首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Autotrophic Archaea of the family Sulfolobaceae (Crenarchaeota) use a modified 3-hydroxypropionate cycle for carbon dioxide assimilation. In this cycle the ATP-dependent carboxylations of acetyl-CoA and propionyl-CoA to malonyl-CoA and methylmalonyl-CoA, respectively, represent the key CO2 fixation reactions. These reactions were studied in the thermophilic and acidophilic Metallosphaera sedula and are shown to be catalyzed by one single large enzyme, which acts equally well on acetyl-CoA and propionyl-CoA. The carboxylase was purified and characterized and the genes were cloned and sequenced. In contrast to the carboxylase of most other organisms, acetyl-CoA/propionyl-CoA carboxylase from M. sedula is active at 75 degrees C and is isolated as a stabile functional protein complex of 560 +/- 50 kDa. The enzyme consists of two large subunits of 57 kDa each representing biotin carboxylase (alpha) and carboxytransferase (gamma), respectively, and a small 18.6 kDa biotin carrier protein (beta). These subunits probably form an (alpha beta gamma)4 holoenzyme. It has a catalytic number of 28 s-1 at 65 degrees C and at the optimal pH of 7.5. The apparent Km values were 0.06 mm for acetyl-CoA, 0.07 mm for propionyl-CoA, 0.04 mm for ATP and 0.3 mm for bicarbonate. Acetyl-CoA/propionyl-CoA carboxylase is considered the main CO2 fixation enzyme of autotrophic members of Sulfolobaceae and the sequenced genomes of these Archaea contain the respective genes. Due to its stability the archaeal carboxylase may prove an ideal subject for further structural studies.  相似文献   

2.
The 3-hydroxypropionate cycle is a bicyclic autotrophic CO(2) fixation pathway in the phototrophic Chloroflexus aurantiacus (Bacteria), and a similar pathway is operating in autotrophic members of the Sulfolobaceae (Archaea). The proposed pathway involves in a first cycle the conversion of acetyl-coenzyme A (acetyl-CoA) and two bicarbonates to L-malyl-CoA via 3-hydroxypropionate and propionyl-CoA; L-malyl-CoA is cleaved by L-malyl-CoA lyase into acetyl-CoA and glyoxylate. In a second cycle, glyoxylate and another molecule of propionyl-CoA (derived from acetyl-CoA and bicarbonate) are condensed by a putative beta-methylmalyl-CoA lyase to beta-methylmalyl-CoA, which is converted to acetyl-CoA and pyruvate. The putative L-malyl-CoA lyase gene of C. aurantiacus was cloned and expressed in Escherichia coli, and the recombinant enzyme was purified and studied. Beta-methylmalyl-CoA lyase was purified from cell extracts of C. aurantiacus and characterized. We show that these two enzymes are identical and that both enzymatic reactions are catalyzed by one single bifunctional enzyme, L-malyl-CoA lyase/beta-methylmalyl-CoA lyase. Interestingly, this enzyme works with two different substrates in two different directions: in the first cycle of CO(2) fixation, it cleaves L-malyl-CoA into acetyl-CoA and glyoxylate (lyase reaction), and in the second cycle it condenses glyoxylate with propionyl-CoA to beta-methylmalyl-CoA (condensation reaction). The combination of forward and reverse directions of a reversible enzymatic reaction, using two different substrates, is rather uncommon and reduces the number of enzymes required in the pathway. In summary, L-malyl-CoA lyase/beta-methylmalyl-CoA lyase catalyzes the interconversion of L-malyl-CoA plus propionyl-CoA to beta-methylmalyl-CoA plus acetyl-CoA.  相似文献   

