首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ca2(+)-ATPase in native sarcoplasmic reticulum membranes was selectively spin-labeled for saturation transfer electron spin resonance (ESR) studies by prelabeling with N-ethylmaleimide and by using low label/protein ratios. Results with the nitroxide derivative of the standard sulphydryl-modifying reagent, maleimide, were compared with a series of six novel nitroxide beta-substituted vinyl aryl ketone derivatives which differed (with two exceptions) in the substituent at the ketone position. The two exceptions had a different electron withdrawing group at the alpha-carbon, to enhance further the electrophilic character of the beta-carbon. Although differing in their reactivity, all the conjugated unsaturated ketone nitroxide derivatives displayed saturation transfer ESR spectra indicative of much slower motion than did the maleimide derivative. The saturation transfer ESR spectra of maleimide-labeled Ca2(+)-ATPase therefore most likely contain substantial contributions from segmental motion of the labeled group. The effects of the level of spin labeling were also investigated. With increasing degree of spin label incorporation, the linewidths of the conventional ESR spectrum progressively increased and the intensity of the saturation transfer spectrum dropped dramatically, as a result of increasing spin-spin interactions. The hyperfine splittings of the conventional spectrum and the outer lineheight ratios of the saturation transfer spectrum remained relatively unchanged. Extrapolation back to zero labeling level yielded comparable values for the effective rotational correlation times deduced from the saturation transfer spectrum intensities and from the lineheight ratios, for the vinyl ketone label. For the maleimide label the extrapolated values from the integral are significantly lower than those from the lineheight ratios, probably because of the segmental motion. Comparison is made of the effective rotational correlation time for the vinyl ketone label with the predictions of hydrodynamic models for the protein diffusion, in a discussion of the aggregation state of the Ca2(+)-ATPase in the native sarcoplasmic reticulum membrane. The implications for the study of protein rotational diffusion and segmental motion, and of the proximity relationships between labeled groups, using saturation transfer ESR spectroscopy are discussed.  相似文献   

2.
1. (Na+ + K+)-ATPase from rectal glands of Squalus acanthias contains 34 SH groups per mol (Mr 265000). 15 are located on the alpha subunit (Mr 106000) and two on the beta subunit (Mr 40000). The beta subunit also contains one disulphide bridge. 2. The reaction of (Na+ + K+)-ATPase with N-ethylmaleimide shows the existence of at least three classes of SH groups. Class I contains two SH groups on each alpha subunit and one on each beta subunit. Reaction of these groups with N-ethylmaleimide in the presence of 40% glycerol or sucrose does not alter the enzyme activity. Class II contains four SH groups on each alpha subunit, and the reaction of these groups with 0.1 mM N-ethylmaleimide in the presence of 150 mM K+ leads to an enzyme species with about 16% activity. The remaining enzyme activity can be completely abolished by reaction with 5-10 mM N-ethylmaleimide, indicating a third class of SH groups (Class III). This pattern of inactivation is different from that of the kidney enzyme, where only one class of SH groups essential to activity is observed. 3. It is also shown that N-ethylmaleimide and DTNB inactivate by reacting with the same Class II SH groups. 4. Spin-labelling of the (Na+ + K+)-ATPase with a maleimide derivative shows that Class II groups are mostly buried in the membrane, whereas Class I groups are more exposed. It is also shown that spin label bound to the Class I groups can monitor the difference between the Na+- and K+-forms of the enzyme.  相似文献   

3.
The membranous Na+/K(+)-ATPase from Squalus acanthias has been covalently modified on either Class I or Class II sulphydryl groups using derivatives of 3-(maleimidomethyl)-1-oxyl-2,2,5,5-tetramethylpyrrolidine with substituents of different charge and hydrophobicity attached at the remaining unsubstituted position of the pyrrolidine ring. The substituent groups used were a methyl and a hexyl ester, and di- and tri-methylammonium ethyl esters, as well as the parent underivatized compound. Additionally, another series of maleimide-nitroxides differing (by zero to seven intervening atoms) in the length of the linking group between the maleimide and the pyrrolidine moieties was used. The sites of attachment have been characterized in terms of the rotational mobility and environmental polarity by using conventional and saturation transfer EPR spectroscopy of these spin-labelled reagents. This provides a further sub-classification of the primary Class I and Class II SH-groups on the alpha-subunit of the enzyme, which differ both in their reactivity and influence on the Na+/K(+)-ATPase activity.  相似文献   

