首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drosophila suzukii is an invasive pest causing severe damages to a large panel of cultivated crops.To facili tate its biocontrol with stratcgies such as sterile or incompatible insect techniques,D.suzukid must be mass-produced and then stored and transported under low temperature.Prolonged cold exposure induces chill injuries that can be mitigated if the cold period is interrupted with short warming intervals,referred to as fluctuating thermal regimes(FTR).In this study,we tested how to optimally use FTR to extend the shelf life of D.suzukii under cold storage.Several FTR parameters were asessed:temperature(15,20,25℃),duration(0.5,1,2,3 h),and frequency(every 12,24,36,48 h)of warming intervals,in two wild-type lines and in two developmental stages(pupac and adults).Generally,FTR improved cold storage tolerance with respect to constant low temperatures(CLT).Cold mortality was lower when recovery temperature was 20℃ or higher,when duration was 2 h per day or longer,and when warming interruptions occurred frequently(every 12 or 24 h).Applying an optimized FTR protocol to adults greatly reduced cold mortality over long-term storage(up to 130 d).Consequences of FTR on fitness-related traits were also investigated.For adults,poststorage survival was unaffected by FTR,as was the case for female fecundity and male mating capacity.On the other hand,when cold storage occurred at pupal stage,postorage survival and male mating capacity were altered under CLT,but not under FTR.After storage of pupae,female fecundity was lower under FTR compared to CLT,suggesting an energy trade-off between repair of chill damages and C22 production.This study provides detailed information on the application and optimization of an FTR-based protocol for cold storage of D.suzuki that could be useful for the biocontrol of this pest.  相似文献   

2.
Cold storage of natural enemies usually involves placing insects under constant subambient temperatures. Even at non-freezing temperatures, a reduction in survival is the norm. Using fluctuating thermal regimes (FTR) instead of constant low temperature (CLT) has shown that mortality due to accumulation of chilling injuries was significantly reduced in Aphidius colemani . Whether this phenomenon can be generalised to other parasitoid species is not known. The aim of this study was to analyse interspecific variation in the ability to tolerate cold storage under CLT (continuous 2°C) versus FTR (daily cycle: 2°C for 22 h and 20°C for 2 h) for various durations (0–20 days). Survival, sex ratio and development of five different Aphidiine parasitoids were analysed: A. colemani , Aphidius ervi , Aphidius matricariae , Ephedrus cerasicola and Praon volucre. A marked interspecific variation in the ability to tolerate cold storage was observed: A. matricariae and A. ervi were most chill tolerant, P. volucre and E. cerasicola had an intermediate chill sensitivity and A. colemani was most chill sensitive. In all species tested, FTR significantly reduced cold-induced mortality. This phenomenon was manifested more in chill-sensitive species as they probably accumulate chilling injuries more rapidly. The sex ratio remained unaffected in all the species. Interspecific variation was also observed in developmental responses to cold storage. Under CLT, time to adult emergence of A. matricariae, A. colemani, A. ervi and P. volucre was temporarily stopped and in E. cerasicola it increased. Under FTR, the short daily intervals at 20°C for 2 h allowed parasitoids to continue development in all the species. Interspecific differences are discussed. This study suggests that positive impact of FTR may apply to a wide range of species.  相似文献   

3.
Exposing insects to a fluctuating thermal regime (FTR) compared with constant low temperature (CLT) significantly reduces cold-induced mortality. The beneficial effects of FTR result from physiological repair during warming intervals. The duration and the temperature experienced during the recovery period are supposed to strongly impact the resulting cold survival; however, disentangling the effects of both recovery variables had not been broadly investigated. In this study, we investigate cold tolerance (lethal time, Lt50) of the polyphagous beetle Alphitobius diaperinus. We examined adult survival under various CLTs (0, 5, 10 and 15 °C), and under 20 different FTR conditions, where the 0 °C exposure alternated with various recovery temperatures (Rt) (5, 10, 15 and 20 °C) combined with various recovery durations (Rds) (0.5, 1, 2, 3 and 4 h). Under CLTs, Lt50 increased with temperature until no mortality occurred above the upper limit of cold injury zone (ULCIZ). Under FTRs, Lt50 increased with both Rt and Rd. The magnitude of the survival gain was clearly boosted when Rt was above the ULCIZ (at 20 °C). Based on a data matrix of lethal times with multiple Rt×Rd combinations, a predictive model showed that cold survival increased exponentially with Rt and Rd. This model was subsequently validated with additional survival tests. We suggest that increasing recovery durations associated with optimal recovery temperatures eventually leads to a progressive chilling compensation.  相似文献   

