首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Abstract: Phosphate ion is an essential nutrient for all cells. Consequently, starvation for this component may constitute a stressing condition which affects the bioleaching capacity of the biomining microorganisms. Therefore, we have studied the manner in which the chemolithotroph Thiobacillus ferrooxidans responds to phosphate limitation. Under these circumstances the bacteria reduced its growth rate, capacity to oxidize ferrous iron and to fix CO,. Concomitant with these changes, the cells showed an increased synthesis of several proteins, some of which were exclusively synthesized during phosphate starvation. When intact cells grown in the absence of phosphate were labelled with 125I, several proteins were iodinated in addition of those observed in control cells, suggesting that the lack of phosphate induces some proteins located in the membranes or the periplasmic space of the bacteria. It is expected that by measuring the levels of expression of some of the proteins induced by the shortage of phosphorus, it might be possible to estimate in situ the relative physiological condition of the bacteria in a given bioleaching operation.  相似文献   

2.
Aims: The primary goal of this study was to characterize the existence of a functional c‐di‐GMP pathway in the bioleaching bacterium Acidithiobacillus ferrooxidans. Methods and Results: A bioinformatic search revealed that the genome sequence of At. ferrooxidans ATCC 23270 codes for several proteins involved in the c‐di‐GMP pathway, including diguanylate cyclases (DGC), phosphodiesterases and PilZ effector proteins. Overexpression in Escherichia coli demonstrated that four At. ferrooxidans genes code for proteins containing GGDEF/EAL domains with functional DGC activity. MS/MS analysis allowed the identification of c‐di‐GMP in nucleotide preparations obtained from At. ferrooxidans cells. In addition, c‐di‐GMP levels in cells grown on the surface of solid energetic substrates such as sulfur prills or pyrite were higher than those measured in ferrous iron planktonic cells. Conclusions: At. ferrooxidans possesses a functional c‐di‐GMP pathway that could play a key role in At. ferrooxidans biofilm formation during bioleaching processes. Significance and Impact of the Study: This is the first global study about the c‐di‐GMP pathway in an acidophilic bacterium of great interest for the biomining industry. It opens a new way to explore the regulation of biofilm formation by biomining micro‐organisms during the bioleaching process.  相似文献   

3.
Industrial biomining processes to extract copper, gold and other metals involve the use of extremophiles such as the acidophilic Acidithiobacillus ferrooxidans (Bacteria), and the thermoacidophilic Sulfolobus metallicus (Archaea). Together with other extremophiles these microorganisms subsist in habitats where they are exposed to copper concentrations higher than 100 mM. Herein we review the current knowledge on the Cu-resistance mechanisms found in these microorganisms. Recent information suggests that biomining extremophiles respond to extremely high Cu concentrations by using simultaneously all or most of the following key elements: 1) a wide repertoire of Cu-resistance determinants; 2) duplication of some of these Cu-resistance determinants; 3) existence of novel Cu chaperones; 4) a polyP-based Cu-resistance system, and 5) an oxidative stress defense system. Further insight of the biomining community members and their individual response to copper is highly relevant, since this could provide key information to the mining industry. In turn, this information could be used to select the more fit members of the bioleaching community to attain more efficient industrial biomining processes.  相似文献   

4.
Acidithiobacillus ferrooxidans is a Gram negative, acidophilic, chemolithoautotrophic bacterium that plays an important role in metal bioleaching. During bioleaching, the cells are subjected to changes in the growth temperature and nutrients starvation. The aim of this study was to gather information about the response of the A. ferrooxidans Brazilian strain LR to K2HPO4 starvation and heat stress through investigation of cellular morphology, chemical composition and differential proteome. The scanning electron microscopic results showed that under the tested stress conditions, A. ferrooxidans cells became elongated while the Fourier transform infrared spectroscopy (FT-IR) analysis showed alterations in the wavenumbers between 850 and 1,275 cm−1, which are related to carbohydrates, phospholipids and phosphoproteins. These findings indicate that the bacterial cell surface is affected by the tested stress conditions. A proteomic analysis, using 2-DE and tandem mass spectrometry, enabled the identification of 44 differentially expressed protein spots, being 30 due to heat stress (40°C) and 14 due to K2HPO4 starvation. The identified proteins belonged to 11 different functional categories, including protein fate, energy metabolism and cellular processes. The upregulated proteins were mainly from protein fate and energy metabolism categories. The obtained results provide evidences that A. ferrooxidans LR responds to heat stress and K2HPO4 starvation by inducing alterations in cellular morphology and chemical composition of the cell surface. Also, the identification of several proteins involved in protein fate suggests that the bacteria cellular homesostasis was affected. In addition, the identification of proteins from different functional categories indicates that the A. ferrooxidans response to higher than optimal temperatures and phosphate starvation involves global changes in its physiology.  相似文献   

