首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the vertebrate embryo, segmentation is built on repetitive structures, named somites, which are formed progressively from the most rostral part of presomitic mesoderm, every 90 minutes in the avian embryo. The discovery of the cyclic expression of several genes, occurring every 90 minutes in each presomitic cell, has shown that there is a molecular clock linked to somitogenesis. We demonstrate that a dynamic expression pattern of the cycling genes is already evident at the level of the prospective presomitic territory. The analysis of this expression pattern, correlated with a quail/chick fate-map, identifies a 'wave' of expression travelling along the future medial/lateral presomitic axis. Further analysis also reveals the existence of a medial/lateral asynchrony of expression at the level of presomitic mesoderm. This work suggests that the molecular clock is providing cellular positional information not only along the anterior/posterior but also along the medial/lateral presomitic axis. Finally, by using an in vitro culture system, we show that the information for morphological somite formation and molecular segmentation is segregated within the medial/lateral presomitic axis. Medial presomitic cells are able to form somites and express segmentation markers in the absence of lateral presomitic cells. By contrast, and surprisingly, lateral presomitic cells that are deprived of their medial counterparts are not able to organise themselves into somites and lose the expression of genes known to be important for vertebrate segmentation, such as Delta-1, Notch-1, paraxis, hairy1, hairy2 and lunatic fringe.  相似文献   

2.
3.
4.
5.
6.
The segmental structure of the vertebrate body plan is most evident in the axial skeleton. The regulated generation of somites, a process called somitogenesis, underlies the vertebrate body plan and is crucial for proper skeletal development. A genetic clock regulates this process, controlling the timing of somite development. Molecular evidence for the existence of the segmentation clock was first described in the expression of Notch signaling pathway members, several of which are expressed in a cyclic fashion in the presomitic mesoderm (PSM). The Wnt and fibroblast growth factor (FGF) pathways have also recently been linked to the segmentation clock, suggesting that a complex, interconnected network of three signaling pathways regulates the timing of somitogenesis. Mutations in genes that have been linked to the clock frequently cause abnormal segmentation in model organisms. Additionally, at least two human disorders, spondylocostal dysostosis (SCDO) and Alagille syndrome (AGS), are caused by mutations in Notch pathway genes and exhibit vertebral column defects, suggesting that mutations that disrupt segmentation clock function in humans can cause congenital skeletal defects. Thus, it is clear that the correct, cyclic function of the Notch pathway within the vertebrate segmentation clock is essential for proper somitogenesis. In the future, with a large number of additional cyclic genes recently identified, the complex interactions between the various signaling pathways making up the segmentation clock will be elucidated and refined.  相似文献   

7.
In the vertebrate embryo, somites constitute the basis of the segmental body pattern. They give rise to the axial skeleton, the dermis of the back and all striated muscles of the body. In the chick embryo, a pair of somites buds off, in a highly coordinated fashion, every 90 minutes, from the cranial end of the presomitic mesoderm (PSM) while new mesenchymal cells enter the paraxial mesoderm as a consequence of gastrulation. The processes leading to the segmentation of the somite are not yet understood. We have identified and characterised c-hairy1, an avian homologue of the Drosophila segmentation gene, hairy. c-hairy1 is strongly expressed in the presomitic mesoderm where its mRNA exhibits a cyclic posterior-to-anterior wave of expression whose periodicity corresponds to the formation time of one somite (90 min). Fate mapping of the rostral half of the PSM using the quail-chick chimera technique supports a model of cryptic segmentation within the presomitic mesoderm, and indicates that c-hairy1 expression dynamics are not due to massive cell displacement. Analysis of in vitro cultures of isolated presomitic mesoderm demonstrates that rhythmic c-hairy1 mRNA production and degradation is an autonomous property of the paraxial mesoderm. Rather than resulting from the caudal-to-rostral propagation of an activating signal, it arises from pulses of c-hairy1 expression that are coordinated in time and space. Blocking protein synthesis does not alter the propagation of c-hairy1 expression, indicating that negative autoregulation of c-hairy1 expression is unlikely to control its periodic expression. Most of the segmentation models proposed for somite formation rely on the existence of an internal clock coordinating the cells to segment together to form a somite. These results provide the first molecular evidence of a developmental clock linked to segmentation and somitogenesis of the paraxial mesoderm, and support the possibility that segmentation mechanisms used by invertebrates and vertebrates have been conserved.  相似文献   

8.
Vertebrate somitogenesis is associated with a molecular oscillator, the segmentation clock, which is defined by the periodic expression of genes related to the Notch pathway such as hairy1 and hairy2 or lunatic fringe (referred to as the cyclic genes) in the presomitic mesoderm (PSM). Whereas earlier studies describing the periodic expression of these genes have essentially focussed on later stages of somitogenesis, we have analysed the onset of the dynamic expression of these genes during chick gastrulation until formation of the first somite. We observed that the onset of the dynamic expression of the cyclic genes in chick correlated with ingression of the paraxial mesoderm territory from the epiblast into the primitive streak. Production of the paraxial mesoderm from the primitive streak is a continuous process starting with head mesoderm formation, while the streak is still extending rostrally, followed by somitic mesoderm production when the streak begins its regression. We show that head mesoderm formation is associated with only two pulses of cyclic gene expression. Because such pulses are associated with segment production at the body level, it suggests the existence of, at most, two segments in the head mesoderm. This is in marked contrast to classical models of head segmentation that propose the existence of more than five segments. Furthermore, oscillations of the cyclic genes are seen in the rostral primitive streak, which contains stem cells from which the entire paraxial mesoderm originates. This indicates that the number of oscillations experienced by somitic cells is correlated with their position along the AP axis.  相似文献   

