首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BAY 43-9006 is a selective Raf-1 kinase inhibitor with antitumor activity against a variety of human cancers. A highly sensitive HPLC method for determination of BAY 43-9006 in small volumes of serum (30 microl) was developed. Sample preparation involved a liquid-liquid extraction procedure with tolnaftate as internal standard followed by linear gradient elution at a reversed phase C18 column and UV detection. The method was selective and the calibration curves were linear over the concentration range of 80-2000 ng/ml. The intra-day accuracy ranged from 99.9 to 107.6% and the inter-day accuracy from 94.6 to 115%. The lower limit of quantitation (LOQ) was 80 ng/ml with an accuracy of 105.8%. Thus, this method has been validated and can be applied for the drug monitoring or pharmacokinetic studies of BAY 43-9006 in small volumes of serum samples.  相似文献   

2.
It has been proved that the progress of proteomics is mostly determined by the development of advanced and sensitive protein separation technologies. Immobilized metal affinity chromatography (IMAC) is a powerful protein fractionation method used to enrich metal-associated proteins and peptides. In proteomics, IMAC has been widely employed as a prefractionation method to increase the resolution in protein separation. The combination of IMAC with other protein analytical technologies has been successfully utilized to characterize metalloproteome and post-translational modifications. In the near future, newly developed IMAC integrated with other proteomic methods will greatly contribute to the revolution of expression, cell-mapping and structural proteomics.  相似文献   

3.
It has been proved that the progress of proteomics is mostly determined by the development of advanced and sensitive protein separation technologies. Immobilized metal affinity chromatography (IMAC) is a powerful protein fractionation method used to enrich metal-associated proteins and peptides. In proteomics, IMAC has been widely employed as a prefractionation method to increase the resolution in protein separation. The combination of IMAC with other protein analytical technologies has been successfully utilized to characterize metalloproteome and post-translational modifications. In the near future, newly developed IMAC integrated with other proteomic methods will greatly contribute to the revolution of expression, cell-mapping and structural proteomics.  相似文献   

4.
Heterologous proteins are frequently purified by immobilized metal ion affinity chromatography (IMAC) based on their modification with a hexa-histidine affinity tag (His-tag). The terminal His-tag can, however, alter functional properties of the tagged protein. Numerous strategies for the tag removal have been developed including chemical treatment and insertion of protease target sequences in the protein sequence. Instead of using these approaches, we took an advantage of natural interaction of zinc finger domains with metal ions to purify functionally similar retroviral proteins from two different retroviruses. We found that these proteins exhibited significantly different affinities to the immobilized metal ions, despite that both contain the same type of zinc finger motif (i.e., CCHC). While zinc finger proteins may differ in biochemical properties, the multitude of IMAC platforms should allow relatively simple yet specific method for their isolation in native state.  相似文献   

5.
Immobilized metal affinity chromatography (IMAC) is widely used for protein purification, e.g., in the isolation of proteins bearing the well-known hexahistidine affinity tag. We report that IMAC matrixes can also adsorb single-stranded nucleic acids through metal ion interactions with aromatic base nitrogens and propose that metal affinity technologies may find widespread application in nucleic acid technology. Oligonucleotide duplexes, plasmid, and genomic DNA show low IMAC binding affinity, while RNA and single-stranded oligonucleotides bind strongly to matrixes such as Cu(II) iminodiacetic acid (IDA) agarose. The affinity of yeast RNA for IDA-chelated metal ions decreases in the following order: Cu(II), Ni(II), Zn(II), and Co(II). Adsorption isotherms for 20-mer oligonucleotide homopolymers show that purines are strongly favored over pyrimidines and that double-stranded duplexes are not bound. IMAC columns have been used to purify plasmid DNA from E. coli alkaline lysates, to purify a ribozyme, to remove primers and imperfect products from PCR reactions, and to separate 20-mer oligonucleotide duplexes containing centered single-base mismatches. Potential further applications include SNP scoring, hybridization assays, and the isolation of polyadenylated messenger RNA.  相似文献   

