首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthase phosphatase, phosphorylase phosphatase and histone phosphatase in rat liver were measured using as substrates purified liver synthase D, phosphorylase alpha and 32P-labelled phosphorylated f1 histone, respectively. The three phosphatase enzymes had different sedimentation characteristics. Both synthase phosphatase and phosphorylase phosphatase were found to sediment with the microsomal fraction under our experimental conditions. Only 10% of histone phosphatase was in this fraction; the majority was in the cytosol. No change in histone phosphatase was observed in the adrenalectomized fasted rat whereas synthase phosphatase and phosphorylase phosphatase activities were decreased 5-10 fold. Fractionation of liver extract with ethanol produced a dissociation of the three phosphatase activities. When a partially purified fraction was put on a DEAE-cellulose column, synthase phosphatase and phosphorylase phosphatase both exhibited broad elution profiles but their activity peaks did not coincide. Histone phosphatase eluted as a single discrete peak. When the supernatant of CaCl2-treated microsomal fraction was put on a Sepharose 4B column, the majority of synthase phosphatase was found to elute with the larger molecular weight proteins whereas the majority of phosphorylase phosphatase eluted with the smaller species. Histone phosphatase migrated as a single peak and was of intermediate size. Synthase phosphorylase phosphatase by synthase D (Ki approximately 2 units/ml). The inhibition of synthase phosphatase by phosphorylase alpha was kinetically non-competitive with substrate. Histone phosphatase activity was not inhibited by synthase D or by phosphorylase alpha. The above results suggest that different proteins are involved in the dephosphorylation of synthase D, phosphorylase alpha and histone in the cell.  相似文献   

2.
The smooth endoplasmic reticulum (ER) and cytosol fractions of liver homogenates exhibit phosphoprotein phosphatase activity towards glycogen synthase D and phosphorylase a. The following observations suggest that liver contains multiple forms of these phosphatases. Synthase phosphatase activity in either fraction was more readily inactivated by heating than phosphorylase phosphatase activity. Both synthase phosphatase and phosphorylase phosphatase activities in smooth ER were non-competitively inhibited by Mg2+, but were activated by this ion in the cytosol. Synthase phosphatase activities in cytosol and smooth ER were stimulated by a number of sugar phosphates, particularly glucose-1-phosphate, galactose-6-phosphate and fructose-6-phosphate. Erythrose-4-phosphate stimulated synthase phosphatase activity in the cytosol, but inhibited the microsomal enzyme. Phosphorylase phosphatase activities in either fraction were inhibited by most sugar phosphates. Adenosine mono-, di- and tri-phosphates inhibited phosphatase activities in both fractions. Low concentrations of AMP and ADP inhibited phosphorylase phosphatase activities to a greater extent than synthase phosphatase activities. Chromatography of the smooth ER fraction on DEAE-cellulose resulted in the separation of synthase phosphatase from phosphorylase phosphatase, as soluble proteins. The elution profile for the microsomal phosphatase was different from that for the cytosol enzymes. It is concluded that: both synthase phosphatase and phosphorylase phosphatase in liver have at least two isoenzyme forms; synthase phosphatase and phosphorylase phosphatase are separate enzymes; the different behaviour of microsomal and cytosol phosphatases towards divalent cations and sugar phosphates provides a potential mechanism for the differential regulation of these activities in liver.  相似文献   

3.
Two protein phosphatases were isolated from rat liver nuclei. The enzymes, solubilized from crude chromatin by 1 M NaCl, were resolved by column chromatography on Sephadex G-150, DEAE-Sepharose and heparin-Sepharose. The phosphorylase phosphatase activity of one of the enzymes (inhibitor-sensitive phosphatase) was inhibited by heat-stable phosphatase inhibitor proteins and also by histone H1. This phosphatase had a molecular weight of approx. 35 000 both before and after 4 M urea treatment. Its activity was specific for the β-subunit of phosphorylase kinase. Pretreatment with 0.1 mM ATP inhibited the enzyme only about 10%, and it did not require divalent cations for activity. On the basis of these properties, this nuclear enzyme was identified as the catalytic subunit of phosphatase 1. The other phosphatase (polycation-stimulated phosphatase) was insensitive to inhibition by inhibitor 1, and it was stimulated 10-fold by low concentrations of histone H1 (A0.5 = 0.6 μM). This enzyme had a molecular weight of approx. 70 000 which was reduced to approx. 35 000 after treatment with 4 M urea. It dephosphorylated both the α- and β-subunits of phosphorylase kinase. The enzyme was inhibited more than 90% by preincubation with 0.1 mM ATP and did not require divalent cations for activity. On the basis of these properties, this nuclear enzyme was identified as phosphatase 2A.  相似文献   

