首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Digestion of pig liver chromatin with DNAse II afforded three different fractions which were characterized in terms of their DNA, RNA and tightly bound non-histone protein content, their DNA fragment size and their template activity. Two of these fractions are soluble after digestion with DNAase II and have been separated on the basis of their different solubility in MgCl2. A third fraction is not solubilized even after extensive digestion, although the size of its DNA is comparable to that of the enzyme solubilized fractions. The three fractions show qualitatively and quantitatively different distribution of tightly bound non-histone proteins, with specific protein components in each fraction; furthermore the non-solubilized fraction is greatly enriched in proteins tightly bound to DNA. From all the data obtained it can be suggested that the tightly bound proteins of the insoluble fraction may play, directly or indirectly, a role in maintaining an organized chromatin structure.  相似文献   

3.
Non-histone chromatin proteins synthesized during chicken embryonic liver development were labeled with [3H]tryptophan and [3H]methionine and characterized by electrophoresis. During embryonic development protein/DNA ratio in chromatin was low (1.30-1.62) but synthesis of non-histone protein was high. Especially one characteristic fraction K (MW 18 000), tightly bound with DNA was preferentially associated with DNAase II sensitive, active transcribed sequences. In 7-day old and adult chicken synthesis of all non-histone proteins was low, fraction K was absent or synthesized only in small amounts in association with non-active sequences, however protein/DNA ratio in chromatin was high (2.30-2.33).  相似文献   

4.
We have investigated the distribution of tissue-specific tightly bound non-histone proteins in the first and third levels of chromatin organization. The proteins of this class have been extracted from whole chromatin and chromatin fractions prepared from pig liver or kidney. The tissue-specific proteins have high molecular mass (ranging from 135 KDa to 70 KDa in liver, over 135 KDa in kidney) and in kidney a more basic isoelectric point. These proteins are mainly located outside the core particles, and are instead present only in the chromatin matrix, become more intense after extensive digestion of the matrix with DNAase I.  相似文献   

5.
    
Summary Non-histone chromatin proteins synthesized during chicken embryonic liver development were labeled with [3H]tryptophan and [3H]methionine and characterized by electrophoresis. During embryonic development protein/DNA ratio in chromatin was low (1.30–1.62) but synthesis of non-histone protein was high. Especially one characteristic fraction K (MW 18 000), tightly bound with DNA was preferentially associated with DNAase II sensitive, active transcribed sequences. In 7-day old and adult chicken synthesis of all non-histone proteins was low, fraction K was absent or synthesized only in small amounts in association with non-active sequences, however protein/DNA ratio in chromatin was high (2.30–2.33).  相似文献   

6.
7.
Previously, we have shown that DNA in a small fraction (2-5%) of SV40 minichromosomes was torsionally strained and could be relaxed by treating minichromosomes with topoisomerase I. This fraction was enriched with endogeneous RNA polymerase II (Luchnik et al., 1982, EMBO J., 1, 1353). Here we show that one and the same fraction of SV40 minichromosomes is hypersensitive to DNAase I and is relaxable by topoisomerase I. Moreover, this fraction completely loses its hypersensitivity to DNAase I upon relaxation. The possibility that this fraction of minichromosomes can be represented by naked DNA is ruled out by the results of studying the kinetics of minichromosome digestion by DNAase I in comparison to digestion of pure SV40 DNA and by measuring the buoyant density of SV40 chromatin in equilibrium CsCl gradient. Our data obtained with SV40 minichromosomes may be relevant to the mechanism responsible for DNAase I hypersensitivity in the loops or domains of cellular chromatin.  相似文献   

8.
Chromatin isolated from several chick tissues was treated with micrococcal nuclease. A limited degree of tissue specificity of chromatin DNA resistance to nuclease digestion was observed. No difference in the extent of nuclease resistance of chromatin DNA was detected during oestrogen-induced oviduct differentiation. This suggested that the amount of non-histone chromosomal protein does not play an important role in the sensitivity of chromatin DNA to nuclease digestion. Studies of nuclease resistance of chromatin DNA after dissociation and reconstitution of chromatin proteins and ethanol extraction of chromatin indicate that the histones protect the DNA from nuclease attack. Slow thermal denaturation of nuclease-resistant DNA suggests that the protected DNA sequences may be (A+T)-rich, and the (G+C)-rich satellites present in total chick DNA are sensitive to nuclease.  相似文献   

