinction between geographically distant populations of koalas, and tentative support for a single evolutionarily significant unit (ESU). This is consistent with previous suggestions that the morphological differences formalized by subspecific taxonomy may be interpreted as clinal variation. Significant differentiation in mtDNA-haplotype frequencies between localities suggested that little gene flow currently exists among populations. When combined with microsatellite analysis, which has revealed substantial differentiation among koala populations, we conclude that the appropriate short-term management unit (MU) for koalas is the local population.  相似文献   

17.
African wild dogs are large, highly mobile carnivores that are known to disperse over considerable distances and are rare throughout much of their geographical range. Consequently, genetic variation within and differentiation between geographically separated populations is predicted to be minimal. We determined the genetic diversity of mitochondrial DNA (mtDNA) control region sequences and microsatellite loci in seven populations of African wild dogs. Analysis of mtDNA nucleotide diversity suggests that, historically, wild dog populations have been small relative to other large carnivores. However, population declines due to recent habitat loss have not caused a dramatic reduction in genetic diversity. We found one historical and eight recent mtDNA genotypes in 280 individuals that defined two highly divergent clades. In contrast to a previous, more limited, mtDNA analysis, sequences from these clades are not geographically restricted to eastern or southern African populations. Rather, we found a large admixture zone spanning populations from Botswana, Zimbabwe and south-eastern Tanzania. Mitochondrial and microsatellite differentiation between populations was significant and unique mtDNA genotypes and alleles characterized the populations. However, gene flow estimates (Nm) based on microsatellite data were generally greater than one migrant per generation. In contrast, gene flow estimates based on the mtDNA control region were lower than expected given differences in the mode of inheritance of mitochondrial and nuclear markers which suggests a male bias in long-distance dispersal.  相似文献   

18.
Based on an extensive sampling regime from both nesting populations and bycatch, frequency analyses of mitochondrial (mt) DNA control region haplotypes in the Mediterranean were used to assess the genetic structure and stock composition of the loggerhead sea turtle, Caretta caretta, in different marine fisheries. The analyses show the following. (i) In drifting longline fisheries working in Mediterranean pelagic habitats 53–55% of turtles caught originated from the Mediterranean stock; (ii) In bottom-trawl fisheries all turtle bycatch is derived from this regional stock; (iii) This regional stock contribution to fishery bycatch suggests that the population size of the Mediterranean loggerhead nesting population is significantly larger than previously thought. This is consistent with a recent holistic estimate based on the discovery of a large rookery in Libya. (iv) Present impact of fishery-related mortality on the Mediterranean nesting population is probably incompatible with its long-term conservation. Sea turtle conservation regulations are urgently needed for the Mediterranean fisheries. (v) The significant divergence of mtDNA haplotype frequencies of the Turkish loggerhead colonies define this nesting population as a particularly important management unit. Large immature and adult stages from this management unit seem to be harvested predominantly by Egyptian fisheries. (vi) Combined with other data, our findings suggest that all the nesting populations in the Mediterranean should be considered as management units sharing immature pelagic habitats throughout the Mediterranean (and possibly the eastern Atlantic), with distinct and more localized benthic feeding habitats in the eastern basin used by large immatures and adults. (vii) Between the strict oceanic pelagic and the benthic stages, immature turtles appear to live through an intermediate neritic stage, in which they switch between pelagic and benthic foods.  相似文献   

19.
In previous studies on nesting green turtles under natural conditions from different geographical regions, 17-β-estradiol (E(2) ) was either undetectable or detected at very low levels. RIA and other related techniques were not sensitive enough to measure low E(2) values in the green turtles. In this study, a sensitive method was used in detecting low hormone concentrations: high performance liquid chromatography with tandem quadruple mass spectrometry (HPLC-MS/MS). Using this technique, estradiol for the first time was detected in nesting green turtles during the peak season (June-October) at Ras Al-Hadd Reserve, Oman. The E(2) values recorded from this study were the highest ever recorded from nesting green turtles in any geographical region, but the levels did not vary significantly throughout different phases of nesting. The presence of E(2) during nesting presumably plays a role in the physiology and behavior of this species. Ras Al-Hadd hosts one of the largest nesting populations of green turtles in the world, and an understanding of their nesting patterns may be of value in conservation and management programs for this endangered species.  相似文献   

20.
Previous studies of the olive ridley Lepidochelys olivacea population structure in the tropical eastern Pacific have indicated the existence of a single panmictic population ranging from Costa Rica to Mexico. This information has been used to design specific management measures to conserve primary nesting beaches in Mexico. However, little is known about olive ridleys in the Baja California Peninsula, their northernmost reproductive limit, where recent observations have shown differences in nesting female behaviour and size of hatchlings relative to other continental rookeries. We used mtDNA control region sequences from 137 turtles from five continental and four peninsular nesting sites to determine whether such differences correspond to a genetic distinction of Baja California olive ridleys or to phenotypic plasticity associated with the extreme environmental nesting conditions of this region. We found that genetic diversity in peninsular turtles was significantly lower than in continental nesting colonies. Analysis of molecular variance revealed a significant population structure (Phi ST = 0.048, P = 0.006) with the inclusion of peninsular samples. Our results: (i) suggest that the observed phenotypic variation may be associated with genetic differentiation and reproductive isolation; (ii) support the recent colonization of the eastern Pacific by Lepidochelys; (iii) reveal genetic signatures of historical expansion and colonization events; and (iv) significantly challenge the notion of a single genetic and conservation unit of olive ridleys in the eastern Pacific. We conclude that conservation measures for olive ridleys in Mexico should be revised to grant peninsular beaches special attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号