4.
By using chromatography on DEAE-cellulose, aminohexyl-Sepharose 4B and Sephadex G-200, rat liver extract was shown to contain at least three fractions, IA, IB and II, of histone phosphatase. Fractions IA and II are probably the same enzymes as the previously described glycogen synthase phosphatase and phosphorylase phosphatase, respectively, but IB exhibits noticeable activities only with phosphohistone as substrate. Approximate molecular weights of 69 000, 300 000 and 160 000 were determined by gel filtration on Sephadex G-200 for IA, IB and II, respectively.  相似文献   

5.
Glycogen synthase phosphatase has been purified from bovine heart. This preparation catalyzes conversion of synthase D into I and phosphorylase a into b and is able to dephosphorylate synthase D, phosphorylase a, active phosphorylase kinase, and phosphorylated histone and casein. The activity of phosphatase was assayed with synthase D, phosphorylase a, and histone as substrates after chromatography on Sephadex G-100, after sucrose gradient centrifugation, and after isoelectric focusing in a sucrose gradient. In all cases no separation of enzyme activity was observed with the above substrates. The phosphatase activity on all substrates was lost at the same rate by heat denaturation. These results indicate that this enzyme preparation contains a single phosphoprotein phosphatase which is responsible for the activity observed on the above substrates.  相似文献   

6.
Muscle extracts were subjected to fractionation with ethanol, chromatography on DEAE-cellulose, precipitation with (NH4)2SO4 and gel filtration on Sephadex G-200. These fractions were assayed for protein phosphatase activities by using the following seven phosphoprotein substrates: phosphorylase a, glycogen synthase b1, glycogen synthase b2, phosphorylase kinase (phosphorylated in either the alpha-subunit or the beta-subunit), histone H1 and histone H2B. Three protein phosphatases with distinctive specificities were resolved by the final gel-filtration step and were termed I, II and III. Protein phosphatase-I, apparent mol.wt. 300000, was an active histone phosphatase, but it accounted for only 10-15% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities and 2-3% of the phosphorylase kinase phosphatase and phosphorylase phosphatase activity recovered from the Sephadex G-200 column. Protein phosphatase-II, apparent mol.wt. 170000, possessed histone phosphatase activity similar to that of protein phosphatase-I. It possessed more than 95% of the activity towards the alpha-subunit of phosphorylase kinase that was recovered from Sephadex G-200. It accounted for 10-15% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activity, but less than 5% of the activity against the beta-subunit of phosphorylase kinase and 1-2% of the phosphorylase phosphatase activity recovered from Sephadex G-200. Protein phosphatase-III was the most active histone phosphatase. It possessed 95% of the phosphorylase phosphatase and beta-phosphorylase kinase phosphatase activities, and 75% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities recovered from Sephadex G-200. It accounted for less than 5% of the alpha-phosphorylase kinase phosphatase activity. Protein phosphatase-III was sometimes eluted from Sephadex-G-200 as a species of apparent mol.wt. 75000(termed IIIA), sometimes as a species of mol.wt. 46000(termed IIIB) and sometimes as a mixture of both components. The substrate specificities of protein phosphatases-IIA and -IIB were identical. These findings, taken with the observation that phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities co-purified up to the Sephadex G-200 step, suggest that a single protein phosphatase (protein phosphatase-III) catalyses each of the dephosphorylation reactions that inhibit glycogenolysis or stimulate glycogen synthesis. This contention is further supported by results presented in the following paper [Cohen, P., Nimmo, G.A. & Antoniw, J.F. (1977) Biochem. J. 1628 435-444] which describes a heat-stable protein that is a specific inhibitor of protein phosphatase-III.  相似文献   