5.
氧化亚铁硫杆菌(At.f)是能够利用Fe2 和硫化矿来获取能量的一种化能自养菌.这种细菌在金属硫化矿的生物浸出中起着重要的作用.在硫化矿的生物浸出过程中,浸矿细菌通常会遇到多种胁迫条件,如温度的变化、营养成分的缺失和pH值的变化等,这些因素会影响到细菌的活性.因此对在胁迫条件下这类细菌的应急反应生理机制的研究具有重要的意义.SELDI蛋白质芯片技术是近年一种高通量的蛋白质组学研究技术.测定了以Fe2 为能源正常条件培养的At.f和磷酸盐缺失培养At.f的生长情况,绘制了相应的生长曲线;采用NP20蛋白质芯片,对At.f总蛋白的蛋白质芯片上样量进行了优化.在此基础上,采用IMAC-Cu、SAX2、WCX2三种特异性SELDI蛋白质芯片技术,获取了磷酸盐缺失培养At.f与正常条件培养的At.f的比较蛋白质图谱,采用软件对比较蛋白质图谱进行分析,发现了磷酸盐缺失培养At.f的13个明显差异表达的蛋白质分子,为进一步分离鉴定这些差异表达蛋白质奠定了基础.  相似文献   

6.
High concentrations of chloride ions inhibit the growth of acidophilic microorganisms used in biomining, a problem particularly relevant to Western Australian and Chilean biomining operations. Despite this, little is known about the mechanisms acidophiles adopt in order to tolerate high chloride ion concentrations. This study aimed to investigate the impact of increasing concentrations of chloride ions on the population dynamics of a mixed culture during pyrite bioleaching and apply proteomics to elucidate how two species from this mixed culture alter their proteomes under chloride stress. A mixture consisting of well-known biomining microorganisms and an enrichment culture obtained from an acidic saline drain were tested for their ability to bioleach pyrite in the presence of 0, 3.5, 7, and 20 g L−1 NaCl. Microorganisms from the enrichment culture were found to out-compete the known biomining microorganisms, independent of the chloride ion concentration. The proteomes of the Gram-positive acidophile Acidimicrobium ferrooxidans and the Gram-negative acidophile Acidithiobacillus caldus grown in the presence or absence of chloride ions were investigated. Analysis of differential expression showed that acidophilic microorganisms adopted several changes in their proteomes in the presence of chloride ions, suggesting the following strategies to combat the NaCl stress: adaptation of the cell membrane, the accumulation of amino acids possibly as a form of osmoprotectant, and the expression of a YceI family protein involved in acid and osmotic-related stress.  相似文献   

7.
A specific and very sensitive dot-immunobinding assay for the detection and enumeration of the bioleaching microorganism Thiobacillus ferrooxidans was developed. Nitrocellulose spotted with samples was incubated with polyclonal antisera against whole T. ferrooxidans cells and then in 125I-labeled protein A or 125I-labeled goat antirabbit immunoglobulin G; incubation was followed by autoradiography. Since a minimum of 103 cells per dot could be detected, the method offers the possibility of simultaneous processing of numerous samples in a short time to monitor the levels of T. ferrooxidans in bioleaching operations.  相似文献   