6.
A two-step chromatographic sequence is described for the purification of native lactose operon repressor protein from Escherichia coli cells. The first step involves Ni(2+)-based immobilized metal ion affinity chromatography of the soluble cytoplasmic extract. This method provides superior speed, resolution and yield than the established phosphocellulose cation-exchange chromatographic procedure. Anion-exchange chromatography is used for further purification to >95% purity. The identity and purity of the lactose repressor protein were demonstrated using sodium dodecylsulphate polyacrylamide electrophoresis, crystallization, tryptic finger-printing mass spectrometry, and inducer binding assays. The purified lac repressor exhibited inducer sensitivity for operator DNA binding and undergoes a conformational change upon inducer binding. By all these extensive biochemical criteria, the purified protein behaves exactly as that described for the Escherichia coli lactose operon repressor.  相似文献   

7.
The separation of three sets of standard protein mixtures on a high-performance immobilized metal ion affinity chromatography (HP-IMAC) column by elution with linear gradients of imidazole is described. The affinity of the test proteins for the immobilized metal ions follows the order Cu2+ greater than Ni2+ greater than Zn2+. The iminodiacetic acid-Cu2+ column gives the best resolution of all three protein mixtures and is the only immobilized metal ion column that can be used for elution of absorbed proteins with a decreasing pH gradient. An application of HP-IMAC for the separation of monoclonal IgG from mouse ascites fluid is also outlined. This versatile separation method is thus suitable for both analytical and preparative separations of proteins and peptides resulting in high recoveries and good reproducibility. The leakage of immobilized metal ions from the TSK gel chelate-5PW is apparent if the column is eluted by buffers containing low concentrations of (i) glycine or (ii) primary amines at round neutral pH. Considerable amounts of immobilized Zn2+ and Ni2+ ions also leak from the column by washing with buffers of pH 4.5 or lower. However, all three immobilized metal ions are stable toward exposure to low concentrations of imidazole (up to 50 mM) in phosphate buffers between pH 6.5 and 8.0. Adsorbed proteins could thus be eluted conveniently by using linear gradients of imidazole to give reproducible results. Moreover, this elution procedure made it possible to use the IMAC columns for repeated runs without the need for regeneration and recharging of the columns with fresh metal ions after each use.  相似文献   

8.
Dysregulated protein phosphorylation is a primary culprit in multiple physiopathological states. Hence, although analysis of signaling cascades on a proteome-wide scale would provide significant insight into both normal and aberrant cellular function, such studies are simultaneously limited by sheer biological complexity and concentration dynamic range. In principle, immobilized metal affinity chromatography (IMAC) represents an ideal enrichment method for phosphoproteomics. However, anecdotal evidence suggests that this technique is not widely and successfully applied beyond analysis of simple standards, gel bands, and targeted protein immunoprecipitations. Here, we report significant improvements in IMAC-based methodology for enrichment of phosphopeptides from complex biological mixtures. Moreover, we provide detailed explanation for key variables that in our hands most influenced the outcome of these experiments. Our results indicate 5- to 10-fold improvement in recovery of singly- and multiply phosphorylated peptide standards in addition to significant improvement in the number of high-confidence phosphopeptide sequence assignments from global analysis of cellular lysate. In addition, we quantitatively track phosphopeptide recovery as a function of phosphorylation state, and provide guidance for impedance-matching IMAC column capacity with anticipated phosphopeptide content of complex mixtures. Finally, we demonstrate that our improved methodology provides for identification of phosphopeptide distributions that closely mimic physiological conditions.  相似文献   