4.
The indanedione series of vinyl ketone spin-labelling reagents has been extended in two ways: by increasing the length of the rigid spacer between the reactive centre and the nitroxide ring, or by introducing an electrophilic substituent (that could also hinder its rotation) at the bridge head position of the nitroxide ring. Three reagents of this new series have been used to spin label the Class II thiol groups of membranous Na,K-ATPase from Squalus acanthias. With a conjugated diene spacer, the majority of spin labels are strongly held but a minor population is relatively mobile at 37 degrees C. With a conjugated triene spacer, the nitroxide is still strongly held but a portion of the label is non-covalently bound. The 4-bromo-pyrroline derivative (with short vinyl spacer) is tightly held at the attachment site, and the conventional electron paramagnetic resonance (EPR) spectra distinguish between the two enantiomeric structures which differ in their mobility at 37 degrees C. Saturation transfer EPR (ST-EPR) spectra of this label at 4 degrees C have been used to determine the dependence of the protein rotational mobility on ionic strength. Electrostatic repulsion contributes to the lateral interactions between Na,K-ATPase molecules.  相似文献   

5.
Membrane fluidity was studied by electron-spin-resonance techniques in human En(a-) erythrocytes that lack the major membrane sialoglycoprotein, glycophorin A. By using stearic acid spin labels with a doxyl group in the C-12 or C-15 positions, we demonstrated that the hydrophobic core in these cells was more fluid than in normal cells. Surface-located regions in isolated En(a-) membranes, when probed with stearic acid labelled in the C-5 position, appeared more stable than in normal membranes. In isolated En(a-) membranes, protein motion was decreased when probed with a nitroxide derivative of maleimide. After incubation with anti-(glycophorin A) antibodies protein motion and membrane fluidity were increased in normal membranes. This effect was observed also after spectrin depletion, which by itself increased protein motion but decreased membrane fluidity in the hydrophobic core of the membrane. The results show that membrane proteins influence the fluidity of membrane lipids.  相似文献   

6.
The mobility of spin labels covalently bound to the Ca2+-transport ATPase (ATP phosphohydrolase [EC 3.y.1.3]) was studied by electron spin-resonance spectroscopy in purified ATPase and reconstituted vesicles. The purified ATPase of sarcoplasmic reticulum of rabbit skeletal muscle was covalently labeled with maleimide spin-labels of different chain length and the phospholipids were exchanged for dipalmitoylphosphatidylcholine. The spectrum of the short-chain maleimide spin-label, bound to purified ATPase indicates reduced mobility after substitution of endogenous phospholipids with dipalmitoylphosphatidylcholine. With the long-chain maleimide derivative no difference was detected in the spectra, measured at 20-35 degrees C temperature before and after substitution with dipalmitoylphosphatidylcholine. Below 10 degrees C temperature the substitution with dipalmitoylphosphatidylcholine decreased the mobility of the prove, indicating that the microviscosity of environment in the vicinity of nitroxide groups was influenced by changes in the fatty acid composition. With both short and long chain spin-labels bound to purified ATPase adn sarcoplasmic reticulum vesicles the amplitude of weakly immobilized component sharply decreased in media containing 20-50% glycerol. Therefore, the mobility of covalently bound nitroxide group in short or long chain maleimide derivatives is also sensitive to the viscosity of the water phase.  相似文献   

7.
1. (Na+ + K+)-ATPase from homeotherms and poikilotherms demonstrate non-linear thermal dependence for ATP hydrolysis. Apparent energies of activation from crab nerve preparations are less than those of brain or kidney preparations from beef, rabbit, sheep or ground squirrel. 2. Crab nerve (Na+ + K+)-ATPase is less sensitive to inhibition by ouabain than that from beef or ground squirrel; lower rates of [3H]-ouabain binding and reduced amount of drug bound at equilibrium are found. 3. K+-activated acyl-phosphatase is similar in all preparations. 4. Fluorescence polarization of 12-AS labelled membranes demonstrate greater mobility of crab nerve lipids compared to beef brain which has a thermal transition at 20-25 degrees C. Crab nerve is linear in this range.  相似文献   