4.
When exposed to constant low temperatures (CLTs), insects often suffer from cumulative physiological injuries that can severely compromise their fitness and survival. Yet, mortality can be considerably lowered when the cold stress period is interrupted by periodic warm interruption(s), referred to as fluctuating thermal regimes, FTRs. In this study, we have shown that FTRs strongly promoted cold tolerance of Drosophila melanogaster adults. We then assessed whether this marked phenotypic shift was associated with detectable physiological changes, such as synthesis of cryoprotectants and/or membrane remodeling. To test these hypotheses, we conducted two different time-series Omics analyzes in adult flies submitted to CLTs vs. FTRs: metabolomics (GC/MS) and lipidomics (LC/ESI/MS) targeting membrane phospholipids. We observed increasing levels in several polyhydric alcohols (arabitol, erythritol, sorbitol, mannitol, glycerol), sugars (fructose, mannose) and amino acids (serine, alanine, glutamine) in flies under CLT. Prolonged exposure to low temperature was also associated with a marked deviation of metabolic homeostasis and warm interruptions as short as 2 h were sufficient to periodically return the metabolic system to functionality. Lipidomics revealed an increased relative proportion of phosphatidylethanolamines and a shortening of fatty acyl chains in flies exposed to cold, likely to compensate for the ordering effect of low temperature on membranes. We found a remarkable correspondence in the time-course of changes between the metabolic and phospholipids networks, both suggesting a fast homeostatic regeneration during warm intervals under FTRs. In consequence, we suggest that periodic opportunities to restore system-wide homeostasis contribute to promote cold tolerance under FTRs.  相似文献   

5.
1. Temperature- and time-dependent mortalities were studied and modelled in insects exposed in regimes with constant and alternating temperatures. In these experiments, freezing was not a cause of death.
2. Survival rates at a range of constant low temperatures (– 5 to + 1 °C) and for different exposure periods (1–14 days) were measured in the summer acclimated springtail Orchesella cincta .
3. Daily interruptions of the cold exposure with short intervals at high temperature reduced mortality or slowed the increase of mortality. This effect was stronger at higher temperature (19 vs 5 and 12 °C) and increased with the duration of the interruption (0·25–2 h).
4. The injury was reversible when the cold exposure was limited to 2 days.
5. Survival in desiccated animals (14% water loss) was reduced.
6. It is suggested that the mortality of summer acclimated springtails is caused by a complex metabolic disorder and membrane changes at low temperatures.  相似文献   

6.
When stressful cold-exposure is interrupted by short warm intervals, physiological recovery is possible, and this improves markedly the survival of insects. Fluctuating thermal regime (FTR) may act as a cue triggering the initiation of a metabolic response involving synthesis of cryoprotective compounds, such as free amino acids (FAA). Since specific changes in FAA levels can provide a good indication of the overall response of an organism to stressful conditions, we investigated temporal changes in FAA body contents of the parasitoid Aphidius colemani Viereck during exposure to FTR (4 degrees C: 20 degrees C for 22 h: 2 h per day) versus constant low temperature (4 degrees C). Physiological response during cold-exposure was clearly dissimilar between thermal treatments. Under constant cold-exposure FAA pool increased, whereas it decreased with cold-exposure duration in FTR. No single FAA accumulation could explain the higher survival under FTR. We propose that instead of considering FAA as a part of cryoprotective arsenal, FAA accumulation should rather be regarded as a symptom of a cold-induced physiological response. This is much less manifest under FTR, as the warm intervals likely allow a periodic reactivation of normal metabolic activities and a recovery of developmental processes.  相似文献   

7.
Heat shock protein gene (Hsp) families are thought to be important in thermal adaptation, but their expression patterns under various thermal stresses have still been poorly characterized outside of model systems. We have therefore characterized Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta, a widespread global orchard pest, and compared patterns of expression in this species to that of other insects. Genes from four Hsp families showed variable expression levels among tissues and developmental stages. Members of the Hsp40, 70, and 90 families were highly expressed under short exposures to heat and cold. Expression of Hsp40, 70, and Hsc70 family members increased in OFM undergoing diapause, while Hsp90 was downregulated. We found that there was strong sequence conservation of members of large Hsp families (Hsp40, Hsp60, Hsp70, Hsc70) across taxa, but this was not always matched by conservation of expression patterns. When the large Hsps as well as small Hsps from OFM were compared under acute and ramping heat stress, two groups of sHsps expression patterns were apparent, depending on whether expression increased or decreased immediately after stress exposure. These results highlight potential differences in conservation of function as opposed to sequence in this gene family and also point to Hsp genes potentially useful as bioindicators of diapause and thermal stress in OFM.  相似文献   