3.
The 3-hydroxypropionate cycle has been proposed as a new autotrophic CO(2) fixation pathway for the phototrophic green non-sulfur eubacterium Chloroflexus aurantiacus and for some chemotrophic archaebacteria. The cycle requires the reductive conversion of the characteristic intermediate 3-hydroxypropionate to propionyl-CoA. The specific activity of the 3-hydroxypropionate-, CoA-, K(+)-, and MgATP-dependent oxidation of NADPH in autotrophically grown cells was 0.09 micromol min(-1) mg(-1) protein, which was 2-fold down-regulated in heterotrophically grown cells. Unexpectedly, a single enzyme catalyzes the entire reaction sequence: 3-hydroxypropionate + MgATP + CoA + NADPH + H(+) --> propionyl-CoA + MgAMP + PP(i) + NADP(+) + H(2)O. The enzyme was purified 30-fold to near homogeneity and has a very large native molecular mass between 500 and 800 kDa, with subunits of about 185 kDa as judged by SDS-PAGE, suggesting a homotrimeric or homotetrameric structure. Upon incubation of this new enzyme, termed propionyl-CoA synthase, with the proteinase trypsin, the NADPH oxidation function of the enzyme was lost, whereas the enzyme still activated 3-hydroxypropionate to its CoA-thioester and dehydrated it to acrylyl-CoA. SDS-PAGE revealed that the subunits of propionyl-CoA synthase had been cleaved once and the N-terminal amino acid sequences of the two trypsin digestion products were determined. Two parts of the gene encoding propionyl-CoA synthase (pcs) were identified on two contigs of an incomplete genome data base of C. aurantiacus, and the sequence of the pcs gene was completed. Propionyl-CoA synthase is a natural fusion protein of 201 kDa consisting of a CoA ligase, an enoyl-CoA hydratase, and an enoyl-CoA reductase, the reductase domain containing the trypsin cleavage site. Similar polyfunctional large enzymes are common in secondary metabolism (e.g. polyketide synthases) but rare in primary metabolism (e.g. eukaryotic type I fatty acid synthase). These results lend strong support to the operation of the proposed pathway in autotrophic CO(2) fixation.  相似文献   

