首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In order to investigate virulence enhancement of entomopathogenic fungi, a Beauveria bassiana-sourced Pr1 protease (CDEP-1) was expressed by a methylotrophic yeast Pichia pastoris and then used as an additive to three gradient sprays of B. bassiana strain (Bb0062) onto apterous green peach aphid Myzus persicae adults in six bioassays. The resultant data fit well to a time–concentration–mortality model. Generally, the LC50 estimates of the fungal pathogen against the aphid species decreased with increasing CDEP-1 concentrations from 0 to 100 µg mL?1. The LC50s on days 5–7 after spray were reduced by 1.5–2.5-fold at the concentrations of 20–100 µg mL?1. However, sprays of 20–100 µg CDEP-1 mL?1 aqueous solution alone had no significant effect on aphid mortality compared to water spray only. Neither did inclusion of inactivated CDEP-1 at a concentration of 50 µg mL?1 affect significantly the fungal virulence to aphids. Our results confirm for the first time that the cuticle-degrading protease CDEP-1 enhanced fungal virulence due to acceleration of conidial germination and cuticle penetration. This suggests a new approach to utilising the protease in microbial control.  相似文献   

2.
The main objective of this study was to assess the susceptibility of the black cutworm (Agrotis ipsilon) to the biopesticide spinosad and to a commercial formulation (GHA strain) of the entomopathogenic fungus, Beauveria bassiana. Secondly, we quantified the effects of sublethal doses of spinosad on a number of A. ipsilon fitness parameters, and interactions resulting from simultaneous applications of sub-lethal doses of spinosad and B. bassiana. Under laboratory conditions, A. ipsilon third instar larvae were highly susceptible to spinosad, with an estimated LC50 of 50 ppm. The entomopathogenic fungus, B. bassiana had a lower efficacy with an estimated LC50 of 7×107 spores mL?1. Topical applications of 5, 7.5 and 10 ppm of spinosad on third instar larvae reduced larval size and increased time to pupation and to emergence. However, pupal and adult weights were not significantly different between treated and control individuals. Additivity was observed from most spinosad–B. bassiana combinations tested, thus indicating compatibility between products. We concluded that spinosad is a promising tool for controlling black cutworm larvae alone or in combination with other products.  相似文献   

3.
A technically standardised bioassay method was designed, evaluated and used to assess virulence and host range of hypocrealean fungi against aphids. A track mounted sprayer was used to apply conidia because hand held versions of the same sprayer can be used for field applications, thereby allowing the outcome from laboratory experiments to predict activity in the field accurately. Eighteen fungal isolates were assessed in single concentration bioassays against the black bean aphid Aphis fabae Scopoli. Isolates comprised commercially available mycoinsecticides (based on Beauveria bassiana and Lecanicillium longisporum) and isolates of B. bassiana, Lecanicillium spp., Paecilomyces fumosoroseus and Metarhizium anisopliae. Aphid mortality was in excess of 80% for 15 isolates, and HRI 1.72 (L. longipsorum), Z11 (P. fumosoroseus), Mycotech strain GHA (B. bassiana) and ARSEF 2879 (B. bassiana) were studied further. Multiple concentration bioassays identified HRI 1.72 as the most virulent isolate against A. fabae with significantly smaller LC50 and LT50 values compared to other isolates. A precise LC50 value (2.95 × 102 conidia ml−1) was calculated for HRI 1.72 using a second multiple concentration assay with smaller concentrations of conidia. The four isolates were applied at a single concentration (1 × 108 conidia ml−1) against Myzus persicae, A. fabae, Acyrthosiphon pisum, Metopolophium dirhodum, Sitobion avenae and Rhopalosiphum padi. A ranking of aphid susceptibility was obtained, such that S. avenae > M. persicae, A. pisum, A. fabae > R. padi. Results indicate the importance of standardising bioassay methods to reduce bioassay variability without compromising the ability to use the bioassay to investigate fungus–host interactions under varying abiotic and biotic conditions.  相似文献   

