首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dispersal—the movement of an individual from the site of birth to a different site for reproduction—is an ecological and evolutionary driver of species ranges that shapes patterns of colonization, connectivity, gene flow, and adaptation. In plants, the traits that influence dispersal often vary within and among species, are heritable, and evolve in response to the fitness consequences of moving through heterogeneous landscapes. Spatial and temporal variation in the quality and quantity of habitat are important sources of selection on dispersal strategies across species ranges. While recent reviews have evaluated the interactions between spatial variation in habitat and dispersal dynamics, the extent to which geographic variation in temporal variability can also shape range-wide patterns in dispersal traits has not been synthesized. In this paper, we summarize key predictions from metapopulation models that evaluate how dispersal evolves in response to spatial and temporal habitat variability. Next, we compile empirical data that quantify temporal variability in plant demography and patterns of dispersal trait variation across species ranges to evaluate the hypothesis that higher temporal variability favors increased dispersal at plant range limits. We found some suggestive evidence supporting this hypothesis while more generally identifying a major gap in empirical work evaluating plant metapopulation dynamics across species ranges and geographic variation in dispersal traits. To address this gap, we propose several future research directions that would advance our understanding of the interplay between spatiotemporal variability and dispersal trait variation in shaping the dynamics of current and future species ranges.  相似文献   

2.
Habitat fragmentation, the conversion of landscapes into patchy habitats separated by unsuitable environments, is expected to reduce dispersal among patches. However, its effects on dispersal should depend on dispersal syndromes, i.e. how dispersal covaries with phenotypic traits, because these syndromes can drastically alter dispersal and subsequent ecological and evolutionary dynamics. Our comprehension of whether environmental factors such as habitat fragmentation generate and/or modify dispersal syndromes (i.e. conditional dispersal syndromes) is therefore key for biodiversity forecasting. Here we tested whether habitat fragmentation modulates dispersal syndromes by experimentally manipulating matrix harshness, a critical feature of habitat fragmentation, in ciliate microcosms. We found evidence for dispersal syndromes involving multiple traits linked to morphology (elongation and size), movement (velocity and linearity) and demography (growth rate and maximal population density). More importantly, these syndromes were modified by matrix harshness, with increased differences between residents and dispersers in morphology and movement traits, and decreased differences in growth rate as the matrix became increasingly harsh. Our findings thus reveal that habitat fragmentation can mediate the intensity and form of dispersal syndromes, a context-dependence that could have important consequences for ecological and evolutionary dynamics under environmental changes.  相似文献   

3.
Simple analytical models assuming homogeneous space have been used to examine the effects of habitat loss and fragmentation on metapopulation size. The models predict an extinction threshold, a critical amount of suitable habitat below which the metapopulation goes deterministically extinct. The consequences of non-random loss of habitat for species with localized dispersal have been studied mainly numerically. In this paper, we present two analytical approaches to the study of habitat loss and its metapopulation dynamic consequences incorporating spatial correlation in both metapopulation dynamics as well as in the pattern of habitat destruction. One approach is based on a measure called metapopulation capacity, given by the dominant eigenvalue of a "landscape" matrix, which encapsulates the effects of landscape structure on population extinctions and colonizations. The other approach is based on pair approximation. These models allow us to examine analytically the effects of spatial structure in habitat loss on the equilibrium metapopulation size and the threshold condition for persistence. In contrast to the pair approximation based approaches, the metapopulation capacity based approach allows us to consider species with long as well as short dispersal range and landscapes with spatial correlation at different scales. The two methods make dissimilar assumptions, but the broad conclusions concerning the consequences of spatial correlation in the landscape structure are the same. Our results show that increasing correlation in the spatial arrangement of the remaining habitat increases patch occupancy, that this increase is more evident for species with short-range than long-range dispersal, and that to be most beneficial for metapopulation size, the range of spatial correlation in landscape structure should be at least a few times greater than the dispersal range of the species.  相似文献   

4.
Eco‐evolutionary dynamics are now recognized to be highly relevant for population and community dynamics. However, the impact of evolutionary dynamics on spatial patterns, such as the occurrence of classical metapopulation dynamics, is less well appreciated. Here, we analyse the evolutionary consequences of spatial network connectivity and topology for dispersal strategies and quantify the eco‐evolutionary feedback in terms of altered classical metapopulation dynamics. We find that network properties, such as topology and connectivity, lead to predictable spatio‐temporal correlations in fitness expectations. These spatio‐temporally stable fitness patterns heavily impact evolutionarily stable dispersal strategies and lead to eco‐evolutionary feedbacks on landscape level metrics, such as the number of occupied patches, the number of extinctions and recolonizations as well as metapopulation extinction risk and genetic structure. Our model predicts that classical metapopulation dynamics are more likely to occur in dendritic networks, and especially in riverine systems, compared to other types of landscape configurations. As it remains debated whether classical metapopulation dynamics are likely to occur in nature at all, our work provides an important conceptual advance for understanding the occurrence of classical metapopulation dynamics which has implications for conservation and management of spatially structured populations.  相似文献   