4.
Metallosphaera sedula (Sulfolobales, Crenarchaeota) uses the 3-hydroxypropionate/4-hydroxybutyrate cycle for autotrophic carbon fixation. In this pathway, acetyl-coenzyme A (CoA) and succinyl-CoA are the only intermediates that can be considered common to the central carbon metabolism. We addressed the question of which intermediate of the cycle most biosynthetic routes branch off. We labeled autotrophically growing cells by using 4-hydroxy[1-14C]butyrate and [1,4-13C1]succinate, respectively, as precursors for biosynthesis. The labeling patterns of protein-derived amino acids verified the operation of the proposed carbon fixation cycle, in which 4-hydroxybutyrate is converted to two molecules of acetyl-CoA. The results also showed that major biosynthetic flux does not occur via acetyl-CoA, except for the formation of building blocks that are directly derived from acetyl-CoA. Notably, acetyl-CoA is not assimilated via reductive carboxylation to pyruvate. Rather, our data suggest that the majority of anabolic precursors are derived from succinyl-CoA, which is removed from the cycle via oxidation to malate and oxaloacetate. These C4 intermediates yield pyruvate and phosphoenolpyruvate (PEP). Enzyme activities that are required for forming intermediates from succinyl-CoA were detected, including enzymes catalyzing gluconeogenesis from PEP. This study completes the picture of the central carbon metabolism in autotrophic Sulfolobales by connecting the autotrophic carbon fixation cycle to the formation of central carbon precursor metabolites.Sulfolobales (Crenarchaeota) comprise extreme thermoacidophiles from volcanic areas that grow best at a pH of around 2 and a temperature of 60 to 90°C (32, 33). Most Sulfolobales can grow chemoautotrophically on sulfur, pyrite, or H2 under microaerobic conditions, which also applies to Metallosphaera sedula (31), the organism studied here. Its genome has been sequenced (2). Some species of the Sulfolobales secondarily returned to a facultative anaerobic or even strictly anaerobic life style (33), and some laboratory strains appear to have lost their ability to grow autotrophically (8). Autotrophic representatives of the Sulfolobales use a 3-hydroxypropionate/4-hydroxybutyrate cycle (in short, hydroxypropionate/hydroxybutyrate cycle) for autotrophic carbon fixation (Fig. (Fig.1)1) (6-8, 38). The enzymes of this cycle are oxygen tolerant, which predestines the cycle for the lifestyle of the aerobic Crenarchaeota (8). The presence of genes coding for key enzymes of the hydroxypropionate/hydroxybutyrate cycle in the mesophilic aerobic “marine group I” Crenarchaeota suggests that these abundant marine archaea use a similar autotrophic carbon fixation mechanism (6, 24, 68) (for a review of autotrophic carbon fixation in Archaea, see reference 7).Open in a separate windowFIG. 1.Proposed 3-hydroxypropionate/4-hydroxybutyrate cycle functioning in autotrophic carbon fixation in Sulfolobales and its relation to the central carbon metabolism, as studied in this work for Metallosphaera sedula. The situation may be similar in other Sulfolobales and possibly in autotrophic marine Crenarchaeota. Enzymes: 1, acetyl-CoA/propionyl-CoA carboxylase; 2, malonyl-CoA reductase (NADPH); 3, malonic semialdehyde reductase (NADPH); 4, 3-hydroxypropionate-CoA ligase (AMP forming); 5, 3-hydroxypropionyl-CoA dehydratase; 6, acryloyl-CoA reductase (NADPH); 7, acetyl-CoA/propionyl-CoA carboxylase; 8, methylmalonyl-CoA epimerase; 9, methylmalonyl-CoA mutase; 10, succinyl-CoA reductase (NADPH); 11, succinic semialdehyde reductase (NADPH); 12, 4-hydroxybutyrate-CoA ligase (AMP forming); 13, 4-hydroxybutyryl-CoA dehydratase; 14 and 15, crotonyl-CoA hydratase/(S)-3-hydroxybutyryl-CoA dehydrogenase (NAD+); 16, acetoacetyl-CoA β-ketothiolase; 17, succinyl-CoA synthetase (ADP forming); 18, succinic semialdehyde dehydrogenase; 19, succinate dehydrogenase (natural electron acceptor unknown); 20, fumarate hydratase; 21, malate dehydrogenase; 22, malic enzyme; 23, PEP carboxykinase (GTP); 24, pyruvate:water dikinase (ATP); 25, enolase; 26, phosphoglycerate mutase; 27, phosphoglycerate kinase; 28, glyceraldehyde 3-phosphate dehydrogenase; 29, triosephosphate isomerase; 30, fructose 1,6-bisphosphate aldolase/phosphatase; 31, (si)-citrate synthase; 32, aconitase; 33, isocitrate dehydrogenase.In the cycle, one molecule of acetyl-coenzyme A (CoA) is formed from two molecules of bicarbonate. The key carboxylating enzyme is a bifunctional biotin-dependent acetyl-CoA/propionyl-CoA carboxylase (10, 11, 36, 38, 48, 49). In Bacteria and Eukarya, acetyl-CoA carboxylase catalyzes the first step in fatty acid biosynthesis. However, archaea do not contain fatty acids, and therefore acetyl-CoA carboxylase obviously plays a different metabolic role. The hydroxypropionate/hydroxybutyrate cycle can be divided into two parts. The first transforms acetyl-CoA and two bicarbonate molecules via 3-hydroxypropionate to succinyl-CoA, and the second converts succinyl-CoA via 4-hydroxybutyrate to two acetyl-CoA molecules. In brief, the product of the acetyl-CoA carboxylase reaction, malonyl-CoA, is reduced via malonic semialdehyde to 3-hydroxypropionate, which is further reductively converted to propionyl-CoA. Propionyl-CoA is carboxylated to (S)-methylmalonyl-CoA by the same carboxylase as that that carboxylates acetyl-CoA (11, 36). (S)-Methylmalonyl-CoA is isomerized to (R)-methylmalonyl-CoA, followed by carbon rearrangement to succinyl-CoA catalyzed by coenzyme B12-dependent methylmalonyl-CoA mutase.Succinyl-CoA then is converted into two molecules of acetyl-CoA via succinic semialdehyde, 4-hydroxybutyrate, 4-hydroxybutyryl-CoA, crotonyl-CoA, 3-hydroxyacetyl-CoA, and acetoacetyl-CoA. This reaction sequence apparently is common to the autotrophic Crenarchaeota, as it also is used by autotrophic Crenarchaeota of the orders Thermoproteales and Desulfurococcales, which use a dicarboxylate/4-hydroxybutyrate cycle for autotrophic carbon fixation (8, 34, 55, 56) (also see the accompanying work [57]).From the list of intermediates of the hydroxypropionate/hydroxybutyrate cycle, acetyl-CoA and succinyl-CoA are the only intermediates considered common to the central carbon metabolism. In this work, we addressed the question of which intermediate of the cycle most biosynthetic routes branch off, and we came to the conclusion that succinyl-CoA serves as the main precursor for cellular carbon. This requires one turn of the cycle to regenerate the CO2 acceptor and to generate one extra molecule of acetyl-CoA from two molecules of bicarbonate. Acetyl-CoA plus another two bicarbonate molecules are converted by an additional half turn of the cycle to succinyl-CoA. This strategy differs from that of the anaerobic pathways, in which acetyl-CoA is reductively carboxylated to pyruvate, and from there the other precursors for building blocks ultimately are derived (discussed in reference 7).  相似文献   