8.
An understanding of biofilm formation is relevant to the design of biological strategies to improve the efficiency of the bioleaching process and to prevent environmental damages caused by acid mine/rock drainage. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in different biomining bacteria. In many bacteria, the intracellular levels of c-di-GMP molecules regulate the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development, through different kinds of effectors. Thus, we recently started a study of the c-di-GMP pathway in several biomining bacteria including Acidithiobacillus caldus. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). We previously reported the existence of intermediates involved in c-di-GMP pathway from different Acidithiobacillus species. Here, we report our work related to At. caldus ATCC 51756. We identified several putative-ORFs encoding DGC and PDE and effector proteins. By using total RNA extracted from At. caldus cells and RT-PCR, we demonstrated that these genes are expressed. We also demonstrated the presence of c-di-GMP by mass spectrometry and showed that genes for several of the DGC enzymes were functional by heterologous genetic complementation in Salmonella enterica serovar Typhimurium mutants. Moreover, we developed a DGC defective mutant strain (Δc1319) that strongly indicated that the c-di-GMP pathway regulates the swarming motility and adherence to sulfur surfaces by At. caldus. Together, our results revealed that At. caldus possesses a functional c-di-GMP pathway which could be significant for ores colonization during the bioleaching process.  相似文献   

9.
10.
An antiserum raised against whole cells of Thiobacillus ferrooxidans was allowed to react with a variety of acidophilic and nonacidophilic bacteria in an enzyme-linked immunosorbent assay and an indirect immunofluorescence assay. Both experiments demonstrated that the antiserum was specific at the species level. This preparation was used to evaluate the role of T. ferrooxidans in the microbial desulfurization process. Leaching experiments were performed, and the numbers of T. ferrooxidans cells and other bacteria were estimated by using a combined immunofluorescence-DNA-fluorescence staining technique that was adapted for this purpose. Nonsterile coal samples inoculated with T. ferrooxidans yielded high concentrations of soluble iron after 16 days. After this period, however, T. ferrooxidans cells could no longer be detected by the immunofluorescence assay, whereas the DNA-fluorescence staining procedure demonstrated a large number of microorganisms on the coal particles. These results indicate that T. ferrooxidans is removed by competition with different acidophilic microorganisms that were originally present on the coal.  相似文献   

11.
Wide variations were found in the rate of chemical and microbiological leaching of iron from pyritic materials from various sources. Thiobacillus ferrooxidans accelerated leaching of iron from all of the pyritic materials tested in shake flask suspensions at loadings of 0.4% (wt/vol) pulp density. The most chemically reactive pyrites exhibited the fastest bioleaching rates. However, at 2.0% pulp density, a delay in onset of bioleaching occurred with two of the pyrites derived from coal sources. T. ferrooxidans was unable to oxidize the most chemically reactive pyrite at 2.0% pulp density. No inhibition of pyrite oxidation by T. ferrooxidans occurred with mineral pyrite at 2.0% pulp density. Experiments with the most chemically reactive pyrite indicated that the leachates from the material were not inhibitory to iron oxidation by T. ferrooxidans.  相似文献   

12.
Acidophilic microorganisms such as Acidithiobacillus ferrooxidans have the capability to carry out processes of bioleaching, biosorption and bioprecipitation of heavy metal ions, which have important environmental applications. At. ferrooxidans derives the energy for their metabolism from ferrous iron oxidation, process, which can be affected by the presence of heavy metals in the medium. Moreover, organic matter produces an inhibitory effect over the ferrous iron oxidation of At. ferrooxidans. In this work, heterotrophic bacterium Acidiphilium sp. was added when the medium is supplemented with organic matter to reduce this negative effect. The purpose of this work is the kinetic study of ferrous sulphate oxidation by At. ferrooxidans in the presence of different concentrations of several heavy metal ions (Cr(III), Cu(II), Cd(II), Zn(II) and Ni(II)) and compare this kinetic behaviour with a mixed culture with Acidiphilium sp.The obtained results show a non-competitive inhibition of heavy metals over bacterial oxidation of ferrous sulphate. In accordance with this kind of inhibition, a kinetic equation has been proposed to predict the behaviour of At. ferrooxidans in the presence of heavy metals in the range of concentrations studied.  相似文献   