8.
We have developed a saturation transfer EPR (ST-EPR) method to measure selectively the rotational dynamics of those lipids that are motionally restricted by integral membrane proteins and have applied this methodology to measure lipid-protein interactions in native sarcoplasmic reticulum (SR) membranes. This analysis involves the measurement of spectral saturation using a series of six stearic acid spin labels that are labeled with a nitroxide at different carbon atom positions. A large amount of spectral saturation is observed for spin labels in native SR membranes, but not for spin labels in dispersions of extracted SR lipids, implying that the motional properties of those lipids interacting with the Ca-ATPase, i.e., the boundary or annular lipid, can be directly measured without the need for spectral subtraction procedures. A comparison of the motional properties of the restricted lipid, measured by ST-EPR, with those measured by digital subtraction of conventional EPR spectra qualitatively agree, for in both cases the Ca-ATPase restricts the rotational mobility of a population of lipids, whose rotational mobility increases as the nitroxide is positioned toward the center of the bilayer. However, the ability of ST-EPR to directly measure the motionally restricted lipid in a model-independent means provides the greater precision necessary to measure small changes in the rotational dynamics of the lipid at the protein-lipid interface, providing a valuable tool in clarifying the relationship between the physical nature of the protein-lipid interface and membrane function.  相似文献   

9.
The influence of phospholipid environment upon the mobility of spin labels covalently bound to the Ca2+-transport ATPase (ATP phosphohydrolase [EC 3.6.1.3]) was studied by electron spin resonance spectroscopy in native and reconstituted sarcoplasmic reticulum membranes. Fragmented sarcoplasmic reticulum of rabbit skeletal muscle was covalently labeled with maleimide spin-labels of different chain length or with 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidinooxyl, and the phospholipids were exchanged for dipalmitoylphosphatidylcholine or dioleoylphosphatidylcholine. With short-chain maleimide or iodoacetamide spin labels, the spectrum of the protein-bound label reflected the change in microenvironment caused by replacement of endogenous phospholipids with dipalmitoylphosphatidylcholine as a decrease in mobility. In contrast, after labeling with long-chain maleimide derivatives, there were no noticeable differences in the spectra before and after substitution with dipalmitophatidylcholine. Replacement of endogenous phospholipids with dioleoylphosphatidylcholine did not affect the spectra. The data indicate that increased viscosity in the environment of Ca2+-transport ATPase produced by replacement of sarcoplasmic reticulum lipids with dipalmitoylphosphatidylcholine reduces the mobility of short-chain maleimide spin labels covalently attached to the Ca2+-transport ATPase polypeptide.  相似文献   

10.
Previously it was demonstrated that thiopental in vivo anesthesia didn't affect the Na+/K(+)-ATPase activity of syncythiotrophoblast plasma membrane, while affecting other enzymatic activity. The aim of the present work was to investigate if this lack of effect of thiopental on the Na+/K+ ATPase activity might be due to its specificity of action on definite membrane proteins or if the binding sites of the anesthetic to this enzyme might be masked within the membrane. Temperature dependence of the Na+/K(+)-ATPase activity and of a spin label paramagnetic maleimide derivative (MSL,2,2,6,6-tetramethylpiperidin-1-oxyl-4-maleimide), which shows a selective binding to the reduced sulfhydryl groups of proteins were investigated. This report shows that a Na+/K(+)-ATPase membranous preparation obtained from placental tissue is strongly inhibited by thiopental.  相似文献   

11.
Saturation transfer ESR has been used to study the dynamic behaviour of lipids in the appressed regions of thylakoid membranes from pea seedlings. Four different phospho- and galacto-lipid spin labels (phosphatidylcholine labelled at the 12 or 14 C-atom positions of the sn-2 chain, phosphatidylglycerol labelled at the 14-position of the sn-2 chain, and monogalactosyldiacylglycerol labelled at the 12-position of the sn-2 chain) were used to probe the lipid environment in photosystem II-enriched membranes prepared by detergent extraction. The ESR spectra show that the majority of the lipid in these preparations is strongly motionally restricted. Values for the effective rotational correlation times of the labelled chains were deduced from the lineheight ratios and integrals of thhe saturation transfer ESR spectra. The effective rotational correlation times were found to be in the 105 range, indicating a very low lipid chain mobility which correlates with the low lipid content of these preparations. Comparison of the effective rotational correlation times deduced from the different diagnostic regions of the spectrum revealed little anisotropy in the chain mobility, indicating that the dominant motional mode was trans-gauche isomerization. The effective rotational correlation times deduced from the spectral integrals were similar to those deduced from the lineheight ratios, consistent with the absence of any appreciable fluid lipid component in these preparations. The results also indicate some selectivity of interaction between the lipid species, with phosphatidylcholine exhibiting appreciably slower motion than either phosphatidylglycerol or monogalactosyldiacylglycerol.  相似文献   