5.
The 3-hydroxypropionate cycle is a new autotrophic CO(2) fixation pathway in Chloroflexus aurantiacus and some archaebacteria. The initial step is acetyl-coenzyme A (CoA) carboxylation to malonyl-CoA by acetyl-CoA carboxylase, followed by NADPH-dependent reduction of malonyl-CoA to 3-hydroxypropionate. This reduction step was studied in Chloroflexus aurantiacus. A new enzyme was purified, malonyl-CoA reductase, which catalyzed the two-step reduction malonyl-CoA + NADPH + H(+) --> malonate semialdehyde + NADP(+) + CoA and malonate semialdehyde + NADPH + H(+) --> 3-hydroxypropionate + NADP(+). The bifunctional enzyme (aldehyde dehydrogenase and alcohol dehydrogenase) had a native molecular mass of 300 kDa and consisted of a single large subunit of 145 kDa, suggesting an alpha(2) composition. The N-terminal amino acid sequence was determined, and the incomplete gene was identified in the genome database. Obviously, the enzyme consists of an N-terminal short-chain alcohol dehydrogenase domain and a C-terminal aldehyde dehydrogenase domain. No indication of the presence of a prosthetic group was obtained; Mg(2+) and Fe(2+) stimulated and EDTA inhibited activity. The enzyme was highly specific for its substrates, with apparent K(m) values of 30 microM malonyl-CoA and 25 microM NADPH and a turnover number of 25 s(-1) subunit(-1). The specific activity in autotrophically grown cells was 0.08 micromol of malonyl-CoA reduced min(-1) (mg of protein)(-1), compared to 0.03 micromol min(-1) (mg of protein)(-1) in heterotrophically grown cells, indicating downregulation under heterotrophic conditions. Malonyl-CoA reductase is not required in any other known pathway and therefore can be taken as a characteristic enzyme of the 3-hydroxypropionate cycle. Furthermore, the enzyme may be useful for production of 3-hydroxypropionate and for a coupled spectrophotometric assay for activity screening of acetyl-CoA carboxylase, a target enzyme of potent herbicides.  相似文献   

6.
A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus   总被引:3,自引:0,他引:3  
Phototrophic CO(2) assimilation by the primitive, green eubacterium Chloroflexus aurantiacus has been shown earlier to proceed in a cyclic mode via 3-hydroxypropionate, propionyl-CoA, succinyl-CoA, and malyl-CoA. The metabolic cycle could be closed by cleavage of malyl-CoA affording glyoxylate (the primary CO(2) fixation product) with regeneration of acetyl-CoA serving as the starter unit of the cycle. The pathway of glyoxylate assimilation to form gluconeogenic precursors has not been elucidated to date. We could now show that the incubation of cell extract with a mixture of glyoxylate and [1,2,3-(13)C(3)]propionyl-CoA afforded erythro-beta-[1,2,2'-(13)C(3)]methylmalate and [1,2,2'-(13)C(3)]citramalate. Similar experiments using a partially purified protein fraction afforded erythro-beta-[1,2,2'-(13)C(3)]methylmalyl-CoA and [1,2,2'-(13)C(3)]mesaconyl-CoA. Cell extracts of C. aurantiacus were also shown to catalyze the conversion of citramalate into pyruvate and acetyl-CoA in a succinyl-CoA-dependent reaction. The data suggest that glyoxylate obtained by the cleavage of malyl-CoA can be utilized by condensation with propionyl-CoA affording erythro-beta-methylmalyl-CoA, which is converted to acetyl-CoA and pyruvate. This reaction sequence regenerates acetyl-CoA, which serves as the precursor of propionyl-CoA in the 3-hydroxypropionate cycle. Autotrophic CO(2) fixation proceeds by combination of the 3-hydroxypropionate cycle with the methylmalyl-CoA cycle. The net product of that bicyclic autotrophic CO(2) fixation pathway is pyruvate serving as an universal building block for anabolic reactions.  相似文献   