9.
DNAase II has been shown to cleave condensed mouse liver chromatin at 100-bp2 intervals while chromatin in the extended form is cleaved at 200-bp intervals (Altenburger et al., 1976). Evidence is presented here that DNA digestion patterns of a half-nucleosomal periodicity are also obtained upon DNAase II digestion of chicken erythrocyte nuclei and yeast nuclei, both of which differ in their repeat lengths (210 and 165 bp) from mouse liver chromatin. In the digestion of mouse liver nuclei a shift from the 100-bp to the 200-bp cleavage mode takes place when the concentration of monovalent cations present during digestion is decreased below 1 mM. When soluble chromatin prepared by micrococcal nuclease is digested with DNAase II the same type of shift occurs, albeit at higher ionic strength.In order to map the positions of the DNAase II cleavage sites on the DNA relative to the positions of the nucleosome cores, the susceptibility of DNAase II-derived DNA termini to exonuclease III was investigated. In addition, oligonucleosome fractions from HaeIII and micrococcal nuclease digests were end-labelled with polynucleotide kinase and digested with DNAase II under conditions leading to 100 and 200-bp digestion patterns. Analysis of the chain lengths of the resulting radioactively labelled fragments together with the results of the exonuclease assay allow the following conclusions. In the 200-bp digestion mode, DNAase II cleaves exclusively in the internucleosomal linker region. Also in the 100-bp mode cleavage occurs initially in the linker region. Subsequently, DNAase II cleaves at intranucleosomal locations, which are not, however, in the centre of the nucleosome but instead around positions 20 and 125 of the DNA associated with the nucleosome core. At late stages of digestion intranucleosomal cuts predominate and linkers that are still intact are largely resistant to DNAase II due to interactions between adjacent nucleosomes. These findings offer an explanation for the sensitivity of DNAase II to the higher-order structure of chromatin.  相似文献   

10.
We have examined the role played by each histone in forming the structure of the ν-body. When DNAase I, DNAase II, trypsin, and chymotrypsin attack chromatin, characteristic discrete DNA and protein digest fragments are produced. Using this restriction of accessibility as diagnostic for chromatin structure, we have examined complexes of DNA with virtually all possible combinations of histones. The results strongly support our previous conclusion (Camerini-Otero, Sollner-Webb, and Felsenfeld, 1976) that the arginine-rich histones are unique in their ability to create, with DNA, a structure with many features of native chromatin. Acting together, slightly lysine-rich histones then modify this complex into one very similar to native chromatin. An analysis of the rate constants of staphylococcal nuclease digestion also confirms that the complex of H3, H4, and DNA is crucial to the structure of the ν-body.  相似文献   

11.
D Hendrick  P Tolstoshev  D Randlett 《Gene》1977,2(3-4):147-158
A nuclease-sensitive fraction was obtained from chick reticulocyte chromatin by brief digestion with an endonuclease (DNAase II, deoxyribonucleate 3'-oligonucleotidohydrolase, EC 3.1.4.6). The nuclease-sensitive fraction typically contained less than 1% of the chromatin-DNA but about 50% or more of the nascent chromatin-bound RNA. Hybridization of chick globin complementary DNA to the DNA component of the nuclease-sensitive fraction of reticulocyte chromatin indicated a 3--5 fold enrichment for the globin coding region of the chromatin. The control experiment utilizing DNA from a nuclease-sensitive fraction of chick liver chromatin did not show a comparable enrichment for the globin coding region. This suggests that the endonuclease-effected enrichment for the globin coding region in the nuclease-sensitive fraction of reticulocyte chromatin is to some degree specific for structural genes transcribed in reticulocytes.  相似文献   