8.
This study examined the impact of fluctuating thermal regimes (FTRs) on cold tolerance of the polyphagous beetle Alphitobius diaperinus. Daily pulses of elevated temperatures can provide breaks in chronic cold stress, potentially allowing for physiological recovery and improving survival. Perturbations in central metabolism appear to be a common physiological response in insects exposed to low temperatures. It has been suggested that energy supplies, which may be depleted during cold exposure, can be regenerated during the warming pulses of FTRs. This study tested the assumption that chronic cold stress may induce ATP depletion and that recovery during FTR warming pulses may allow re-establishment of ATP supplies. In this study, A. diaperinus were exposed to cold stress under different thermal regimes (constant or fluctuating). The results did not confirm the aforementioned assumption. No cold-induced ATP depletion was observed. The lowest ATP levels were repeatedly detected in the untreated controls. The data show that homoeostasis of ATP is lost when adults A. diaperinus are exposed to cold stress, whatever thermal regime (constant or fluctuating). ATP accumulation may be viewed as a symptom of a production/consumption imbalance under cold stress conditions. Periodic short (2-h) warming pulses clearly improved cold survival. Cellular homeostasis, however, probably requires a longer recovery period to be fully restored.  相似文献   

9.
The levels of heat‐shock proteins of the 70 kDa family (Hsp70s) were measured in different soft tissues of Atlantic cod Gadus morhua from different locations and after exposure to various thermal conditions: acute temperature increments (1° C day−1), mid‐term (73 days at 4–15° C) and long‐term thermal acclimation (278 days at 8–15° C), and seasonal and latitudinal temperature variations (field samples). Tissue specific distribution patterns of Hsp70s were observed: liver > gills > red blood cells > brain > white muscle. Thus, different tissues may have required different levels of protection by Hsp70s, and possibly this was related to the rate of protein synthesis. There were no differences in tissue Hsp70s between Arctic cod populations (Arctic, i.e . Barents and White Seas, Norwegian coast, and North or Baltic Seas). No changes in Hsp70s levels were observed in response to temperature variation of any intensity (acute fluctuation or seasonal and latitudinal) within the range of physiological temperatures (4–15° C) in wild and laboratory Atlantic cod. This confirms previous observations that changes in Hsp70 caused by such temperature variation are often small in fishes. Probably, the constitutive level of Hsp70s in Atlantic cod was high enough to overcome potentially harmful effects of temperature variations within the physiological range. A suppressing effect of high temperature (15° C) has already been observed at a systematic level (as reduced rate of somatic growth), whereas it is not reflected in modified Hsp70s. Therefore, Hsp70s apparently played a secondary role in defining thermal tolerance limits in Atlantic cod. These conclusions are in line with a recent concept of thermal tolerance which indicated that the first line of thermal limitation in the cold and warm is a loss in aerobic scope.  相似文献   

10.
11.
12.
变温贮藏僵蚜对烟蚜茧蜂耐寒能力的影响   总被引:3,自引:0,他引:3  
为明确变温贮藏以麦二叉蚜为寄主的僵蚜对烟蚜茧蜂耐寒能力的影响,探究其体内的生化物质变化规律,测定了变温处理后羽化的烟蚜茧蜂雌雄成虫过冷却点、结冰点、体内含水量、脂肪、蛋白质和总糖含量的变化.结果表明:与对照(20℃)相比,经4℃22 h/20℃2h和4 ℃ 46 h/20℃2h处理1周后烟蚜茧蜂的耐寒能力显著增强.经变温处理后,烟蚜茧蜂雌雄个体的过冷却点、结冰点均出现不同程度的下降,雌蜂经4℃22 h/20℃2h处理后过冷却点和结冰点最低,分别为-26.38和-25.51 ℃;雄蜂经4 ℃ 46 h/20℃2h处理后过冷却点和结冰点最低,分别为-26.82和-26.38℃.经变温处理后烟蚜茧蜂僵蚜雌雄个体体内糖和蛋白质含量上升而脂肪和体内含水量下降,尤以经4℃22 h/20 ℃ 2 h和4℃46h/20℃2h处理后的变化最为明显.变温可以提高烟蚜茧蜂僵蚜的低温抵抗能力,且其耐寒能力的增加与其体内生化物质含量的变化密切相关.僵蚜经4℃22h/20℃2h和4℃46h/20℃2h贮藏1周后更有利于烟蚜茧蜂的生存和实践应用.  相似文献   