13.
Biofilm formation plays a pivotal role in bioleaching activities of bacteria in both industrial and natural environments. Here, by visualizing attached bacterial cells on energetic substrates with different microscopy techniques, we obtained the first direct evidence that it is possible to positively modulate biofilm formation of the extremophilic bacterium Acidithiobacillus ferrooxidans on sulfur and pyrite surfaces by using Quorum Sensing molecules of the N-acylhomoserine lactone type (AHLs). Our results revealed that AHL-signaling molecules with a long acyl chain (12 or 14 carbons) increased the adhesion of A. ferrooxidans cells to these substrates. In addition, Card-Fish experiments demonstrated that C14-AHL improved the adhesion of indigenous A. ferrooxidans cells from a mixed bioleaching community to pyrite. Finally, we demonstrated that this improvement of cell adhesion is correlated with an increased production of extracellular polymeric substances. Our results open up a promising means to develop new strategies for the improvement of bioleaching efficiency and metal recovery, which could also be used to control environmental damage caused by acid mine/rock drainage.  相似文献   

14.
Acidithiobacillus ferrooxidans cells can oxidize iron and sulfur and are key members of the microbial biomining communities that are exploited in the large-scale bioleaching of metal sulfide ores. Some minerals are recalcitrant to bioleaching due to the presence of other inhibitory materials in the ore bodies. Additives are intentionally included in processed metals to reduce environmental impacts and microbially influenced corrosion. We have previously reported a new aerobic corrosion mechanism where A. ferrooxidans cells combined with pyrite and chloride can oxidize low-grade stainless steel (SS304) with a thiosulfate-mediated mechanism. Here we explore process conditions and genetic engineering of the cells that enable corrosion of a higher grade steel (SS316). The addition of elemental sulfur and an increase in the cell loading resulted in a 74% increase in the corrosion of SS316 as compared to the initial sulfur- and cell-free control experiments containing only pyrite. The overexpression of the endogenous rus gene, which is involved in the cellular iron oxidation pathway, led to a further 85% increase in the corrosion of the steel in addition to the improvements made by changes to the process conditions. Thus, the modification of the culturing conditions and the use of rus-overexpressing cells led to a more than threefold increase in the corrosion of SS316 stainless steel, such that 15% of the metal coupons was dissolved in just 2 weeks. This study demonstrates how the engineering of cells and the optimization of their cultivation conditions can be used to discover conditions that lead to the corrosion of a complex metal target.  相似文献   

15.
Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. Some of the surface components of this microorganism are probably involved in adaptation to their acidic environment and in bacterium-mineral interactions. We have isolated and characterized omp40, the gene coding for the major outer membrane protein from T. ferrooxidans. The deduced amino acid sequence of the Omp40 protein has 382 amino acids and a calculated molecular weight of 40,095.7. Omp40 forms an oligomeric structure of about 120 kDa that dissociates into the monomer (40 kDa) by heating in the presence of sodium dodecyl sulfate. The degree of identity of Omp40 amino acid sequence to porins from enterobacteria was only 22%. Nevertheless, multiple alignments of this sequence with those from several OmpC porins showed several important features conserved in the T. ferrooxidans surface protein, such as the approximate locations of 16 transmembrane beta strands, eight loops, including a large external L3 loop, and eight turns which allowed us to propose a putative 16-stranded beta-barrel porin structure for the protein. These results together with the previously known capacity of Omp40 to form ion channels in planar lipid bilayers strongly support its role as a porin in this chemolithoautotrophic acidophilic microorganism. Some characteristics of the Omp40 protein, such as the presence of a putative L3 loop with an estimated isoelectric point of 7.21 allow us to speculate that this can be the result of an adaptation of the acidophilic T. ferrooxidans to prevent free movement of protons across its outer membrane.  相似文献   

16.
17.
In order to better understand the bioleaching mechanism, expression of genes involved in energy conservation and community structure of free and attached acidophilic bacteria in chalcopyrite bioleaching were investigated. Using quantitative real-time PCR, we studied the expression of genes involved in energy conservation in free and attached Acidithiobacillus ferrooxidans during bioleaching of chalcopyrite. Sulfur oxidation genes of attached A. ferrooxidans were up-regulated while ferrous iron oxidation genes were down-regulated compared with free A. ferrooxidans in the solution. The up-regulation may be induced by elemental sulfur on the mineral surface. This conclusion was supported by the results of HPLC analysis. Sulfur-oxidizing Acidithiobacillus thiooxidans and ferrous-oxidizing Leptospirillum ferrooxidans were the members of the mixed culture in chalcopyrite bioleaching. Study of the community structure of free and attached bacteria showed that A. thiooxidans dominated the attached bacteria while L. ferrooxidans dominated the free bacteria. With respect to available energy sources during bioleaching of chalcopyrite, sulfur-oxidizers tend to be on the mineral surfaces whereas ferrous iron-oxidizers tend to be suspended in the aqueous phase. Taken together, these results indicate that the main role of attached acidophilic bacteria was to oxidize elemental sulfur and dissolution of chalcopyrite involved chiefly an indirect bioleaching mechanism.  相似文献   