7.
《FEBS letters》1985,181(2):303-307
Methanobacterium thermoautotrophicum, a methane forming archaebacterium, grows autotrophically by synthesizing activated acetic acid from 2 CO2. It is demonstrated in vitro that the methyl group of acetate is derived from methenyl tetrahydromethanopterin, which is known to be a one-carbon carrying coenzyme in CO2 reduction to methane. The direct acetate precursors are suggested to be methyl tetrahydromethanopterin (“activated methanol”) and “activated carbon monoxide”.  相似文献   

8.
The Gram positive anaerobeAcetobacterium woodii is able to grow autotrophically with a mixture of H2 and CO2 as the energy and carbon source. The question, by which pathway CO2 is assimilated, was studied using long term isotope labeling.Autotrophically growing cultures produced acetate parallel to cell proliferation, and, when U-[14C]acetate was present as tracer, incorporated radioactivity into all cell fractions. The specific radioactivity and the label positions were determined for those representative cell compounds which biosynthetically originated directly from acetyl CoA (N-acetyl groups), pyruvate (alanine), oxaloacetate (aspartate), -ketoglutarate (glutamate), and hexosephosphates (glucosamine). Per mol compound the same amount of labeled acetate was incorporated into N-acetyl groups, alanine (C-2, C-3), aspartate (C-2, C-3), and twice the amount into glutamate (C-2, C-3, C-4, C-5) and into glucosamine. Consequently, the unlabeled carbon atoms of the C3–C6 compounds must have been derived from CO2 by carboxylation subsequent to acetyl CoA synthesis. When 0.2 mM 2-[14C]pyruvate was added to autotrophically growing cultures, also a substantial amount of radioactivity was incorporated. Two important differences in comparison to the acetate experiment were observed: The N-acetyl groups were almost unlabeled and glutamate contained the same specific radioactivity as alanine or aspartate.These data showed that acetyl CoA is the central intermediate for biosynthesis and excluded the operation of the Calvin cycle inA. woodii. The results were consistent with the operation of a different autotrophic CO2 fixation pathway in which CO2 is converted into acetyl CoA by total synthesis via methyltetrahydrofolate; acetyl CoA is then further reductively carboxylated to pyruvate.  相似文献   

9.
Autotrophically grown cells of Chloroflexus aurantiacus B-3 were shown to possess activity of ATP-dependent malate lyase (acetylating CoA). ATP: malate lyase is supposed to be the specific enzyme of the cycle of the autotrophic CO2 fixation, in which pyruvate synthase, pyruvate phosphate dikinase, phosphoenolpyruvate (PEP) carboxylase and malate dehydrogenase are involved as well. The main product of the CO2 fixation cycle is glyoxylate, which could further be converted into 3-phosphoglyceric acid (3-PGA) in the reactions of either glycerate or serine pathway. The enzymes of both pathways were detected in C. auratiacus B-3. The results of the in vivo studies of glyxoylate and glycine metabolism, as well as the inhibitor analysis using fluoroacetate (FAc), isonicotinic acid hydrazide (INH), and 4-aminopterin (4-AP) confirm the operation of the proposed pathway in Chloroflexus.Abbreviations 3-PGA 3-phosphoglyceric acid - 4-AP 4-aminopterin - FAc fluoroacetate - INH isonicotinic acid hydrazide - MV methyl viologen - PEP phosphoenolpyruvate - THF tetrahydrofolate - TPP thiamine pyrophosphate  相似文献   