7.
Hormonal regulation of hepatic glycogen synthase phosphatase   总被引:1,自引:0,他引:1  
Perfusion of livers from fed rats with medium containing glucagon (2 x 10(-10) or 1 x 10(-8) M) resulted in both time- and concentration-dependent inactivation of glycogen synthase phosphatase. Expected changes occurred in cAMP, cAMP-dependent protein kinase, glycogen synthase, and glycogen phosphorylase. The effect of glucagon on synthase phosphatase was partially reversed by simultaneous addition of insulin (4 x 10(-8) M), an effect paralleled by a decrease in cAMP. Addition of arginine vasopressin (10 milliunits/ml) resulted in a similar inactivation of synthase phosphatase and activation of phosphorylase, but independent of any changes in cAMP or its kinase. Phosphorylase phosphatase activity was unaffected by any of these hormones. Synthase phosphatase activity, measured as the ability of a crude homogenate to catalyze the conversion of purified rat liver synthase D to the I form, was no longer inhibited by glucagon or vasopressin when phosphorylase antiserum was added to the phosphatase assay mixture in sufficient quantity to inhibit 90-95% of the phosphorylase a activity. These data support the following conclusions: 1) hepatic glycogen synthase phosphatase activity is acutely modulated by hormones, 2) hepatic glycogen synthase phosphatase and phosphorylase phosphatase are regulated differently, 3) the hormone-mediated changes in synthase phosphatase cannot be explained by an alteration of the synthase D molecule affecting its behavior as a substrate, and 4) glycogen synthase phosphatase activity is at least partially controlled by the level of phosphorylase a.  相似文献   

8.
A simplified procedure for the purification of low molecular weight phosphoprotein phosphatase acting on muscle phosphorylase a has been described from rabbit heart. The enzyme was purified to homogeneity by acid precipitation, ethanol treatment, and chromatography on Sephadex G-75 and Sepharose-histone. The purified enzyme showed a single band when examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; the molecular weight calculated by this method was 34 000. The S20, W value and Stokes radius for the enzyme was 3.35 and 24.0 A(1 A = 0.1 nm), respectively. Using these two values, a molecular weight of 35 000 was calculated. Purified enzyme showed a wide substrate specificity and catalyzed the dephosphorylation of phosphorylase a, glycogen synthase D, phosphorylated histone, and phosphorylated casein. Kinetic studies revealed the lowest Km with glycogen synthase D and maximum Vmax for the reaction with phosphorylase a.  相似文献   

9.
The predominant form of phosphorylase phosphatase activity in porcine renal cortical extracts was a polycation-stimulated protein phosphatase. This activity was present in extracts in a high-molecular-weight form which could be converted to a free catalytic subunit by treatment with ethanol, urea, or freezing and thawing in the presence of beta-mercaptoethanol. The catalytic subunit of the polycation-stimulated phosphatase was purified by chromatography on DEAE-Sephacel, heparin-Sepharose, and Sephadex G-75. The phosphatase appeared to be homogeneous on SDS-polyacrylamide gel electrophoresis. The enzyme had an apparent Mr of 35 000 on gel filtration and SDS-polyacrylamide gel electrophoresis. The purified phosphatase could be stimulated by histone H1, protamine, poly(D-lysine), poly(L-lysine) or polybrene utilizing phosphorylase a as the substrate. It preferentially dephosphorylated the alpha-subunit of phosphorylase kinase. The phosphatase was highly sensitive to inhibition by ATP. These results suggest that the renal polycation-stimulated phosphatase catalytic subunit is very similar to or identical with the skeletal muscle phosphatase form which has been previously designated phosphatase-2Ac.  相似文献   

10.
A detailed investigation was conducted to determine the precise subcellular localization of the rate-limiting enzymes of hepatic glycogen metabolism (glycogen synthase and phosphorylase) and their regulatory enzymes (synthase phosphatase and phosphorylase phosphatase). Rat liver was homogenized and fractionated to produce soluble, rough and smooth microsomal fractions. Enzyme assays of the fractions were performed, and the results showed that glycogen synthase and phosphorylase were located in the soluble fraction of the livers. Synthase phosphatase and phosphorylase phosphatase activities were also present in soluble fractions, but were clearly identified in both rough and smooth microsomal fractions. It is suggested that the location of smooth endoplasmic reticulum (SER) within the cytosome forms a microenvironment within hepatocytes that establishes conditions necessary for glycogen synthesis (and degradation). Thus the location of SER in the cell determines regions of the hepatocyte that are rich in glycogen particles. Furthermore, the demonstration of the association of synthase phosphatase and phosphorylase phosphatase with membranes of SER may account for the close morphological association of SER with glycogen particles (i.e., disposition of SER membranes brings the membrane-bound regulatory enzymes in close contact with their substrates).  相似文献   