5.
Previous models have predicted that when mortality increases with age, older individuals should invest more of their resources in reproduction and produce less dispersive offspring, as both their future reproductive value and their prospect of competing with their own sib decline. Those models assumed stable population sizes. We here study for the first time the evolution of age‐specific reproductive effort and of age‐specific offspring dispersal rate in a metapopulation with extinction‐recolonization dynamics and juvenile dispersal. Our model explores the evolutionary consequences of disequilibrium in the age structure of individuals in local populations, generated by disturbances. Life‐history decisions are then shaped both by changes with age in individual performances, and by changes in ecological conditions, as young and old individuals do not live on average in the same environments. Lower juvenile dispersal favours the evolution of higher reproductive effort in young adults in a metapopulation with extinction‐recolonization compared with a well‐mixed population. Contrary to previous predictions for stable structured populations, we find that offspring dispersal should generally increase with maternal age. This is because young individuals, who are overrepresented in recently colonized populations, should allocate more to reproduction and less to dispersal as a strategy to exploit abundant recruitment opportunities in such populations.  相似文献   

6.
Clonal spread is favoured in many plants at the expense of seed production in order to expand rapidly into open habitats or to occupy space by forming dense patches. However, for the dynamics of a population in a patchy landscape seed dispersal remains important even for clonal plants. We used a spatially explicit individual-based metapopulation model to examine the consequences of two trade-offs in Hieracium pilosella L: first, between vegetative and sexual reproduction, and second, between short and far-distance dispersal of seeds. Our main question was, what are the environmental conditions that cause a mixed strategy of vegetative and sexual reproduction to be optimal. The model was parameterised with field data on local population dynamics of H. pilosella. Patch dynamics were given firstly by disturbance events that opened patches in a matrix of a clonal grass that were colonisable for H. pilosella, and secondly by the gradual disappearance of H. pilosella patches due to the expanding grass. Simulations revealed opposing selection pressures on traits determined by the two trade-offs. Vegetative reproduction is favoured by local dynamics, i.e. the need for maintenance and expansion of established populations, whereas seed production is favoured by the necessity to colonise empty habitats. Similar pressures act on the proportion of seeds dispersed over short and far distances. Optimum reproductive and dispersal strategies depended on habitat quality (determined by seedling establishment probability), the fraction of dispersed seeds, and the fraction of seeds lost on unsuitable ground. Under habitat conditions supporting moderate to low seedling establishment, between 20% and 40% of reproductive effort in H. pilosella should be devoted to sexual reproduction with at least 10% of the seeds dispersed over distances suitable to attain empty patches. We conclude that in a spatially heterogeneous landscape sexual seed production in a clonal plant is advantageous even at the expense of local vegetative growth.  相似文献   

7.
Dispersal syndromes describe the patterns of covariation of morphological, behavioural, and life-history traits associated with dispersal. Studying dispersal syndromes is critical to understanding the demographic and genetic consequences of movements. Among studies describing the association of life-history traits with dispersal, there is anecdotal evidence suggesting that dispersal syndromes can vary with age. Recent theory also suggests that dispersive and philopatric individuals might have different age-specific reproductive efforts. In a wild population of the common lizard (Zootoca vivipara), we investigated whether dispersive and philopatric individuals have different age-specific reproductive effort, survival, offspring body condition, and offspring sex ratio. Consistent with theoretical predictions, we found that young dispersive females have a higher reproductive effort than young philopatric females. Our results also suggest that the early high investment in reproduction of dispersive females trades-off with an earlier onset of senescence than in philopatric females. We further found that young dispersive females produce smaller offspring in lower body condition than do young philopatric females. Overall, our results provide empirical evidence that dispersive and philopatric individuals have different age-specific life-history traits.  相似文献   