10.
Autotrophic members of the Sulfolobales (Crenarchaeota) contain acetyl-coenzyme A (CoA)/propionyl-CoA carboxylase as the CO2 fixation enzyme and use a modified 3-hydroxypropionate cycle to assimilate CO2 into cell material. In this central metabolic pathway malonyl-CoA, the product of acetyl-CoA carboxylation, is further reduced to 3-hydroxypropionate. Extracts of Metallosphaera sedula contained NADPH-specific malonyl-CoA reductase activity that was 10-fold up-regulated under autotrophic growth conditions. Malonyl-CoA reductase was partially purified and studied. Based on N-terminal amino acid sequencing the corresponding gene was identified in the genome of the closely related crenarchaeum Sulfolobus tokodaii. The Sulfolobus gene was cloned and heterologously expressed in Escherichia coli, and the recombinant protein was purified and studied. The enzyme catalyzes the following reaction: malonyl-CoA + NADPH + H+ --> malonate-semialdehyde + CoA + NADP+. In its native state it is associated with small RNA. Its activity was stimulated by Mg2+ and thiols and inactivated by thiol-blocking agents, suggesting the existence of a cysteine adduct in the course of the catalytic cycle. The enzyme was specific for NADPH (Km = 25 microM) and malonyl-CoA (Km = 40 microM). Malonyl-CoA reductase has 38% amino acid sequence identity to aspartate-semialdehyde dehydrogenase, suggesting a common ancestor for both proteins. It does not exhibit any significant similarity with malonyl-CoA reductase from Chloroflexus aurantiacus. This shows that the autotrophic pathway in Chloroflexus and Sulfolobaceae has evolved convergently and that these taxonomic groups have recruited different genes to bring about similar metabolic processes.  相似文献   

11.
12.
13C-NMR study of autotrophic CO2 fixation in Thermoproteus neutrophilus   总被引:1,自引:0,他引:1  
The pathway of autotrophic CO2 fixation has been investigated in the extremely thermophilic sulfur-respiring anaerobic archaebacterium Thermoproteus neutrophilus. [1,4-13C2]Succinate was used as a tracer since this compound was incorporated in small amounts virtually into all cell compounds without affecting the organism's ability to synthesize all cell constituents from CO2. Three representative amino acids, glutamate, aspartate and alanine were isolated from cells after growth for several generations in the presence of [1,4-13C2]succinate and their labelling patterns were determined by 13C NMR spectroscopy. The data is consistent with CO2 fixation by a reductive citric acid cycle, as proposed earlier for the green sulfur bacterium Chlorobium limicola, the sulfate-reducing Desulfobacter hydrogenophilus and the microaerophilic Knallgasbacterium Hydrogenobacter thermophilus. The presence of a reductive citric acid cycle in archaebacteria indicates that this CO2 fixation mechanism which is an alternative to the Calvin cycle is present in many anaerobic or facultative anaerobic microorganisms.  相似文献   

13.
The pathway of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum has been investigated by long term labelling of the organism with isotopic acetate and pyruvate while exponentially growing on H2 plus CO2. Maximally 2% of the cell carbon were derived from exogeneous tracer, 98% were synthesized from CO2. Since growth was obviously autotrophic the labelled compounds functioned as tracers of the cellular acetyl CoA and pyruvate pool during cell carbon synthesis from CO2. M. thermoautotrophicum growing in presence of U-14C acetate incorporated 14C into cell compounds derived from acetyl CoA (N-acetyl groups) as well as into compounds derived from pyruvate (alanine), oxaloacetate (aspartate), -ketoglutarate (glutamate), hexosephosphates (galactosamine), and pentosephosphates (ribose). The specific radioactities of N-acetylgroups and of the three amino acids were identical. The hexosamine exhibited a two times higher specific radioactivity, and the pentose a 1.6 times higher specific radioactivity than e.g. alanine. M. thermoautotrophicum growing in presence of 3-14C pyruvate, however, did not incorporate 14C into cell compounds directly derived from acetyl CoA. Those compounds derived from pyruvate, dicarboxylic acids and hexosephosphates became labelled. The specific radioactivities of alanine, aspartate and glutamate were identical; the hexosamine had a specific radioactivity twice as high as e.g. alanine.The finding that pyruvate was not incorporated into compounds derived from acetyl CoA, whereas acetate was incorporated into derivatives of acetyl CoA and pyruvate in a 1:1 ratio demonstrates that pyruvate is synthesized by reductive carboxylation of acetyl CoA. The data further provide evidence that in this autotrophic CO2 fixation pathway hexosephosphates and pentosephosphates are synthesized from CO2 via acetyl CoA and pyruvate.  相似文献   