11.
The phosphoprotein phosphatase(s) acting on muscle phosphorylase a was purified from rabbit liver by acid precipitation, high speed centrifugation, chromatography on DEAE-Sephadex A-50, Sephadex G-75, and Sepharose-histone. Enzyme activity was recovered in the final step as two distinct peaks tentatively referred to as phosphoprotein phosphatases I and II. Each phosphatase showed a single broad band when examined by sodium dodecyl sulfate gel electrophoresis; the molecular weights derived by this method were approximately 30,500 for phosphoprotein phosphatase I and 34,000 for phosphoprotein phosphatase II. The s20, w value for each enzyme was 3.40. Using this value and values for the Stokes radii, the molecular weight for each enzyme was calculated to be 34,500. Both phosphatases, in addition to catalyzing the conversion of phosphorylase a to b, also catalyzed the dephosphorylation of glycogen synthase D, activated phosphorylase kinase, phosphorylated histone, phosphorylated casein, and the phosphorylated inhibitory component of troponin (TN-I). The relative activities of the phosphatases with respect to phosphorylase a, glycogen synthase D, histone, and casein remained essentially constant throughout the purification. The activities of both phosphatases with different substrates decreased in parallel when they were denatured by incubation at 55 degrees and 65 degrees. The Km values of phosphoprotein phosphatase I for phosphorylase a, histone, and casein were lower than the values obtained for phosphoprotein phosphatase II. With glycogen synthase D as substrate, each enzyme gave essentially the same Km value. Utilizing either enzyme, it was found that activity toward a given substrate was inhibited competitively by each of the alternative substrates. The results suggest that phosphoprotein phosphatases I and II are each active toward all of the substrates tested.  相似文献   

12.
Rat liver microsomes contain type-1 S6 phosphatase (acting on the serine residues phosphorylated by protein kinase A) and type-1 phosphorylase phosphatase activities. The main aim of this study has been to characterize the microsomal S6 phosphatase activity and to compare its properties with those of the phosphorylase phosphatase activity in the same microsomal preparation. The specific activities of both microsomal S6 phosphatase and phosphorylase phosphatase were 1.6- to 1.7-fold higher in the smooth endoplasmic reticulum than in the rough sarcoplasmic reticulum. Both phosphatase activities were inhibited to a similar extent by MgCl2 (10 mM) and NaF (22 mM), were completely suppressed by glycerophosphate (80 mM) and ZnCl2(10 mM), and were stimulated by MnCl2(1 mM). When analyzed by gel filtration on Sephadex G-100 superfine, both phosphatase activities eluted as broad peaks, stretching from the void volume to 45-60 kDa. The microsomal S6 phosphatase and phosphorylase phosphatase activities also displayed the following distinct characteristics: (a) Mn2+ stimulated the S6 phosphatase activity 2.9-fold more than the phosphorylase phosphatase activity, (b) limited trypsin digestion of microsomal preparations increased the phosphorylase phosphatase activity by 1.5- to 2-fold, but decreased the S6 phosphatase activity by 50%, (c) a synthetic peptide analog of S6 (S6229-239) (200 microM), which did not act as a substrate for the microsomal S6 phosphatase and did not affect its activity, inhibited the microsomal phosphorylase phosphatase activity by about 50%, and (d) the elution profile of the phosphorylase phosphatase activity was markedly broader than that of the S6 phosphatase activity. A series of in vivo studies showed that streptozotocin-diabetes and insulin replacement therapy as well as ip injection of insulin or vanadate, which modified the microsomal S6 phosphatase activity, had no statistically significant effects on the microsomal phosphorylase phosphatase activity. Taken together, these results suggest that the microsomal S6 phosphatase and phosphorylase phosphatase activities are due to two distinct enzyme populations.  相似文献   