12.
We have used spin labels and electron paramagnetic resonance (EPR) to study the correlation between the rotational dynamics of protein and lipid in sarcoplasmic reticulum (SR) membranes. A short-chain maleimide spin label was used to monitor the submillisecond rotational mobility of the Ca-ATPase enzyme (using saturation transfer EPR); a free fatty acid spin label was used to monitor the submicrosecond rotational mobility of the bulk lipid hydrocarbon chains (using conventional EPR); and a fatty acid spin label derivative (long-chain maleimide) attached to the enzyme was used to monitor the mobility of hydrocarbon chains adjacent to the protein (i.e., boundary lipid). In the native SR membranes, the protein was highly mobile (effective correlation time 50 microseconds). The spectra of the hydrocarbon probes both contained at least two components. For the unattached probe, the major component indicated nearly as much mobility as in the absence of protein (effective rotational correlation time 3 ns), while a minor component, corresponding to 25-30% of the total signal, indicated strong immobilization (effective correlation time greater than or equal to 10 ns). For the attached hydrocarbon probe, the major component (approximately 70% of the total) was strongly immobilized, and the mobile component was less mobile than that of the unattached probe. When the lipid-to-protein ratio was reduced 55% by treatment with deoxycholate, protein mobility decreased considerably, suggesting protein aggregation. A concomitant increase was observed in the fraction of immobilized spin labels for both the free and attached hydrocarbon probes. The observed hydrocarbon immobilization probably arises in part from immobilization at the protein-lipid boundary, but protein-protein interactions that trap hydrocarbon chains may also contribute. When protein aggregation was induced by glutaraldehyde crosslinking, submillisecond protein mobility was eliminated, but there was no effect on either hydrocarbon probe. Thus protein aggregation does not necessarily cause hydrocarbon chain immobilization.  相似文献   

13.
By means of saturation transfer electron spin resonance spectroscopy the rotational motion of spin-labeled Ca2+-dependent ATPase molecules has been investigated for three kinds of preparations of rabbit skeletal muscle sarcoplasmic reticulum: MacLennan's enzyme (purified ATPase preparation), DOPC- and egg PC-ATPase (purified ATPase preparations in which endogenous lipids are replaced with dioleoyl and egg yolk phosphatidylcholine, respectively). The rotational mobility of the enzyme in these preparations is somewhat lower than that in the intact membrane, probably due to the reduced amount of lipids. For all the preparations, however, the Arrhenius plot for rotational mobility showed a break at about 18 degrees C, the same temperature at which a break in the Arrhenius plot for Ca2+-ATPase activity occurs. This result provides further evidence that the break in the Arrhenius plot is not related to a lipid phase transition but to a change in the physical state of the Ca2+-ATPase molecule existing in fluid lipids.  相似文献   

14.
Spin-label EPR spectroscopy of shark rectal gland Na,K-ATPase modified at cysteine residues with a variety of maleimide-nitroxide derivatives is used to characterize the different classes of sulphydryl groups. The spin-labelled derivatives vary with respect to charge and lipophilicity, and the chemical reactivity towards modification and inactivation of the Na,K-ATPase is dependent on these properties. Ascorbate is used to reduce the spin-labels in situ, and the kinetics of reduction of the protein-bound spin-labels are found also to depend on the nature of the maleimide-nitroxide derivative. The Na,K-ATPase is labelled either at Class I groups (with retention of enzymatic activity) or at Class II groups (where the enzymatic activity is lost). Although Class I groups are labelled more readily than are Class II groups they are only slightly more susceptible to reduction by ascorbate than the Class II groups, indicating no major difference in environment. The spectral difference observed between immobilized and mobile spin-labels with both Class I and Class II groups labelling is not reflected in widely different reduction kinetics for these two spectral components. Solubilization of the enzyme in an active form does not change the protein structure in terms of increased accessibility of the SH-groups to reduction by ascorbate. The results are discussed in terms of the location of the different SH-groups and the origins of the differences in mobility evident in the EPR spectra of the spin-labelled SH-groups.  相似文献   