12.
The specificity of the binding of purified non-histone proteins to DNA has been investigated through two types of experiments. Using a nitrocellulose filter assay at a low protein/DNA ratio, the binding of mouse non-histone proteins to mouse DNA was twice as great as the binding of mouse non histone protein to Drosophila DNA. The reverse experiment using Drosophila non-histone protein confirmed the interpretation that some protein . DNA complexes were specific. Protein . DNA complexes isolated by gel filtration chromatography indicated that 20% or 10% of the non-histone protein was bound to homologous or heterologous DNA respectively. Purified non-histone proteins bound with lower efficiency (15%) than unpurified but with higher specificity to soluble chromatin than to naked DNA. This binding did not result from an exchange between chromatin non-histone proteins and purified non-histone proteins added in excess. DNA-bound and chromatin-bound proteins were analysed on polyacrylamide gels. Whereas no major qualitative differences were observed with DNA-bound proteins, some proteins bound to homologous mouse chromatin were different from those bound to heterologous Drosophila chromatin. These results suggest a possible role of DNA-bound non-histone proteins in the regulation of gene expression.  相似文献   

13.
14.
Digestion of chromatin with micrococcal nuclease under mild conditions results in the release of a minor chromatin fraction showing an increased RNA and non-histone protein content, a fast turnover of the non-histone proteins and the presence of rapidly labelled heterogeneous nuclear RNA (hnRNA) with half-life of about 20 min. Further digestion of the chromatin leads to the elimination of about 19% of the initial chromosomal DNA, thus leaving a second chromatin fraction relatively resistant to nuclease attack. This fraction has a low protein and RNA content and contains only metabolically stable non-histone proteins. No differences in the histone complement of the two fractions was found except for a 40% deficiency of H1 in the minor fraction.  相似文献   

15.
In the analysis of DNAase II digestion of chromatin, as described in the preceding paper, interactions between adjacent nucleosomes play an important part. In order to understand the mechanism of DNAase II cleavage we next investigated the role of histone H1 in these interactions and characterized the nucleoprotein particles arising in the course of DNAase II action.H1-free chromatin prepared by three different procedures, using either 0.6 m-NaCl, transfer RNA or an ion-exchange resin, can be cleaved by DNAase II only at the internucleosomal cleavage site leading to 200-bp2 digestion patterns regardless of the ionic conditions. When H1 was added back to the three chromatin preparations the 100-bp cleavage pattern could be restored only with material prepared by the resin method at low concentrations of salt. Addition of polylysine instead of H1 has the same effect, but only with material prepared by that method. A direct correlation between extended and condensed states of chromatin as monitored by electron microscopy and DNAase II cleavage in the 200 and 100-bp modes, respectively, could be established.The continuity of the nucleosome chains in DNAase II-digested chromatin is maintained in spite of intranucleosomal cleavage in the terminal section of the core DNA, even in the absence of H1. Addition of 3 m-urea, however, disrupts the nucleosome chains at the intranucleosomal cleavage sites and leads to the formation of novel nucleoprotein particles as seen in sucrose gradient centrifugations. Those sedimenting between mononucleosomes and dinucleosomes contain, almost exclusively, DNA of 300 bp (mouse) or 315 bp (chicken erythrocyte). They can be formed from particles sedimenting in the absence of urea in the dinucleosome region by either a dissociation process or a massive conformational change.On the basis of the results presented here and in the preceding paper a mechanism for DNAase II cleavage of chromatin in the 200-bp and 100-bp modes is proposed and discussed in the context of structural features of chromatin recognized by DNAase II.  相似文献   