4.
The effect of the entomopathogenic fungus Beauveria bassiana on the biological characteristics and life table of Aphidius matricariae, a parasitoid of the green peach aphid, Myzus persicae, was studied under laboratory conditions. Aphids were first infected with twice the LC95 of B. bassiana for third-instar M. persicae (2 × 108 conidia/ml). Subsequently, at different intervals they were exposed to 1-day-old mated parasitoid females for 24 h. The number of mummies produced per female and the percentage emergence of the F1 generation differed significantly as a function of the time interval between application of the fungus and exposure to the parasitoid. The interference of B. bassiana on parasitoid development was also studied by first exposing the aphid hosts to the parasitoid for 24 h and subsequently applying B. bassiana. The number of mummies produced by a female A. matricariae varied from 11.8 to 24.8 and was significantly different when the aphids were first exposed to the parasitoids and then treated with B. bassiana 24, 48, 72, and 96 h after exposure. There were no significantly different effects of B. bassiana on net reproductive rate (R0), mean generation time (T), intrinsic rate (rm) and the finite rate of increase (λ) of A. matricariae as a result of development in hosts exposed to low or high conidial concentrations (1 × 102, 2 × 108 conidia/ml). The parasitoids developed in infected hosts had lower rm, λ, T and DT (doubling time) values compared with those that developed in uninfected hosts but no differences were observed in R0 values. With proper timing, A. matricariae and B. bassiana can be used in combination in the successful biological control of M. persicae.  相似文献   

5.
The oral toxicity of the C‐type allatostatin, Manduca sexta allatostatin (Manse‐AS) and the analogue δR3δR5Manse‐AS, where R residues were replaced by their D‐isomers, were tested against the peach‐potato aphid Myzus persicae by incorporation into an artificial diet. Both peptides had significant dose‐dependent effects on mortality, growth, and fecundity compared with control insects. The analogue, δR3δR5Manse‐AS, had an estimated LC50 of 0.31 µg/µl diet and was more potent than Manse‐AS (estimated LC50 of 0.58 µg/µl diet). At a dose of 0.35 µg δR3δR5Manse‐AS/µl diet, 76% of the aphids were dead after 6 days and all were dead after 10 days. In comparison, three times the dose of Manse‐AS was required to achieve 74% mortality after 8 days and 98% mortality after 16 days. The degradation of both peptides by extracts prepared from the gut of M. persicae was investigated. The estimated half‐life of Manse‐AS, when incubated with the gut extract from M. persicae, was 31 min. Degradation was due to a cathepsin L‐like cysteine protease, carboxypeptidase‐like activity, endoprotease activity with glutamine specificity, pyroglutamate aminopeptidase activity, and possibly trypsin‐like proteases. The half‐life of the δR3δR5 Manse‐AS analogue was enhanced (73 min) with the D‐isomers of R appearing to prevent cleavage around the R residues by cathepsin L‐like cysteine proteases or from trypsin‐like proteases. The greater stability of the analogue may explain its increased potency in M. persicae. This work demonstrates the potential use of Manse‐AS and analogues, with greater resistance to enzymatic attack, in aphid control strategies. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
Myzus persicae is an important insect pest that reduces crop production worldwide. The use of pesticides for aphid control has generated much concern related to insect resistance and undesirable environmental effects. In an effort to discover new alternatives to counter M. persicae, we found that Pseudomonas isolate DJ15 produced insecticidal metabolites. To isolate the insecticidal metabolites, a cell‐free supernatant of DJ15 was extracted and subjected to bioassay‐guided chromatography. Based on the structures elucidated in instrumental analyses, the metabolites were identified as xantholysins A and B. The metabolites showed strong insecticidal activity against M. persicae with 50% mortality at levels of 13.4 and 24.6 μg/mL for xantholysins A and B, respectively. This is the first study to identify xantholysins as insecticidal metabolites against M. persicae.  相似文献   

7.
The comparative toxicity of five essential oil vapours was tested against four aphid species, the black bean aphid Aphis fabae, the pea aphid Acyrthosiphon pisum, the chrysanthemum aphid Macrosiphoniella sanborni, the green peach aphid Myzus persicae and on two of the most common coccinellid predators, the seven-spotted ladybird Coccinella septempunctata and the two-spotted ladybird Adalia bipunctata. All essential oils were highly toxic to the aphid species tested with LC50 and LC99 values ranging between 0.17 and 1.92 and 0.44 and 4.83 µL/L air, respectively, depending on the aphid species and on the essential oil. Coccinellid predators were also highly susceptible to the essential oil vapours and the selective toxicity ratio varied depending on aphid species, coccinellid predator and essential oil. The possibilities for the utililization of essential oils as aphicides, especially in IPM programmes in glasshouses are discussed with regard to the present findings.  相似文献   