15.
The reactivity of a series of substituted vinyl ketone nitroxides with an integral membrane protein, the Na,K-ATPase, is described. Increasing the electrophilicity of the conjugated double bond enhances reactivity markedly, with some spin labels showing higher reactivity than the conventionally used maleimide derivatives. The spectroscopic characteristics of the spin-labeled protein are also better suited for motional analysis by the saturation transfer electron spin resonance (STESR) method than with previous labeling procedures. The rotational correlation time, deduced from STESR experiments, is in the same range (100-300 microseconds) irrespective of the vinyl ketone derivative used, and the rotational mobility corresponds to an (alpha beta)2 or higher oligomer of the membrane-bound Na,K-ATPase.  相似文献   

16.
J E Mahaney  C M Grisham 《Biochemistry》1992,31(7):2025-2034
The interaction of a nitroxide spin-labeled derivative of ouabain with sheep kidney Na,K-ATPase and the motional behavior of the ouabain spin label-Na,K-ATPase complex have been studied by means of electron paramagnetic resonance (EPR) and saturation-transfer EPR (ST-EPR). Spin-labeled ouabain binds with high affinity to the Na,K-ATPase with concurrent inhibition of ATPase activity. Enzyme preparations retain 0.61 +/- 0.1 mol of bound ouabain spin label per mole of ATP-dependent phosphorylation sites, even after repeated centrifugation and resuspension of the purified ATPase-containing membrane fragments. The conventional EPR spectrum of the ouabain spin label bound to the ATPase consists almost entirely (greater than 99%) of a broad resonance at 0 degrees C, characteristic of a tightly bound spin label which is strongly immobilized by the protein backbone. Saturation-transfer EPR measurements of the spin-labeled ATPase preparations yield effective correlation times for the bound labels significantly longer than 100 microseconds at 0 degrees C. Since the conventional EPR measurements of the ouabain spin-labeled Na,K-ATPase indicated the label was strongly immobilized, these rotational correlation times most likely represent the motion of the protein itself rather than the independent motion of mobile spin probes relative to a slower moving protein. Additional ST-EPR measurements of ouabain spin-labeled Na,K-ATPase (a) cross-linked with glutaraldehyde and (b) crystallized in two-dimensional arrays indicated that the observed rotational correlation times predominantly represented the motion of large Na,K-ATPase-containing membrane fragments, as opposed to the motion of individual monomeric or dimeric polypeptides within the membrane fragment. The results suggest that the binding of spin-labeled ouabain to the ATPase induces the protein to form large aggregates, implying that cardiac glycoside induced enzyme aggregation may play a role in the mechanism of action of the cardiac glycosides in inhibiting the Na,K-ATPase.  相似文献   

17.
The Ca2+-transporting ATPase of rabbit skeletal muscle sarcoplasmic reticulum was site-specifically labeled with either N-(1-anilinonaphth-4-yl)maleimide (ANM) or 5-[[(iodoacetamido)-ethyl]amino]naphthalene-1-sulfonate (IAEDANS), and the segmental motion of submolecular domains of the ATPase molecule was examined by means of time-resolved and steady-state fluorescence anisotropy measurements. The ANM-binding domain showed wobbling with a rotational relaxation time phi = 69 ns in the absence of free Ca2+ without any independent wobbling of the ANM moiety. The IAEDANS-binding domain showed a significantly slower wobbling with phi = 190 ns in the absence of Ca2+. The present results demonstrated for the first time that the ATPase molecule is composed of distinct domains whose mobilities are considerably different from each other. The binding of Ca2+ to the transport site increased the segmental motion of ANM-labeled domain, leading to a phi value of 65 ns. Solubilization of the ANM-labeled SR membranes by deoxycholate led to a further increase in the segmental flexibility (phi = 48 ns in the absence of free Ca2+), indicating that the mobility of the ANM-binding domain was considerably restricted through interaction with the membrane. The mobility of the ANM-binding domain of solubilized ATPase was also increased to some extent upon binding of Ca2+.  相似文献   