8.
Aim A species’ dispersal characteristics will play a key role in determining its likely fate during a period of environmental change. However, these characteristics are not constant within a species – instead, there is often both considerable interpopulation and interindividual variability. Also changes in selection pressures can result in the evolution of dispersal characteristics, with knock‐on consequences for a species’ population dynamics. Our aim here is to make our theoretical understanding of dispersal evolution more conservation‐relevant by moving beyond the rather abstract, phenomenological models that have dominated the literature towards a more mechanism‐based approach. Methods We introduce a continuous‐space, individual‐based model for wind‐dispersed plants where release height is determined by an individual’s ‘genotype’. A mechanistic wind dispersal model is used to simulate seed dispersal. Selection acts on variation in release height that is generated through mutation. Results We confirm that, when habitat is fragmented, both evolutionary rescue and evolutionary suicide remain possible outcomes when a mechanistic dispersal model is used. We also demonstrate the potential for what we term evolutionary entrapment. A population that under some conditions can evolve to be sufficiently dispersive that it expands rapidly across a fragmented landscape can, under different conditions, become trapped by a combination of limited dispersal and a large gap between patches. Conclusions While developing evolutionary models to be used as conservation tools is undoubtedly a challenge, we believe that, with a concerted collaborative effort linking the knowledge and methods of ecologists, evolutionary biologists and geneticists, it is an achievable aim.  相似文献   

9.
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.  相似文献   

10.
Abstract Using a metapopulation model, we study how local extinctions, limited population life span, and local demographic disequilibrium affect the evolution of the reproductive effort in a species with overlapping generations but no senescence. We show that in a metapopulation with saturation of all sites and an infinite deme maximal life span (no succession), local extinctions simply constitute an additional source of extrinsic mortality. When either the hypothesis of an infinite deme maximal life span or the saturation hypothesis is relaxed, nontrivial predictions arise. in particular, we find interactions between the evolutionarily stable reproductive effort strategy and the demographic dynamics in the metapopulation. We predict that larger reproductive effort may be selected for in habitats of poorer productivity, contrary to what would be predicted in a single population. Also, we predict that higher dispersal rates should favor selection for lower reproductive efforts. However, metapopulation parameters that favor high dispersal rates also favor larger reproductive efforts. Conflicting selection pressures in the metapopulation also allow maintaining evolutionarily stable polymorphism between a low and high reproductive effort for particular trade-offs between survival and fecundity.  相似文献   

11.
Hanski I  Mononen T 《Ecology letters》2011,14(10):1025-1034
Ecology Letters (2011) 14: 1025-1034 ABSTRACT: Evolutionary changes in natural populations are often so fast that the evolutionary dynamics may influence ecological population dynamics and vice versa. Here we construct an eco-evolutionary model for dispersal by combining a stochastic patch occupancy metapopulation model with a model for changes in the frequency of fast-dispersing individuals in local populations. We test the model using data on allelic variation in the gene phosphoglucose isomerase (Pgi), which is strongly associated with dispersal rate in the Glanville fritillary butterfly. Population-specific measures of immigration and extinction rates and the frequency of fast-dispersing individuals among the immigrants explained 40% of spatial variation in Pgi allele frequency among 97 local populations. The model clarifies the roles of founder events and gene flow in dispersal evolution and resolves a controversy in the literature about the consequences of habitat loss and fragmentation on the evolution of dispersal.  相似文献   

12.
Long‐term observational studies conducted at large (regional) spatial scales contribute to better understanding of landscape effects on population and evolutionary dynamics, including the conditions that affect long‐term viability of species, but large‐scale studies are expensive and logistically challenging to keep running for a long time. Here, we describe the long‐term metapopulation study of the Glanville fritillary butterfly (Melitaea cinxia) that has been conducted since 1991 in a large network of 4000 habitat patches (dry meadows) within a study area of 50 by 70 km in the Åland Islands in Finland. We explain how the landscape structure has been described, including definition, delimitation, and mapping of the habitat patches; methods of field survey, including the logistics, cost, and reliability of the survey; and data management using the EarthCape biodiversity platform. We describe the long‐term metapopulation dynamics of the Glanville fritillary based on the survey. There has been no long‐term change in the overall size of the metapopulation, but the level of spatial synchrony and hence the amplitude of fluctuations in year‐to‐year metapopulation dynamics have increased over the years, possibly due to increasing frequency of exceptional weather conditions. We discuss the added value of large‐scale and long‐term population studies, but also emphasize the need to integrate more targeted experimental studies in the context of long‐term observational studies. For instance, in the case of the Glanville fritillary project, the long‐term study has produced an opportunity to sample individuals for experiments from local populations with a known demographic history. These studies have demonstrated striking differences in dispersal rate and other life‐history traits of individuals from newly established local populations (the offspring of colonizers) versus individuals from old, established local populations. The long‐term observational study has stimulated the development of metapopulation models and provided an opportunity to test model predictions. This combination of empirical studies and modeling has facilitated the study of key phenomena in spatial dynamics, such as extinction threshold and extinction debt.  相似文献   