14.
The activity of two carboxylating enzymes was studied in the green filamentous bacteriumChloroflexus aurantiacus. The carboxylation reaction involving pyruvate synthase was optimized using14CO2 and cell extracts. Pyruvate synthase was shown to be absent from cells ofCfl. aurantiacus OK-70 and present (in a quantity sufficient to account for autotrophic growth) in cells ofCfl. aurantiacus B-3. Differences in the levels of acetyl CoA carboxylase activity were revealed between cells of the strains studied grown under different conditions. The data obtained confirm the operation of different mechanisms of autotrophic CO2 assimilation inCfl. aurantiacus B-3 andCfl. aurantiacus OK-70: in the former organism, it is the reductive cycle of dicarboxylic acids, and in the latter one, it is the 3-hydroxypropionate cycle.  相似文献   

15.
Autotrophic CO(2) fixation represents the most important biosynthetic process in biology. Besides the well-known Calvin-Benson cycle, five other totally different autotrophic mechanisms are known today. This minireview discusses the factors determining their distribution. As will be made clear, the observed diversity reflects the variety of the organisms and the ecological niches existing in nature.  相似文献   

16.
A 3-hydroxypropionate/4-hydroxybutyrate cycle operates during autotrophic CO2 fixation in various members of the Crenarchaea. In this cycle, as determined using Metallosphaera sedula, malonyl-coenzyme A (malonyl-CoA) and succinyl-CoA are reductively converted via their semialdehydes to the corresponding alcohols 3-hydroxypropionate and 4-hydroxybutyrate. Here three missing oxidoreductases of this cycle were purified from M. sedula and studied. Malonic semialdehyde reductase, a member of the 3-hydroxyacyl-CoA dehydrogenase family, reduces malonic semialdehyde with NADPH to 3-hydroxypropionate. The latter compound is converted via propionyl-CoA to succinyl-CoA. Succinyl-CoA reduction to succinic semialdehyde is catalyzed by malonyl-CoA/succinyl-CoA reductase, a promiscuous NADPH-dependent enzyme that is a paralogue of aspartate semialdehyde dehydrogenase. Succinic semialdehyde is then reduced with NADPH to 4-hydroxybutyrate by succinic semialdehyde reductase, an enzyme belonging to the Zn-dependent alcohol dehydrogenase family. Genes highly similar to the Metallosphaera genes were found in other members of the Sulfolobales. Only distantly related genes were found in the genomes of autotrophic marine Crenarchaeota that may use a similar cycle in autotrophic carbon fixation.The thermoacidophilic autotrophic crenarchaeum Metallosphaera sedula uses a 3-hydroxypropionate/4-hydroxybutyrate cycle for CO2 fixation (9, 28, 29, 35) (Fig. (Fig.1).1). A similar cycle may operate in other autotrophic members of the Sulfolobales (31) and in mesophilic marine group I Crenarchaea (Cenarchaeum sp., Nitrosopumilus sp.). This cycle uses elements of the 3-hydroxypropionate cycle that was originally discovered in the phototrophic bacterium Chloroflexus aurantiacus (15, 22-25, 41, 42). It involves the carboxylation of acetyl coenzyme A (acetyl-CoA) to malonyl-CoA by a biotin-dependent acetyl-CoA carboxylase (12, 29). The carboxylation product is reduced to malonic semialdehyde by malonyl-CoA reductase (1). Malonic semialdehyde is further reduced to 3-hydroxypropionate, the characteristic intermediate of the pathway (9, 31, 35). 3-Hydroxypropionate is further reductively converted to propionyl-CoA (3), which is carboxylated to (S)-methylmalonyl-CoA by propionyl-CoA carboxylase. Only one copy of the genes encoding the acetyl-CoA/propionyl-CoA carboxylase subunits is present in most Archaea, indicating that this enzyme is a promiscuous enzyme that acts on both acetyl-CoA and propionyl-CoA (12, 29). (S)-Methylmalonyl-CoA is isomerized to (R)-methylmalonyl-CoA, which is followed by carbon rearrangement to succinyl-CoA catalyzed by coenzyme B12-dependent methylmalonyl-CoA mutase.Open in a separate windowFIG. 