8.
The pathogenicity of four isolates each of the entomopathogenic fungi, Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch.) Sorok. to apterous adult Aphis craccivora Koch was evaluated in the laboratory at 4 concentrations of conidia. All fungi isolates tested were found to be pathogenic to the insect but their virulence varied among species and isolates within species. Three isolates, B. bassiana CPD 11 and M. anisopliae CPD 4 and 5 caused significantly higher mortality than the other isolates at the various concentrations tested causing mortality of between 58–91%, 64 to 93% and 66–100%, respectively, at 7 days post treatment. At the highest concentration of 1 × 108conidiaml‐1, these isolates produced the shortest LT50s of 3.5, 3.6 and 3.4 days, respectively. Their LC50s were 6.8 × 105, 3.1 × 105 and 2.7 × 105 conidia ml‐1, respectively. The results indicate that these isolates are promising candidates for the control of the cowpea aphid but their pathogenicity to various aphid non‐target beneficial organisms within the cowpea agroecosystem warrant further investigation before initiating field control.  相似文献   

9.
The pathogenicity of 15 isolates of Beauveria bassiana (Balsamo) Vuillemin, five isolates of Metarhizium anisopliae (Metschnikoff) Sorokin and one isolate of M. flavoviride (Gams and Rozsypal) were tested under laboratory conditions against the subterranean life stages of the citrus pests, Ceratitis rosa Karsch, C. capitata Wiedemann (Diptera: Tephritidae) and Thaumatotibia leucotreta Meyrick. (Lepidoptera: Tortricidae). When these citrus pests were treated with a concentration of 1×107 conidia mL?1, fungal isolates had a significantly greater effect on the adults of C. rosa and C. capitata than they did on the puparia of these two fruit fly species. Further, C. rosa and C. capitata did not differ significantly in their response to entomopathogenic fungi when adult and pupal mycosis were considered. Depending on fungal isolate, the percentage of T. leucotreta adults which emerged from fungal treated sand ranged from 5 to 60% and the percentage of pupae with visible signs of mycosis ranged from 21 to 93%. The relative virulence of the four most promising fungal isolates, as well as the commercially available B. bassiana product, BroadBand® (Biological Control Products, South Africa), were compared against one another as log-probit regressions of mortality against T. leucotreta which exhibited a dose-dependent response. The estimated LC50 values of the three most virulent B. bassiana isolates ranged from 6.8×105 to 2.1×106 conidia mL?1, while those of the least pathogenic ranged from 1.6×107 to 3.7×107 conidia mL?1.  相似文献   

10.
Conidia of Beauveria bassiana and Metarhizium spp. smeared on glass slides were assayed for their responses to irradiation with weighted 312-nm UV-B and 365-nm UV-A at gradient doses of 0.005–1.1 and 1.0–18.0 J cm−2, respectively. All inverted, sigmoid dose–survival trends showed good fit to a survival model (r 2 ≥ 0.97), yielding respective UV-B LD50s of 0.23–0.59 and 0.05–0.65 J cm−2 for 24 B. bassiana and 36 Metarhizium isolates, and UV-A LD50s of 2.78–10.46 J cm−2 for 24 Metarhizium isolates. Myzus persicae apterae on detached leaves were sprayed with a concentrated spore suspension of B. bassiana or M. anisopliae, followed by exposure to the UV-B doses to cause 10–90% viability losses. These doses caused aphid mortality reductions as expected but affected neither spray-to-death period nor fungal growth on cadavers. The results highlight the merits of using UV-tolerant candidates and photoprotection measures in fungal formulations for pest control.  相似文献   