18.
Investigation the influence of calyx[4]arenes C-90, C-91, C-97 and C-99 (codes are indicated) on the enzymatic activity of four functionally different Mg2+ -dependent ATPases from smooth muscle of the uterus: actomyosin ATPase, transporting Ca2+, Mg2+ -ATPase, ouabain-sensible Na+, K+ -ATPase and basal Mg2+ -ATPase. It was shown that calixarenes C-90 and C-91 in concentration 100 microM act multidirectionally on the functionally different Mg2+ -dependent ATP-hydrolase enzymatic systems. These compounds activate effectively the actomyosin ATPase (Ka = 52 +/- 11 microM [Ukrainian character: see text] 8 +/- 2 microM, accordingly), at the same time calixarene C-90 inhibited effectively activity of transporting Ca2+, Mg2+ -ATPase of plasmatic membranes (I(0,5) = 34.6 +/- 6.4 microM), but influence on membrane-bound Na+, K+ -ATPase and basal Mg2+ -ATPase. Calixarene C-91 reduce effectively basal Mg2+ -ATPase activity, insignificantly activating Na+, K+ -ATPase but has no influence on transporting Ca2+, Mg2+ -ATPase activity of plasmatic membranes. Calixarenes C-97 and C-99 (100 microM), which have similar structure, have monodirectional influence on activity of three functionally different Mg2+-dependent ATPases of the myometrium: actomyosin ATPase and two ATPases, that related to the ATP-hydrolases of P-type--Ca2+, Mg2+ -ATPase and Na+, K+ -ATPase of plasmatic membranes. Basal Mg2+ -ATPase is resistant to the action of these two connections. Results of comparative experiments that were obtained by catalytic titration of calixarenes C-97 and C-99 by actomyosin ATPase (I(0,5) = 88 +/- 9 and 86 +/- 8 microM accordingly) and Na+, K+ -ATPase from plasmatic membranes (I(0,5) = 33 +/- 4 and 98 +/- 8 nM accordingly) indicate to the considerably more sensitiveness of Na+, K+ -ATP-ase to these calixarenes than ATPase of contractile proteins. Thus, it is shown that calixarenes have influence on activity of a number of important enzymes, involved in functioning of the smooth muscle of the uterus and related to energy-supplies of the process of the muscle contracting and support of intracellular ionic homeostasis. The obtained results can be useful in further researches, directed at the use of calixarenes as pharmaceutical substance, able to normalize the contractile function of the uterus at some pregnancy pathologies in women's.  相似文献   

19.
Electric stimulation (EC) of a suspension of native synaptic membranes of rat brain cortex in the Krebs-Ringer-glucose medium revealed Ca-dependent inhibition of Na+, K+-ATPase and inhibition of transport Ca-activated, Mg-dependent ATPase. The effects observed are not induced by a change in the SH-groups of the membrane proteins and are removed by an addition of total lipids of the brain (membrane protein: lipid = 5:1) or 0.35 mM novocaine. Cyclic 3',5'-AMP in concentrations of 0.1--1.0 mM causes an inhibition (up to 50%) of Na+, K+-ATPase of native synaptic membranes. The Na+, K+-ATPase activity of purified membrane preparations is not changed either by the cyclic nucleotide, or by EC. It is assumed that depolarization of excitable membranes results in structural changes, mediated by the activation of protein kinase, and manifesting themselves as labilization of protein-lipid ratios.  相似文献   

20.
M Esmann  K Hideg  D Marsh 《Biochemistry》1988,27(11):3913-3917
The interactions of a series of spin-labeled fatty acids, in which the nitroxide ring is incorporated in different ways as an integral part of the hydrocarbon chain, with the (Na+,K+)-ATPase in membranes from Squalus acanthias, have been studied by electron spin resonance spectroscopy. The fatty acids are 2,4-, 2,5-, and 3,2-substituents of 2,2,5,5-tetramethylpyrrolidine-N-oxyl and belong to the class of minimal perturbation nitroxide probes. For all five fatty acid labels, a motionally restricted lipid component was observed in the ESR spectra of (Na+,K+)-ATPase membranes, in addition to the fluid component, which was found in the spectra of the extracted membrane lipids. The pH dependence of the motionally restricted spin-label population indicated a sensitivity in the selectivity of the lipid-protein interaction to the protonation state of the fatty acid. These results agree with those found previously for the conventional oxazolidine (doxyl) fatty acid and phospholipid spin-label derivatives [Esmann, M., Watts, A., & Marsh, D. (1985) Biochemistry 24, 1386-1393] and indicate that the motion of the lipid chains is significantly hindered by interaction with the protein, irrespective of the nature of the spin-label group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号