16.
HeLa cells depleted of polyamines by treatment with alpha-difluoromethylornithine (DFMO), methylglyoxal bis(guanylhydrazone) (MGBG) or a combination of the two, were examined for sensitivity to micrococcal nuclease, DNAase I and DNAase II. The degrees of chromatin accessibility to DNAase I and II appeared enhanced somewhat in all three treatment groups, and the released digestion products differed from those in non-depleted cells. DNA released from MGBG- and DFMO/MGBG-treated cells by DNAase II digestion was enriched 4-7-fold for Mg2+-soluble species relative to controls. DNA released by micrococcal nuclease digestion from all three treatment groups was characterized as consisting of higher-order nucleosomal structure than was DNA released from untreated cells. At least some of the altered chromatin properties were abolished by a brief treatment of cells with polyamines, notably spermine. These studies provide the first demonstration in vivo of altered chromatin structure in cells treated with inhibitors of polyamine biosynthesis.  相似文献   

17.
Non-histone protein-DNA complexes with acceptor activity for estradiol-receptor complexes were reconstituted from fractionated calf uterine chromatin. Acceptor activity had tissue specificity with target tissue binding exceeding non-target tissue binding. The binding of estradiol-receptor complexes to acceptor sites was dependent on intact non-histone protein-DNA complexes, reconstituted select non-histone proteins, and protein equivalent: DNA reconstitution ratios. [3H]Estradiol-receptor complexes were bound to reconstituted non-histone protein-DNA complexes (i.e., nucleoacidic protein) with a high affinity and with a limited number of binding sites. Fractionation of uterine chromatin non-histone proteins identified two major sets of non-histone proteins which had acceptor activity when reconstituted with DNA. Thus, it seems possible to reconstitute nucleoacidic protein fractions with specific acceptor activity for the calf uterine estrogen receptor.  相似文献   

18.
19.
Chromatin from spleen cells of normal, non-immunized mice and from mice 3 days after immunization with human immunoglobulin G was fractionated at increasing salt concentrations into three fractions: 0.35 M NaCl-soluble, 2 M NaCl-soluble and a residual fraction, dissociated in 2 M NaCl/5 M urea. The residual fraction of chromatin, homogeneous by ultracentrifugation and containing only 25% of the total chromatin DNA, was associated with proteins strongly labeled with [3H]tryptophan, [3H]methionine and [3H]leucine. This fraction was more sensitive to DNAase II treatment than was native, non-fractionated chromatin and it contained approx. 40% Mg2+-soluble DNA sequences. The template activity of the residual fraction was 6--7-times higher than that of non-fractionated chromatin. Fraction A, characteristic for non-immunized spleen cells, was present in three chromatin fractions and after DNAase II treatment it remained only in the residual fraction, which suggests that this fraction is associated with genes non-transcribed in non-immunized mice. Fractions I and B1 were found mainly in the residual fraction, and only in smaller amounts in the 0.35 M NaCl-soluble fraction. After DNAase II treatment, fractions I and B1 in chromatin from immunized mice disappeared, which suggests that these fractions may be associated with active transcribed sequences during the immune reaction.  相似文献   

20.
Mono- and dinucleosomes preferentially cleaved from mouse myeloma chromatin by very mild micrococcal nuclease digestion at 0 degree C are soluble and are released from nuclei under near-physiological conditions in which normal nucleosomes containing Hl are insoluble. These nucleosomes are highly enriched in RNA, high-mobility-group proteins and a unique subset of other non-histone proteins. They are nearly devoid of histone Hl and contain DNA significantly less methylated than whole myeloma DNA, indicating that they comprise a subset of genomic sequences. Previously we have shown that this fraction is enriched in transcribed DNA sequences. Non-histone proteins that co-sedimented with readily solubilized nucleosomes included many of the most basic, low-to-moderate molecular weight chromosomal proteins. Many of these proteins were also preferentially acetylated in vivo. The residual, pelleted chromatin was highly enriched in high molecular weight proteins (greater than 60 000), and very depleted in medium molecular weight proteins. Readily solubilized nucleoproteins sedimenting like mononucleosomes were partly resolved by electrophoresis, under non-denaturing conditions, into several subfractions differing significantly in non-histone protein contents. Methods described here should be useful for identifying and isolating non-histone proteins bound to nucleosomes and other chromatin regions that are structurally and functionally unique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号