13.
The adverse influence of habitat degradation on the survival of populations may sometimes be amplified by rapid evolution over ecological timescales. This phenomenon of "evolutionary suicide" has been described in theoretical as well as empirical studies. However, no studies have suggested that habitat improvement could possibly also trigger an evolutionary response that would result in a decline in population size. We use individual-based simulations to demonstrate the potential for such a paradoxical response. An increase in the quality, size, or stability of only a fraction of the habitat patches in a metapopulation may result in an evolutionary decline in the dispersal propensity of individuals, followed by a decrease in recolonization, a reduction in the number of patches occupied, a decline in overall population size, and even extinction. Thus, well-intended conservation efforts that ignore potential evolutionary consequences of habitat management may increase the extinction risk of populations.  相似文献   

14.
Comparison of dispersal rates of the bog fritillary butterfly between continuous and fragmented landscapes indicates that between patch dispersal is significantly lower in the fragmented landscape, while population densities are of the same order of magnitude. Analyses of the dynamics of the suitable habitat for the butterfly in the fragmented landscape reveal a severe, non linear increase in spatial isolation of patches over a time period of 30 years (i.e. 30 butterfly generations), but simulations of the butterfly metapopulation dynamics using a structured population model show that the lower dispersal rates in the fragmented landscape are far above the critical threshold leading to metapopulation extinction. These results indicate that changes in individual behaviour leading to the decrease of dispersal rates in the fragmented landscape were rapidly selected for when patch spatial isolation increased. The evidence of such an adaptive answer to habitat fragmentation suggests that dispersal mortality is a key factor for metapopulation persistence in fragmented landscapes. We emphasise that landscape spatial configuration and patch isolation have to be taken into account in the debate about large-scale conservation strategies.  相似文献   

15.
? Shifts in sexual systems are among the most common and important transitions in plants and are correlated with a suite of life-history traits. The evolution of sexual systems and their relationships to gametophyte size, sexual and asexual reproduction, and epiphytism are examined here in the liverwort genus Radula. ? The sequence of trait acquisition and the phylogenetic correlations between those traits was investigated using comparative methods. ? Shifts in sexual systems recurrently occurred from dioecy to monoecy within facultative epiphyte lineages. Production of specialized asexual gemmae was correlated to neither dioecy nor strict epiphytism. ? The significant correlations among life-history traits related to sexual systems and habitat conditions suggest the existence of evolutionary trade-offs. Obligate epiphytes do not produce gemmae more frequently than facultative epiphytes and disperse by whole gametophyte fragments, presumably to avoid the sensitive protonemal stage in a habitat prone to rapid changes in moisture availability. As dispersal ranges correlate with diaspore size, this reinforces the notion that epiphytes experience strong dispersal limitations. Our results thus provide the evolutionary complement to metapopulation, metacommunity and experimental studies demonstrating trade-offs between dispersal distance, establishment ability, and life-history strategy, which may be central to the evolution of reproductive strategies in bryophytes.  相似文献   

16.
Abstract Integration of habitat heterogeneity into spatially realistic metapopulation approaches reveals the potential for key cross-scale interactions. Broad-scale environmental gradients and land-use practices can create autocorrelation of habitat quality of suitable patches at intermediate spatial scales. Patch occupancy then depends not only on habitat quality at the patch scale but also on feedbacks from surrounding neighborhoods of autocorrelated patches. Metapopulation dynamics emerge from how demographic and dispersal processes interact with relevant habitat heterogeneity. We provide an empirical example from a metapopulation of round-tailed muskrats (Neofiber alleni) in which habitat quality of suitable patches was spatially autocorrelated most strongly within 1,000 m, which was within the expected dispersal range of the species. After controlling for factors typically considered in metapopulation studies—patch size, local patch quality, patch connectivity—we use a cross-variogram analysis to demonstrate that patch occupancy by muskrats was correlated with habitat quality across scales ≤1,171 m. We also discuss general consequences of spatial heterogeneity of habitat quality for metapopulations related to potential cross-scale interactions. We focus on spatially correlated extinctions and metapopulation persistence, hierarchical scaling of source–sink dynamics, and dispersal decisions by individuals in relation to information constraints.  相似文献   