13.
We characterized the Hsp70 cDNA in Chironomus riparius and evaluated its expression profile under different environmental stressors. It is highly conserved, at both DNA and protein levels, displaying many of the hallmarks of Hsps and sharing 80-96% of overall amino acid identities with homologous sequences from other diptera. The changes are mainly concentrated in the C-terminal domain of the protein. Phylogenetic analysis was consistent with the known classification of insects. The Hsp70 gene was located by in situ hybridization in region III-3A at the third polytene chromosome, a locus activated upon heat shock as shown by RNA pol II binding. As C. riparius is widely used in aquatic ecotoxicology testing, we studied Hsp70 gene induction in fourth instar aquatic larvae submitted to heat shock and selected environmental pollutants classified as potential endocrine disruptors. RT-PCR analysis showed that Hsp70 mRNA levels increased significantly (p<0.05) after short-term acute exposures to a temperature shift (HS), cadmium chloride (Cd), butyl benzyl phthalate (BBP), diethylhexyl phthalate (DEHP), bisphenol A (BPA), 4-nonylphenol (NP) and ethinylestradiol (EE). However, neither pentachlorophenol (PCP) nor tributyltin (TBTO) treatments were able to activate the Hsp70 gene. The cognate form, Hsc70, was also analysed and, unlike Hsp70, was not altered by any of the different treatments assayed. Moreover, at the times tested, there was no significant mortality of the larvae. The rapid upregulation of the Hsp70 gene suggests that it is sensitive and selective for different environmental pollutants, and could be used as an early molecular endpoint in ecotoxicological studies.  相似文献   

14.
Ferredoxin-thioredoxin reductase (FTR), an enzyme involved in the light regulation of chloroplast enzymes, was purified to homogeneity from leaves of spinach (a C3 plant) and corn (a C4 plant) and from cells of a cyanobacterium (Nostoc muscorum). The enzyme is a yellowish brown iron-sulfur protein, containing four nonheme iron and labile sulfide groups, that catalyzes the activation of NADP-malate dehydrogenase and fructose 1,6-bisphosphatase in the presence of ferredoxin and of thioredoxin m and f, respectively. FTR is synonymous with the protein earlier called ferralterin. FTR showed an Mr of about 30,000 (determined by sedimentation equilibrium ultracentrifugation, amino acid composition, gel filtration, and gradient gel electrophoresis) and was composed of two dissimilar subunits (as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). One of the FTR subunits from each source was similar both in Mr (about 13,000) and immunological properties, while the other subunit (of variable molecular weight) was characteristic of a particular organism. The similar subunit contained a disulfide group that was rapidly reduced by a dithiol (dithiothreitol) but not by monothiols (2-mercaptoethanol or reduced glutathione). Homogeneous FTR formed a tight noncovalent complex with ferredoxin on affinity columns. The basis for the structural variation in the different FTR enzymes remains to be determined.  相似文献   

15.
16.
Naturally occurring diurnal variations in temperature are sufficient to induce a rapid cold hardening (RCH) response in insects. RCH can increase cold tolerance by 1-2 degrees C and extend the temperature interval at which insects can remain active. While the benefits of RCH are well established, the underlying physiological mechanisms remain unresolved. In this study we investigated the role of RCH on expression of heat shock proteins (Hsp70) after a cold shock, and the effect of RCH on the composition of phospholipid fatty acids (PLFAs) in membranes of Drosophila melanogaster. These experiments were performed on both "control" flies and flies selected for cold resistance in order to additionally examine a possible target for selection for cold tolerance. RCH improved survival following cold shock at -4, -6 and -8 degrees C. No induction of Hsp70 was found following cold shock irrespective of the pre-treatment. In contrast, a 5h RCH treatment was sufficient to induce small, but significant, changes in the composition of PLFAs. Here, the polyunsaturated linoleic acid, 18:2(n-6), increased while monounsaturated (18:1) and saturated (14:0) PLFAs decreased in abundance. These changes were observed in both selection groups and caused a significant increase in the overall degree of unsaturation. This response is consistent with the membrane response typically found during cold acclimation in ectothermic animals and it is likely adaptive to maintain membrane function during cold. Cold selection resulted in PLFA changes (decrease of 18:0 and 18:1 and increase of 14:0 and 16:1), which may improve the ability to harden during RCH.  相似文献   