18.
Toxin-antitoxin (TA) systems are genetic modules composed of a pair of genes encoding a stable toxin and an unstable antitoxin that inhibits toxin activity. They are widespread among plasmids and chromosomes of bacteria and archaea. TA systems are known to be involved in the stabilization of plasmids but there is no consensus about the function of chromosomal TA systems. To shed light on the role of chromosomally encoded TA systems we analyzed the distribution and functionality of type II TA systems in the chromosome of two strains from Acidithiobacillus ferrooxidans (ATCC 23270 and 53993), a Gram-negative, acidophilic, environmental bacterium that participates in the bioleaching of minerals. As in other environmental microorganisms, A. ferrooxidans has a high content of TA systems (28-29) and in twenty of them the toxin is a putative ribonuclease. According to the genetic context, some of these systems are encoded near or within mobile genetic elements. Although most TA systems are shared by both strains, four of them, which are encoded in the active mobile element ICEAfe1, are exclusive to the type strain ATCC 23270. We demostrated that two TA systems from ICEAfe1 are functional in E. coli cells, since the toxins inhibit growth and the antitoxins counteract the effect of their cognate toxins. All the toxins from ICEAfe1, including a novel toxin, are RNases with different ion requirements. The data indicate that some of the chromosomally encoded TA systems are actually part of the A. ferrooxidans mobile genome and we propose that could be involved in the maintenance of these integrated mobile genetic elements.  相似文献   

19.
There is great interest in understanding how extremophilic biomining bacteria adapt to exceptionally high copper concentrations in their environment. Acidithiobacillus ferrooxidans ATCC 53993 genome possesses the same copper resistance determinants as strain ATCC 23270. However, the former strain contains in its genome a 160-kb genomic island (GI), which is absent in ATCC 23270. This GI contains, amongst other genes, several genes coding for an additional putative copper ATPase and a Cus system. A. ferrooxidans ATCC 53993 showed a much higher resistance to CuSO4 (>100 mM) than that of strain ATCC 23270 (<25 mM). When a similar number of bacteria from each strain were mixed and allowed to grow in the absence of copper, their respective final numbers remained approximately equal. However, in the presence of copper, there was a clear overgrowth of strain ATCC 53993 compared to ATCC 23270. This behavior is most likely explained by the presence of the additional copper-resistance genes in the GI of strain ATCC 53993. As determined by qRT-PCR, it was demonstrated that these genes are upregulated when A. ferrooxidans ATCC 53993 is grown in the presence of copper and were shown to be functional when expressed in copper-sensitive Escherichia coli mutants. Thus, the reason for resistance to copper of two strains of the same acidophilic microorganism could be determined by slight differences in their genomes, which may not only lead to changes in their capacities to adapt to their environment, but may also help to select the more fit microorganisms for industrial biomining operations.  相似文献   

20.
Conditions for the partial removal of lipopolysaccharide (LPS) from Thiobacillus ferrooxidans are described. Raising the pH of the solution containing the cells from pH 1.5 to pH 6.8 to 8.0 releases about 50% of the LPS without cell lysis. The release of LPS begins at pH 3.5, and it was not affected by EDTA concentration. Partial removal of LPS exposed higher amounts of a 40-kDa outer membrane protein in the bacteria, as detected by a dot immunoassay employing an antiserum against the T. ferrooxidans surface protein. This higher protein exposure and the reduced LPS content increased the hydrophobicity of the cell surface, as determined by an increased adhesion (50%) to hydrophobic sulfur prills and 14C-dodecanoic acid binding (2.5-fold) compared with control cells. In addition, adhesion of radioactively labeled microorganisms to a sulfide mineral was inhibited (40%) in the presence of previously added LPS. Our results suggest that not only LPS but also surface proteins probably play important roles in T. ferrooxidans adhesion to solid surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号