17.
The population dynamics of a parasite depend on species traits, host dynamics and the environment. Those dynamics are reflected in the genetic structure of the population. Habitat fragmentation has a greater impact on parasites than on their hosts because resource distribution is increasingly fragmented for species at higher trophic levels. This could lead to either more or less genetic structure than the host, depending on the relative dispersal rates of species. We examined the spatial genetic structure of the parasitoid wasp Hyposoter horticola, and how it was influenced by dispersal, host population dynamics and habitat fragmentation. The host, the Glanville fritillary butterfly, lives as a metapopulation in a fragmented landscape in the Åland Islands, Finland. We collected wasps throughout the 50 by 70 km archipelago and determined the genetic diversity, spatial population structure and genetic differentiation using 14 neutral DNA microsatellite loci. We compared the genetic structure of the wasp with that of the host butterfly using published genetic data collected over the shared landscape. Using maternity assignment, we also identified full‐siblings among the sampled parasitoids to estimate the dispersal range of individual females. We found that because the parasitoid is dispersive, it has low genetic structure, is not very sensitive to habitat fragmentation and has less spatial genetic structure than its butterfly host. The wasp is sensitive to regional rather than local host dynamics, and there is a geographic mosaic landscape for antagonistic co‐evolution of host resistance and parasite virulence.  相似文献   

18.
Dynamics of populations depend on demographic parameters which may change during evolution. In simple ecological models given by one-dimensional difference equations, the evolution of demographic parameters generally leads to equilibrium population dynamics. Here we show that this is not true in spatially structured ecological models. Using a multi-patch metapopulation model, we study the evolutionary dynamics of phenotypes that differ both in their response to local crowding, i.e. in their competitive behaviour within a habitat, and in their rate of dispersal between habitats. Our simulation results show that evolution can favour phenotypes that have the intrinsic potential for very complex dynamics provided that the environment is spatially structured and temporally variable. These phenotypes owe their evolutionary persistence to their large dispersal rates. They typically coexist with phenotypes that have low dispersal rates and that exhibit equilibrium dynamics when alone. This coexistence is brought about through the phenomenon of evolutionary branching, during which an initially uniform population splits into the two phenotypic classes.  相似文献   

19.
Global climate is changing rapidly and is accompanied by large‐scale fragmentation and destruction of habitats. Since dispersal is the first line of defense for mobile organisms to cope with such adversities in their environment, it is important to understand the causes and consequences of evolution of dispersal. Although dispersal is a complex phenomenon involving multiple dispersal‐components like propensity (tendency to leave the natal patch) and ability (to travel long distances), the relationship between these traits is not always straight‐forward, it is not clear whether these traits can evolve simultaneously or not, and how their interactions affect the overall dispersal profile. To investigate these issues, we subjected four large (n ~ 2400) outbred populations of Drosophila melanogaster to artificial selection for increased dispersal, in a setup that mimicked increasing habitat fragmentation over 33 generations. The propensity and ability of the selected populations were significantly greater than the non‐selected controls and the difference persisted even in the absence of proximate drivers for dispersal. The dispersal kernel evolved to have significantly greater standard deviation and reduced values of skew and kurtosis, which ultimately translated into the evolution of a greater frequency of long‐distance dispersers (LDDs). We also found that although sex‐biased dispersal exists in D. melanogaster, its expression can vary depending on which dispersal component is being measured and the environmental condition under which dispersal takes place. Interestingly though, there was no difference between the two sexes in terms of dispersal evolution. We discuss possible reasons for why some of our results do not agree with previous laboratory and field studies. The rapid evolution of multiple components of dispersal and the kernel, expressed even in the absence of stress, indicates that dispersal evolution cannot be ignored while investigating eco‐evolutionary phenomena like speed of range expansion, disease spread, evolution of invasive species and destabilization of metapopulation dynamics.  相似文献   

20.
As dispersal plays a key role in gene flow among populations, its evolutionary dynamics under environmental changes is particularly important. The inter-dependency of dispersal with other life history traits may constrain dispersal evolution, and lead to the indirect selection of other traits as a by-product of this inter-dependency. Identifying the dispersal's relationships to other life-history traits will help to better understand the evolutionary dynamics of dispersal, and the consequences for species persistence and ecosystem functioning under global changes. Dispersal may be linked to other life-history traits as their respective evolutionary dynamics may be inter-dependent, or, because they are mechanistically related to each other. We identify traits that are predicted to co-vary with dispersal, and investigated the correlations that may constrain dispersal using published information on butterflies. Our quantitative analysis revealed that (1) dispersal directly correlated with demographic traits, mostly fecundity, whereas phylogenetic relationships among species had a negligible influence on this pattern, (2) gene flow and individual movements are correlated with ecological specialisation and body size, respectively and (3) routine movements only affected short-distance dispersal. Together, these results provide important insights into evolutionary dynamics under global environmental changes, and are directly applicable to biodiversity conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号