11.
The effects of sub-lethal imidacloprid concentrations on acquisition and inoculation of potato leafroll virus (PLRV) by Myzus persicae (Sulzer) (Hemiptera: Aphididae) were investigated. In experiments using two aphid clones to acquire PLRV from infected potatoes, virus transmission declined significantly with increasing concentrations of imidacloprid. The same was true in experiments using imidacloprid-treated Physalis floridana Rydb. as acquisition sources. When viruliferous M. persicae were placed on uninfected, imidacloprid-treated P. floridana, there were significant declines in PLRV transmission. Sub-lethal concentrations of imidacloprid clearly inhibited both acquisition and inoculation of PLRV by M. persicae, either through poisoning, temporary intoxication, and/or antifeedant effects.  相似文献   

12.
13.
Transmission of soybean dwarf viruses (SbDV) indigenous to Japan (SbDV‐D) and to the eastern United States (SbDV‐Va19) were compared in vector and nonvector aphid species. Absolute vector‐specificity was maintained when Aulacorthum solani, Acyrthosiphon pisum, and Myzus persicae were allowed to feed on solutions of either virus (100 μg/ml) through Parafil© membranes. SbDVD was transmitted only by A. solani, and SbDV‐Va19 was transmitted only by A. pisum and M. persicae. Similar results were obtained when individual aphids were micro‐injected with 2 ng virus and subsequently allowed to feed on healthy plants. Ultrastructural studies of A. solani and M. persicae indicated that both SbDV‐D and SbDV‐Va20 were acquired specifically through the aphid hindgut. No difference in hindgut acquisition specificity was observed, and both A. solani and M. persicae were able to transport SbDV‐D and SbDV‐Va20 into the haemocoel by endocytotic/exocytotic pathways. When injected, SbDV was shown to be associated with only the accessory salivary glands (ASG) in aphids, indicating a high level of tissue specificity. Two different interactions with the ASG were observed for SbDV‐D and SbDV‐Va20 in A. solani and M. persicae. SbDV‐D penetrated the ASG basal lamina of A. solani, but was never observed in the basal lamina of M. persicae. The ASG basal lamina was a barrier to SbDV‐D transmission by M. persicae. SbDV‐Va19 penetrated the ASG basal lamina of both A. solani and M. persicae. However, SbDV‐Va20 was not observed in the ASG cytoplasm in A. solani, indicating that the basal plasmalemma functioned as the transmission barrier. Observations indicated that capsid protein structure, aphid basal lamina composition and cell membrane components influenced virus‐aphid interactions regulating SbDV transmission.  相似文献   

14.
Control of green peach aphid (Myzus persicae), a globally important pest, using plant‐derived oils is a promising alternative to conventional insecticides. Although various plant‐derived oils are potentially useful for insect control, dose–response studies and efficacy comparisons among oils have not been widely reported. Our objective was to compare M. persicae control by plant‐derived oils, focusing on oils derived from Brassicaceae species that exhibit rotational and environmental quality benefits. We thus applied sprays of emulsified ethyl esters from the seed oils of yellow mustard (Sinapis alba), oriental mustard (Brassica juncea) and rapeseed (Brassica napus) to M. persicae in a laboratory bioassay. A dose–response relationship was modelled for the S. alba spray yielding LD50/LD95 values of 18.2 ± 0.87/128.1 ± 5.10 μg ester per cm2 (P < 0.0001). Ethyl esters of oils from all three species and soybean (Glycine max) ethyl ester were compared to determine the efficacy of Brassicaceae oils relative to the dominant plant‐oil spray currently available. All ethyl esters were equally efficacious despite measured differences in fatty acid profiles among the oils. Oils derived from mustards B. juncea and S. alba are potentially useful feedstocks for the production of insecticidal sprays, and testing on additional insects is warranted.  相似文献   