1.Proposed 3-hydroxypropionate/4-hydroxybutyrate cycle in M. sedula and other autotrophic Sulfolobales. Enzymes: 1, acetyl-CoA carboxylase; 2, malonyl-CoA reductase (NADPH); 3, malonate semialdehyde reductase (NADPH); 4, 3-hydroxypropionate-CoA ligase (AMP forming); 5, 3-hydroxypropionyl-CoA dehydratase; 6, acryloyl-CoA reductase (NADPH); 7, propionyl-CoA carboxylase, identical to acetyl-CoA carboxylase; 8, (S)-methylmalonyl-CoA epimerase; 9, methylmalonyl-CoA mutase; 10, succinyl-CoA reductase (NADPH), identical to malonyl-CoA reductase; 11, succinic semialdehyde reductase (NADPH); 12, 4-hydroxybutyrate-CoA ligase (AMP forming); 13, 4-hydroxybutyryl-CoA dehydratase; 14, crotonyl-CoA hydratase; 15, (S)-3-hydroxybutyryl-CoA dehydrogenase (NAD+); 16, acetoacetyl-CoA β-ketothiolase. The highlighted steps are catalyzed by the enzymes studied here.Succinyl-CoA is converted via succinic semialdehyde and 4-hydroxybutyrate to two molecules of acetyl-CoA (9), thus regenerating the starting CO2 acceptor molecule and releasing another acetyl-CoA molecule for biosynthesis. Hence, the 3-hydroxypropionate/4-hydroxybutyrate cycle (Fig. (Fig.1)1) can be divided into two parts. The first part transforms one acetyl-CoA molecule and two bicarbonate molecules into succinyl-CoA (Fig. (Fig.1,1, steps 1 to 9), and the second part converts succinyl-CoA to two acetyl-CoA molecules (Fig. (Fig.1,1, steps 10 to 16).The second part of the autotrophic cycle also occurs in the dicarboxylate/4-hydroxybutyrate cycle, which operates in autotrophic CO2 fixation in Desulfurococcales and Thermoproteales (Crenarchaea) (27, 37), raising the question of whether the enzymes in these two lineages have common roots (37). The first part of the cycle also occurs in the 3-hydroxypropionate cycle for autotrophic CO2 fixation in Chloroflexus aurantiacus and a few related green nonsulfur phototrophic bacteria (19, 22, 23, 32, 49).The two-step reduction of malonyl-CoA to 3-hydroxpropionate in Chloroflexus is catalyzed by a single bifunctional 300-kDa enzyme (30). The M. sedula malonyl-CoA reductase is completely unrelated and forms only malonic semialdehyde (1), and the enzyme catalyzing the second malonic semialdehyde reduction step that forms 3-hydroxypropionate is unknown. In the second part of the 3-hydroxypropionate/4-hydroxybutyrate cycle a similar reduction of succinyl-CoA via succinic semialdehyde to 4-hydroxybutyrate takes place. The enzymes responsible for these reactions also have not been characterized.In this work we purified the enzymes malonic semialdehyde reductase, succinyl-CoA reductase, and succinic semialdehyde reductase from M. sedula. The genes coding for these enzymes were identified in the genome, and recombinant proteins were studied in some detail. Interestingly, succinyl-CoA reductase turned out to be identical to malonyl-CoA reductase. We also show here that enzymes that are highly similar to succinyl-CoA reductase in Thermoproteus neutrophilus do not function as succinyl-CoA reductases in M. sedula.  相似文献   

17.
18.
Autotrophic carbon dioxide (CO2) fixation by microbes is ubiquitous in the environment and potentially contributes to the soil organic carbon (SOC) pool. However, the multiple autotrophic pathways of microbial carbon assimilation and fixation in paddy soils remain poorly characterized. In this study, we combine metagenomic analysis with 14C-labelling to investigate all known autotrophic pathways and CO2 assimilation mechanisms in five typical paddy soils from southern China. Marker genes of six autotrophic pathways are detected in all soil samples, which are dominated by the cbbL genes (67%–82%) coding the ribulose-bisphosphate carboxylase large chain in the Calvin cycle. These marker genes are associated with a broad range of phototrophic and chemotrophic genera. Significant amounts of 14C-CO2 are assimilated into SOC (74.3–175.8 mg 14C kg−1) and microbial biomass (5.2–24.1 mg 14C kg−1) after 45 days incubation, where more than 70% of 14C-SOC was concentrated in the relatively stable humin fractions. These results show that paddy soil microbes contain the genetic potential for autotrophic carbon fixation spreading over broad taxonomic ranges, and can incorporate atmospheric carbon into organic components, which ultimately contribute to the stable SOC pool.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号