9.
Successful immobilized metal affinity chromatography (IMAC) of proteins on Cu2+-iminodiacetic acid Sepharose has been carried out in a displacement mode using a synthetic copolymer of vinyl imidazole and vinyl caprolactam [poly(VI-VCL)] as a displacer. Vinyl caprolactam renders the co-polymer with the thermosensitivity, e.g., property of the co-polymer to precipitate nearly quantitatively from aqueous solution on increase of the temperature to 48°C. A thermostable lactate dehydrogenase from the thermophilic bacterium Bacillus stearothermophilus modified with a (His)6-tag [(His)6-LDH] has been purified using an IMAC column. For the first time it was clearly demonstrated that a polymeric displacer [poly(VI-VCL)] was more efficient compared to a monomeric displacer (imidazole) of the same chemical nature, probably due to the multipoint interaction of imidazole groups within the same macromolecule with one Cu2+ ion. Complete elution of bound (His)6-LDH has been achieved at 3.7 mM concentration of imidazole units of the co-polymer (5 mg/ml), while this concentration of free imidazole was sufficient to elute only weakly bound proteins. Complete elution of (His)6-LDH by the free imidazole was achieved only at concentrations as high as 160 mM. Thus, it was clearly demonstrated, that the efficiency of low-molecular-mass displacer could be improved significantly by converting it into a polymeric displacer having interacting groups of the same chemical nature.  相似文献   

10.
The metalloproteome is defined as the set of proteins that have metal-binding capacity by being metalloproteins or having metal-binding sites. A different metalloproteome may exist for each metal. Mass spectrometric characterization of metalloproteomes provides valuable information relating to cellular disposition of metals physiologically and in metal-associated diseases. We examined the Cu and Zn metalloproteomes in three human hepatoma lines: Hep G2 and Mz-Hep-1, which retain many functional characteristics of normal human hepatocytes, and SK-Hep-1, which is poorly differentiated. Additionally we studied a single specimen of normal human liver and Hep G2 cells depleted in vitro of cellular copper. We used matrix-assisted laser desorption ionization and electrospray ionization quadrupole time-of-flight mass spectrometry to analyze peptide sequences of tryptic digests obtained by either in-gel digestion of metal-binding proteins or peptides on an immobilized metal affinity chromatography column loaded with either Cu or Zn. Mainly high abundance proteins were identified. Cu-binding proteins identified included enolase, albumin, transferrin, and alcohol dehydrogenase as well as certain intracellular chaperone proteins. The Cu metalloproteome was not identical to the Zn metalloproteome. Peptide binding experiments demonstrated that Cu coordination prefers the order of residues histidine > methionine > cysteine. Although the Cu metalloproteome was similar from line to line, subtle differences were apparent. Gel profiling showed more extensive variation in expression of annexin II in SK-Hep-1 and Mz-Hep-1 than in Hep G2 and normal liver tissue. Glycerylphosphorylethanolamine was identified as a post-translational modification at residue Glu-301 of elongation factor 1-alpha in Hep G2. Intracellular copper depletion was associated with loss of the glycerylphosphoryl side group. These findings suggest that post-translational modification could be affected by intracellular actions of copper. Comparison of the Cu and Zn metalloproteomes in Hep G2 with a published general proteome of Hep G2 disclosed little overlap (Seow, T. K., et al. (2001) Proteomics 1, 1249-1263). Proteins in the metalloproteomes of human hepatocytes can be identified by these methods. Variations in these metalloproteomes may have important physiological relevance.  相似文献   