15.
1. For predators, prey selection should maximise nutrition and minimise fitness costs. In the present study, it was investigated whether a generalist predator [Chrysoperla carnea (Stephens) lacewing larvae] rejected harmful, chemically‐defended prey [Brevicoryne brassicae (Linnaeus) aphids] when non‐defended prey [Myzus persicae (Sulzer) aphids] were available. 2. It was tested: (i) whether consuming different prey species affects predator mortality; (ii) whether naïve predators reject chemically‐defended prey while foraging when non‐defended prey are available; (iii) whether the relative abundance of each prey affects the predator's prey choice; and (iv) whether predators learn to avoid consuming chemically‐defended prey after exposure to both prey species. 3. Consumption of B. brassicae yielded greater C. carnea mortality than M. persicae consumption, but naïve C. carnea did not reject B. brassicae in favour of M. persicae during foraging. When presented at unequal abundances, naïve predators generally consumed each aphid species according to their initial relative abundance, although, predation of non‐defended prey was less than expected when defended prey were initially more abundant, indicating a high consumption of B. brassicae impeded M. persicae consumption. With experience, C. carnea maintained predation of both aphid species but consumed more M. persicae than B. brassicae, indicating a change in behaviour. 4. Although prey choice by C. carnea may change with experience of available prey, prey chemical defences do not appear to influence prey choice by naïve predators. This inability to avoid harmful prey could facilitate wider, indirect interactions. Myzus persicae may benefit where high consumption of B. brassicae hinders predators in the short term, and in the long term, increases predator mortality.  相似文献   

16.
Effects of sublethal concentrations (LC25) of six insecticides (imidacloprid, rotenone, fenvalerate, abamectin, pirimicarb and azadirachtin) on fecundity and wing dimorphism of the green peach aphid, Myzus persicae (Sulzer), were studied both under laboratory and greenhouse conditions. In the laboratory, aphid reproduction reduced by 44.29% and 54.01% when rotenone and abamectin treatments were applied at sublethal dose, respectively, and sublethal fenvalerate application resulted in markedly lower average reproduction per female per day compared with control. Reproductive duration of aphid treated with abamectin significantly decreased by 44.19%. But in the greenhouse, there were no evident differences in the aphid fecundity and reproductive duration between treatments and control. Life‐table parameters also demonstrated that the six insecticides at sublethal doses did not stimulate the aphid reproductive potential. In the laboratory, after being exposed to sublethal doses of imidacloprid and fenvalerate, the proportions of alate progeny in aphid progeny were significantly higher than that of the control. In the greenhouse, percentages of alate offspring from the mother aphids treated with imidacloprid, fenvalerate and abamectin increased pronouncedly compared with control. Mortality rates of offspring in the nymphal stages from adults treated with insecticides revealed no significant changes between laboratory and greenhouse. The developmental time in days of the offspring varied in all treatments. Mechanisms of insecticide‐induced resurgence are discussed.  相似文献   

17.
Ekesi S 《Mycopathologia》1999,148(3):131-139
The virulence of 8 isolates of entomopathogenic hyphomycetes against adult and 5th instar nymph of Clavigralla tomentosicollis was evaluated in the laboratory at 4 different concentrations of inoculum. At all concentrations, Beauveria bassiana CPD 9 and Metarhizium anisopliae CPD 5 caused the highest mortality in adult bug ranging from 58 to 97% and 53 to 100%, respectively at 7 days post inoculation. The same isolates had the shortest LT50 (3.5 and 4.1 days, respectively) and the lowest LC50 (1.8 × 105 and 9.8 × 104 conidia ml-1 values in adult insects. In nymphs, M. anisopliae CPD 5 was the most virulent isolate causing mortality of between 43 to 92% with the shortest LT50 of 2.7 days and the lowest LC50of 4.6 × 105 conidia ml-1 which however did not differ significant from LC50 observed in B. bassiana CPD 9 isolate at 5 days post inoculation. A significant reduction in feeding in both developmental stages treated with fungi was observed at 2 days after treatment with the greatest reduction occurring in insects treated with B. bassiana CPD 9 and M. anisoplia CPD 5. In adult insects treated with these isolates, some bugs ceased feeding 24 h before death. When these two isolates were compared in caged experiment with an untreated control using a susceptible, tolerant and moderately resistant variety of cowpea, percentage pod and seed damage were significantly lower in fungal treated cages than in the control cages on all varieties tested. Grain yield per plant was also significantly higher in fungal treated cages than in the control cages on all varieties. The performance of M. anisopliae CPD 5 was however superior to B. bassiana CPD 9. Application of the fungi on moderately resistant variety of cowpea was found to enhance the performance of the pathogen. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), is an important sap‐sucking pest of many plants, including melons and peppers. This study was conducted to determine the effects of sublethal exposure to flonicamid and imidacloprid and the mechanisms by which these insecticides affect the feeding behavior of A. gossypii. The median lethal concentrations (LC50) of flonicamid and imidacloprid for adult A. gossypii were 2.40 and 1.92 mg l?1, respectively. The lower lethal concentrations of flonicamid were 1.01 mg l?1 (LC30) and 0.29 mg l?1 (LC10), and those of imidacloprid were 0.82 mg l?1 (LC30) and 0.24 mg l?1 (LC10). The developmental period of A. gossypii nymphs at LC30 was 3.6 days for both insecticides, which was shorter than that of the untreated controls (4.2 days). Longevity and total fecundity of A. gossypii adults were decreased at the sublethal concentrations of both insecticides. The lowest net reproductive rate was observed in A. gossypii treated with the LC30 of flonicamid. Feeding behavior analyses using an electrical penetration graph showed that sublethal concentrations of flonicamid and imidacloprid had significant effects on the duration of phloem ingestion. Higher doses of flonicamid induced starvation by inhibiting phloem ingestion, whereas imidacloprid acted as a contact toxin rather than an inhibitor of feeding behavior.  相似文献   