9.
Notch around the clock.   总被引:7,自引:0,他引:7  
The establishment of a segmental pattern within the vertebrate body plan is achieved during embryogenesis by the somitogenesis process. Two molecular systems have been implicated in this phenomenon: a molecular clock linked to vertebrate segmentation and the Notch signalling pathway. Rhythmic expression of the Lunatic Fringe gene in the presomitic mesoderm has now provided a link between these two systems.  相似文献   

10.
11.
12.
13.
Can tissue surface tension drive somite formation?   总被引:2,自引:1,他引:1  
The prevailing model of somitogenesis supposes that the presomitic mesoderm is segmented into somites by a clock and wavefront mechanism. During segmentation, mesenchymal cells undergo compaction, followed by a detachment of the presumptive somite from the rest of the presomitic mesoderm and the subsequent morphological changes leading to rounded somites. We investigate the possibility that minimization of tissue surface tension drives the somite sculpting processes. Given the time in which somite formation occurs and the high bulk viscosities of tissues, we find that only small changes in shape and form of tissue typically occur through cell movement driven by tissue surface tension. This is particularly true for somitogenesis in the zebrafish. Hence it is unlikely that such processes are the sole and major driving force behind somite formation. We propose a simple chemotactic mechanism that together with heightened adhesion can account for the morphological changes in the time allotted for somite formation.  相似文献   

14.
15.
The temporal and spatial regulation of somitogenesis requires a molecular oscillator, the segmentation clock. Through Notch signalling, the oscillation in cells is coordinated and translated into a cyclic wave of expression of hairy-related and other genes. The wave sweeps caudorostrally through the presomitic mesoderm (PSM) and finally arrests at the future segmentation point in the anterior PSM. By experimental manipulation and analyses in zebrafish somitogenesis mutants, we have found a novel component involved in this process. We report that the level of Fgf/MAPK activation (highest in the posterior PSM) serves as a positional cue within the PSM that regulates progression of the cyclic wave and thereby governs the positions of somite boundary formation.  相似文献   

16.
17.
The Notch signalling pathway plays essential roles during the specification of the rostral and caudal somite halves and subsequent segmentation of the paraxial mesoderm. We have re-investigated the role of presenilin 1 (Ps1; encoded by Psen1) during segmentation using newly generated alleles of the Psen1 mutation. In Psen1-deficient mice, proteolytic activation of Notch1 was significantly affected and the expression of several genes involved in the Notch signalling pathway was altered, including Delta-like3, Hes5, lunatic fringe (Lfng) and Mesp2. Thus, Ps1-dependent activation of the Notch pathway is essential for caudal half somite development. We observed defects in Notch signalling in both the caudal and rostral region of the presomitic mesoderm. In the caudal presomitic mesoderm, Ps1 was involved in maintaining the amplitude of cyclic activation of the Notch pathway, as represented by significant reduction of Lfng expression in Psen1-deficient mice. In the rostral presomitic mesoderm, rapid downregulation of the Mesp2 expression in the presumptive caudal half somite depends on Ps1 and is a prerequisite for caudal somite half specification. Chimaera analysis between Psen1-deficient and wild-type cells revealed that condensation of the wild-type cells in the caudal half somite was concordant with the formation of segment boundaries, while mutant and wild-type cells intermingled in the presomitic mesoderm. This implies that periodic activation of the Notch pathway in the presomitic mesoderm is still latent to segregate the presumptive rostral and caudal somite. A transient episode of Mesp2 expression might be needed for Notch activation by Ps1 to confer rostral or caudal properties. In summary, we propose that Ps1 is involved in the functional manifestation of the segmentation clock in the presomitic mesoderm.  相似文献   

18.
The segmented body plan of vertebrate embryos arises through segmentation of the paraxial mesoderm to form somites. The tight temporal and spatial control underlying this process of somitogenesis is regulated by the segmentation clock and the FGF signaling wavefront. Here, we report the cyclic mRNA expression of Snail 1 and Snail 2 in the mouse and chick presomitic mesoderm (PSM), respectively. Whereas Snail genes' oscillations are independent of NOTCH signaling, we show that they require WNT and FGF signaling. Overexpressing Snail 2 in the chick embryo prevents cyclic Lfng and Meso 1 expression in the PSM and disrupts somite formation. Moreover, cells mis-expressing Snail 2 fail to express Paraxis, remain mesenchymal, and are thereby inhibited from undergoing the epithelialization event that culminates in the formation of the epithelial somite. Thus, Snail genes define a class of cyclic genes that coordinate segmentation and PSM morphogenesis.  相似文献   

19.
20.
A characteristic feature of the vertebrate body is its segmentation along the anteroposterior axis, as illustrated by the repetition of vertebrae that form the vertebral column. The vertebrae and their associated muscles derive from metameric structures of mesodermal origin, the somites. The segmentation of the body is established by somitogenesis, during which somites form sequentially in a rhythmic fashion from the presomitic mesoderm. This review highlights recent findings that show how dynamic gradients of morphogens and retinoic acid, coupled to a molecular oscillator, drive the formation of somites and link somitogenesis to the elongation of the anteroposterior axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号