13.
Upon fractionation of a postmitochondrial supernatant from rat liver, the synthase phosphatase (EC 3.1.3.42) activity (assayed at high tissue concentrations) was largely recovered in the glycogen fraction and to a minor extent in the cytosol. In contrast, the phosphorylase phosphatase (EC 3.1.3.17) activity was approximately equally distributed between these two fractions, a lesser amount being recovered in the microsomal fraction. The phosphatase activities in the microsomal and glycogen fractions were almost completely inhibited by a preincubation with the modulator protein, a specific inhibitor of type-1 (ATP,Mg-dependent) protein phosphatases. In the cytosolic fraction, however, type-2A (polycation-stimulated) phosphatase(s) contributed significantly to the dephosphorylation of phosphorylase and of in vitro phosphorylated muscular synthase. Liver synthase b, used as substrate for the measurement of synthase phosphatase throughout this work, was only activated by modulator-sensitive phosphatases. Trypsin treatment of the subcellular fractions resulted in a dramatically increased (up to 1000-fold) sensitivity to modulator, a several-fold increase in phosphorylase phosphatase activity and a complete loss of synthase phosphatase activity. Similar changes occurred during dilution of the glycogen-bound enzyme. A preincubation with the deinhibitor protein, which is known to counteract the effects of inhibitor-1 and modulator, increased several-fold the phosphorylase phosphatase activity, but exclusively in the cytosolic and microsomal fractions. It did not affect the synthase phosphatase activity. Taken together, the results indicate the existence of distinct, multi-subunit type-1 phosphatases in the cytosolic, microsomal and glycogen fractions.  相似文献   

14.
Glycogen synthase (labelled in sites-3) and glycogen phosphorylase from rabbit skeletal muscle were used as substrates to investigate the nature of the protein phosphatases that act on these proteins in the glycogen and microsomal fractions of rat liver. Under the assay conditions employed, glycogen synthase phosphatase and phosphorylase phosphatase activities in both subcellular fractions could be inhibited 80-90% by inhibitor-1 or inhibitor-2, and the concentrations required for half-maximal inhibition were similar. Glycogen synthase phosphatase and phosphorylase phosphatase activities coeluted from Sephadex G-100 as broad peaks, stretching from the void volume to an apparent molecular mass of about 50 kDa. Incubation with trypsin decreased the apparent molecular mass of both activities to about 35 kDa, and decreased their I50 for inhibitors-1 and -2 in an identical manner. After tryptic digestion, the I50 values for inhibitors-1 and -2 were very similar to those of the catalytic subunit of protein phosphatase-1 from rabbit skeletal muscle. The glycogen and microsomal fractions of rat liver dephosphorylated the beta-subunit of phosphorylase kinase much faster than the alpha-subunit and dephosphorylation of the beta-subunit was prevented by the same concentrations of inhibitor-1 and inhibitor-2 that were required to inhibit the dephosphorylation of phosphorylase. The same experiments performed with the glycogen plus microsomal fraction from rabbit skeletal muscle revealed that the properties of glycogen synthase phosphatase and phosphorylase phosphatase were very similar to the corresponding activities in the hepatic glycogen fraction, except that the two activities coeluted as sharp peaks near the void volume of Sephadex G-100 (before tryptic digestion). Tryptic digestion of the hepatic glycogen and microsomal fractions increased phosphorylase phosphatase about threefold, but decreased glycogen synthase phosphatase activity. Similar results were obtained with the glycogen plus microsomal fraction from rabbit skeletal muscle or the glycogen-bound form of protein phosphatase-1 purified to homogeneity from the same tissue. Therefore the divergent effects of trypsin on glycogen synthase phosphatase and phosphorylase phosphatase activities are an intrinsic property of protein phosphatase-1. It is concluded that the major protein phosphatase in both the glycogen and microsomal fractions of rat liver is a form of protein phosphatase-1, and that this enzyme accounts for virtually all the glycogen synthase phosphatase and phosphorylase phosphatase activity associated with these subcellular fractions.  相似文献   