19.
The green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae) is one of the potato important pests; it is the most efficient vector of potato viruses. Myzus persicae harbors the endosymbiotic bacteria Buchnera aphidicola which supplements their diet. There is increasing evidence that B. aphidicola is involved in plant–aphid interactions and we previously demonstrated that B. aphidicola disruption (aposymbiosis) affected the probing behavior of M. persicae on radish plants, delaying host plant acceptance. In this work, we evaluated the effect of aposymbiosis on the probing behavior of M. persicae on 2 Solanum species with different compatibility with M. persicae, Solanum tuberosum (susceptible) and Solanum stoloniferum (resistant) with the electrical penetration graph technique (EPG). To disrupt B. aphidicola, rifampicin was administered to aphids through artificial diets. Aposymbiotic aphids, on both plant species, showed increased pathway activities, mechanical problems with the stylets, and delayed salivation in the phloem. The extended time in derailed stylet mechanics affected the occurrence of most other probing activities; it delayed the time to the first phloem phase and prevented ingestion from the phloem. The effect of aposymbiosis was more evident in the compatible interaction of M. persicaeS. tuberosum, than in the incompatible interaction with S. stoloniferum, which generated the M. persicaeS. tuberosum interaction to become incompatible. These results confirm that B. aphidicola is involved in the plantaphid interaction in relation to plant acceptance, presumably through a role in stylets penetration in the plant.  相似文献   

20.
In response to herbivory by insects, several plant species have been shown to produce volatiles that attract the natural enemies of those herbivores. Using a Y‐tube olfactometer, we investigated responses of the aphid parasitoid Diaeretiella rapae MacIntosh (Hymenoptera: Aphidiidae) to volatiles from Arabidopsis thaliana Columbia (Brassicaceae) plants that were either undamaged, infested by the peach‐potato aphid, Myzus persicae Sulzer (Homoptera: Aphididae), or mechanically damaged, as well as to volatiles from just the aphid or its honeydew. In dual‐choice experiments, female D. rapae given oviposition experience on A. thaliana infested with M. persicae were significantly attracted to volatiles from A. thaliana infested with M. persicae over volatiles from undamaged A. thaliana and similarly were significantly attracted to plants that had been previously infested by M. persicae, but from which the aphids were removed, over undamaged plants. Diaeretiella rapae did not respond to volatiles from M. persicae alone, their honeydew, or plants mechanically damaged with either a pin or scissors. We conclude that an interaction between the plant and the aphid induces A. thaliana to produce volatiles, which D. rapae can learn and respond to. Poor responses of D. rapae to volatiles from an A. thaliana plant that had two leaves infested with M. persicae, with the two infested leaves being removed before testing, suggested the possibility that, at this stage of infestation, the majority of volatile production induced by M. persicae may be localized to the infested tissues of the plant. We conclude that this tritrophic interaction is a suitable model system for future investigations of the biochemical pathways involved in the production of aphid‐induced volatiles attractive to natural enemies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号