17.
Adults of the bug Pyrrhocoris apterus and the beetle Alphitobius diaperinus developed chill-injury slower and survived longer when they were exposed to fluctuating thermal regimes (FTRs, where periods of low temperature were alternated with periods of higher temperature on a daily basis) rather than to constant low temperatures. The extracellular (haemolymph) concentrations of potassium ions increased with significantly higher rates in the insects exposed to constant low temperatures than in those exposed to FTRs. The concentrations of magnesium and sodium ions were maintained relatively constant or decreased slightly in both thermal regimes. The loss of body water and the increase of haemolymph osmolality contributed to, but could not fully explain, the ion concentration changes, which probably resulted also from impairing the function of an active metabolic component (ion pump) at low temperatures. This explanation was supported by observing (in P. apterus) the return toward normal [K+] during the warm "recovery" period of the FTR. Collectively, the paper stresses the importance of considering the temperature fluctuations in the experimental studies on insect cold tolerance and suggests that the positive effect of the FTR on cold tolerance may consist, at least partially, in allowing the primary ion pumping systems to re-establish the ion gradients across cell membranes and epithelia during the recovery periods at a higher temperature.  相似文献   

18.
19.
This study of the bed bug, Cimex lectularius, examines tolerance of adult females to extremes in temperature and loss of body water. Although the supercooling point (SCP) of the bed bugs was approximately −20°C, all were killed by a direct 1 h exposure to −16°C. Thus, this species cannot tolerate freezing and is killed at temperatures well above its SCP. Neither cold acclimation at 4°C for 2 weeks nor dehydration (15% loss of water content) enhanced cold tolerance. However, bed bugs have the capacity for rapid cold hardening, i.e. a 1‐h exposure to 0°C improved their subsequent tolerance of −14 and −16°C. In response to heat stress, fewer than 20% of the bugs survived a 1‐h exposure to 46°C, and nearly all were killed at 48°C. Dehydration, heat acclimation at 30°C for 2 weeks and rapid heat hardening at 37°C for 1 h all failed to improve heat tolerance. Expression of the mRNAs encoding two heat shock proteins (Hsps), Hsp70 and Hsp90, was elevated in response to heat stress, cold stress and during dehydration and rehydration. The response of Hsp90 was more pronounced than that of Hsp70 during dehydration and rehydration. Our results define the tolerance limits for bed bugs to these commonly encountered stresses of temperature and low humidity and indicate a role for Hsps in responding to these stresses.  相似文献   

20.
The effect of both moisture and temperature on the infective potential of Beauveria bassiana to the Chagas' disease vector, Rhodnius prolixus, was studied under fluctuating regimes. At constant 25 degrees C, contaminated first-instar nymphs exposed to increasing daily periods of initial exposure to 97% RH, followed by transfer to reduced humidity (43, 53, 75, and 86% RH), showed a significant reduction in mortality when the 97% RH exposure time declined from 12 to 8 h per day. The duration of disease incubation depended on the daily 97% RH exposure time. Under fluctuating regimes of both humidity (97% RH versus 75% RH) and temperature (15/28, 20/25, 25/28, and 25/35 degrees C), first-instar mortality was affected by weather conditions, daily 97% RH exposure time (8, 12, and 16 h per day), and number of temperature and humidity fluctuations before transferring tested insects to constant unfavorable conditions. In most cases, at 12/12 h alternating cycles, high and rapid mortality required five cycles. Under these fluctuating regimes, fungus-induced mortality and mortality time were similarly affected in third- and fifth-instar nymphs by the daily 97% RH exposure time. Despite a lower susceptibility of older larval stages, mortality rates in insects exposed for at least 12 h per day at 97% RH remained very high except at 15 degrees C. Moisture and temperature regimes at 12/12 h cycling significantly affected the dose-mortality response in first-instar nymphs. The most favorable conditions consisted of 97%-20 degrees C combined with either 75%-25 degrees C or 43%-25 degrees C. Under less favorable alternating conditions (lower and higher temperatures) the amounts of inoculum required for killing 50% of first-instar nymphs were 10 or 20 times higher. From a vector control standpoint, daily high humidity appears to be the most crucial climatic constraint. B. bassiana has the potential to control R. prolixus populations with applications made during the rainy seasons when humidity is high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号