15.
1. Phosphoprotein phosphatase IB is a form of rat liver phosphoprotein phosphatase, distinguished from the previously studied phosphoprotein phosphatase II [Tamura et al. (1980) Eur. J. Biochem. 104, 347-355] by earlier elution from DEAE-cellulose, by higher molecular weight on gel filtration (260000) and by lower activity toward phosphorylase alpha. This enzyme was purified to apparent homogeneity by chromatography on DEAE-cellulose, aminohexyl--Sepharose-4B, histone--Sepharose-4B, protamine--Sepharose-4B and Sephadex G-200. 2. The molecular weight of purified phosphatase IB was 260000 by gel filtration and 185000 from S20,W and Stokes' radius. Using histone phosphatase activity as the reference for comparison, the phosphorylase phosphatase activity of purified phosphatase IB was only one-fifth that of phosphatase II. 3. Sodium dodecyl sulfate gel electrophoresis revealed that phosphatase IB contains three types of subunit, namely alpha, beta and gamma, whose molecular weights are 35000, 69000 and 58000, respectively. The alpha subunit is identical to the alpha subunit of phosphatase II. While the beta subunit is also identical or similar to the beta subunit of phoshatase II, the gamma subunit appears to be unique to phosphatase IB. 4. When purified phosphatase IB was treated with 2-mercaptoethanol at -20 degrees C, the enzyme was dissociated to release the catalytically active alpha subunit. Along with this dissociation, there was a 7.4-fold increase in phosphorylase phosphatase activity; but histone phosphatase activity increased only 1.6-fold. The possible functions of the gamma subunit are discussed in relation to this activation of enzyme.  相似文献   

16.
Using substrates purified from liver, the apparent Km values of synthase phosphatase ([UDPglucose--glycogen glucosyltransferase-D]phosphohydrolase, EC 3.1.3.42) and phosphorylase phosphatase (phosphorylase a phosphohydrolase, EC 3.1.3.17) were found to be 0.7 and 60 units/ml respectively. The maximal velocity of phosphorylase phosphatase was more than a 100 times that of synthase phosphatase. In adrenalectomized, fasted animals there was a complete loss of synthase phosphatase but only a slight decrease in phosphorylase phosphatase when activity was measured using endogenous substrates in a concentrated liver extract. When assayed under optimal conditions with purified substrates, both activities were present but had decreased to very low levels. Mixing experiments indicated that synthase D present in the extract of adrenalectomized fasted animals was altered such that it was no longer a substrate for synthase phosphatase from normal rats. Phosphorylase a substrate on the other hand was unaltered and readily converted. When glucose was given in vivo, no change in percent of synthase in the I form was seen in adrenalectomized rats but the percent of phosphorylase in the a form was reduced. Precipitation of protein from an extract of normal fed rats with ethanol produced a large activation of phosphorylase phosphatase activity with no corresponding increase in synthase phosphatase activity. Despite the low phosphorylase phosphatase present in extracts of adrenalectomized fasted animals, ethanol precipitation increased activity to the same high level as obtained in the normal fed rats. Synthase phosphatase and phosphorylase phosphatase activities were also decreased in normal fasted, diabetic fed and fasted, and adrenalectomized fed rats. Both enzymes recovered in the same manner temporally after oral glucose administration to adrenalectomized, fasted rats. These results suggest an integrated regulatory mechanism for the two phosphatase.  相似文献   

17.
In glycogen particle suspensions prepared from fed rats given either glucagon or glucose in order to increase or decrease the phosphorylase a concentration, respectively, glucose stimulation of synthase phosphatase activity was observed. In preparations from glucagon-treated rats, addition of glucose stimulated synthase and phosphorylase phosphatase simultaneously and not sequentially. Synthase phosphatase stimulation was glucose concentration dependent even when phosphorylase a had been rapidly reduced to a low level. The estimated A0.5 for glucose stimulation of synthase phosphatase activity was 27 mM. An A0.5 for glucose stimulation of phosphorylase phosphatase activity could not be estimated since activity was still increasing with concentrations of glucose as high as 200 mM. In preparations from glucose-treated rats which contain virtually no phosphorylase a, glucose stimulation was still apparent but the A0.5 was increased modestly (36 mM). Stimulation of synthase phosphatase activity was specific for glucose. Several other monosaccharides and the polyhydric alcohol sorbitol were ineffective.  相似文献   

18.
Pig heart phosphoprotein phosphatase [phosphoprotein phosphophydrolase, EC 3.1.3.16] of Mr 224,000 was dissociated by gel-filtration on Sephacryl S-300, into an active subunit (alpha subunit) of Mr 31,000 and inactive subunits of higher molecular weight in the presence of 6 M urea. After the removal of urea, these subunits reassociated, forming two enzyme forms of Mr 237,000 (Form 1) and Mr 123,000 (Form 2). Form 2 was produced by association of the alpha subunit with an inactive subunit (beta subunit) of Mr 80,000, while Form 1 was formed by combination of the alpha subunit with a complex of inactive subunits which was eluted from a Sephadex G-150 column in fractions of molecular weight range greater than 80,000. The dissociation and reassociation of the subunits of Form 1 by the same urea method produced not only Form 1, but also significant amounts of Form 2, indicating that the inactive subunits of Form 1 were a complex of the beta subunit with another inactive subunit(s). The molecular parameters and other properties of Form 1 were very close to those of the original enzyme. By the conversion of Form 1 to Form 2, the activities of Form 1 towards phosphorylase a and glycogen synthetase b were enhanced 2-3 fold with no significant change in activity towards P-H1 histone or in response to the stimulatory effect of Mg(CH3COO)2 on the dephosphorylation of P-H2B histone. However, removal of the beta subunit from From 2 resulted in strong suppression of activity towards P-H1 histone and response to the salt effect with lesser effects on the activities of Form 2 towards phosphorylase a and glycogen synthase b.  相似文献   

19.
1. Post-mitochondrial supernatants were prepared from the livers of 24 h-fasted rats. Upon centrifugation at high speed, the major part of the glycogen-synthase phosphatase activity sedimented with the microsomal fraction. However, two approaches showed that the enzyme was associated with residual glycogen rather than with vesicles of the endoplasmic reticulum. Indeed, the activity was entirely solubilized when the remaining glycogen was degraded either by glucagon treatment in vivo or by alpha-amylolysis in vitro. No evidence could be found for an association of glycogen-synthase phosphatase with the smooth endoplasmic reticulum, as isolated with the use of discontinuous sucrose gradients. 2. After solubilization by glucagon treatment in vivo, synthase phosphatase could be transferred to glycogen particles with very high affinity. Half-maximal binding occurred at a glycogen concentration of about 0.25 mg/ml, whereas glycogen synthase and phosphorylase required 1.5-2 mg/ml. 3. In gel-filtered extracts prepared from glycogen-depleted livers, the activation of glycogen synthase was not inhibited at all by phosphorylase alpha. The inhibition was restored when the liver homogenates were prepared in a glycogen-containing buffer. The effect was half-maximal at a glycogen concentration of about 0.25 mg/ml, and virtually complete at 1 mg/ml. These findings explain long-standing observations that in fasted animals the liver contains appreciable amounts of both synthase and phosphorylase in the active form.  相似文献   

20.
Purification and properties of acetyl-CoA carboxylase phosphatase   总被引:1,自引:0,他引:1  
Acetyl-CoA carboxylase phosphatase has been purified from the rat epididymal fat pad. The phosphatase occurs in a complex with the carboxylase. In the purification of the phosphatase, the high molecular weight complex was initially separated by sucrose gradient centrifugation, and the phosphatase was isolated from the complex by adjusting to 80% saturation with ethanol and by chromatography on Sephadex G-75. The molecular weight of the phosphatase is 71,000 as determined by sodium dodecyl sulfate gel electrophoresis and gel chromatography on Sephacryl-200 in the presence of 6 M urea. The Km for acetyl-CoA carboxylase and glycogen phosphorylase a are 1.5 microM and 37 microM, respectively. The phosphatase has a broad substrate specificity, being active toward glycogen synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, phosphorylase a, phosphoprotamine, and p-nitrophenyl phosphate, in addition to acetyl-CoA carboxylase from fat tissue and liver. Acetyl-CoA carboxylase inhibits the dephosphorylation of phosphoprotamine, indicating that the same activity is responsible for dephosphorylating both substrates. The phosphatase requires no metal ion for activity and is not inhibited by the rat liver phosphorylase phosphatase inhibitor protein. The significance of these findings is discussed in relation to the regulation of acetyl-CoA carboxylase, and the phosphatase is compared to other phosphoprotein phosphatases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号