11.
Kung CC  Huang WN  Huang YC  Yeh KC 《Proteomics》2006,6(9):2746-2758
To plants, copper is vitally essential at low concentrations but extremely toxic at elevated concentrations. Plants have evolved a suite of mechanisms that modulate the uptake, distribution, and utilization of copper ions. These mechanisms require copper-interacting proteins for transporting, chelating, and sequestrating copper ions. In this study, we have systematically screened for copper-interacting proteins in Arabidopsis roots via copper-immobilized metal affinity chromatography (Cu-IMAC). We also compared Arabidopsis root metalloproteomes with affinity to Cu-IMAC and Zn-IMAC. From the identities of 38 protein spots with affinity to Cu-IMAC, 35 unique proteins were identified. Functional classification of these proteins includes redox/hydrolytic reactions, amino acid metabolism, glutathione metabolism, phosphorylation, translation machinery, membrane-associated proteins, and vegetative storage proteins. Potential copper-interacting motifs were predicted and scored. Six candidate motifs, H-(X)5 -H, H-(X)7 -H, H-(X)12 -H, H-(X)6 -M, M-(X)7 -H, and H-(X)3 -C, are present in Cu-IMAC-isolated proteins with higher frequency than in the whole Arabidopsis proteome.  相似文献   

12.
To predict complex behavior in protein displacement systems of immobilized metal ion affinity chromatography (IMAC), numerical simulation of non-linear chromatography was developed and compared with the ideal solution of the model. The theoretical and experimental results demonstrate that the IMAC model can be successfully employed in predicting induced mobile phase modifier gradients and complex behavior in metal affinity displacement chromatography. The solute movement analysis is able to predict the displacement separation well characterized by the intersections of the operation line under the induced mobile phase modifier and effective displacer concentrations.  相似文献   

13.
Global analyses of protein phosphorylation require specific enrichment methods because of the typically low abundance of phosphoproteins. To date, immobilized metal ion affinity chromatography (IMAC) for phosphopeptides has shown great promise for large-scale studies, but has a reputation for poor specificity. We investigated the potential of IMAC in combination with capillary liquid chromatography coupled to tandem mass spectrometry for the identification of plasma membrane phosphoproteins of Arabidopsis. Without chemical modification of peptides, over 75% pure phosphopeptides were isolated from plasma membrane digests and detected and sequenced by mass spectrometry. We present a scheme for two-dimensional peptide separation using strong anion exchange chromatography prior to IMAC that both decreases the complexity of IMAC-purified phosphopeptides and yields a far greater coverage of monophosphorylated peptides. Among the identified sequences, six originated from different isoforms of the plasma membrane H(+)-ATPase and defined two previously unknown phosphorylation sites at the regulatory C terminus. The potential for large-scale identification of phosphorylation sites on plasma membrane proteins will have wide-ranging implications for research in signal transduction, cell-cell communication, and membrane transport processes.  相似文献   

14.
To further our knowledge of intracellular copper transport, we used a proteomics strategy to search for hepatic proteins with copper-binding ability. Hep G2 cytosolic and microsomal fractions were applied to a copper(II)-loaded immobilized metal-affinity chromatography (IMAC) column. Protein identification was performed with 2-D gel electrophoresis and mass spectrometry. We identified 48 cytosolic proteins and 19 microsomal proteins displaying copper-binding ability. These proteins are diverse in function. Fifty-two of the 67 proteins contain putative metal-binding domains. We have identified many components of the Hep G2 copper metalloproteome including a large number of proteins not previously known to bind copper.  相似文献   

15.
Studies carried out using engineered proteins clearly demonstrate that adsorption to derivatized surfaces involves multiple interactions between functional groups on the protein and complementary sites distributed on the surface. The fact that adsorption involves multipoint interactions has important implications for the design of separations processes and for the interpretation of heterogeneity in biological recognition phenomena. Increasing the density of surface metal sites (immobilized copper ions) is found to be functionally equivalent to increasing the number of metal-coordinating groups on the protein (histidines and deporotonated amines), m in that both processes increase the likelihood of simultaneous interactions between the protein and the surface. A consequence of multiple-site interactions is a significant in crease in protein binding affinity that depends on the arrangement of surface sites. A protein will show the highest affinity for arrangements of surface sites which best match its own pattern of functioal groups and will show lower affinity for less optimal arrangements, resulting in binding that is inherently heterogeneous. We have found that reversible protein adsorption in immobilized metal affinity chromatography (IMAC) is described by the Temikin model, which characterizes binding heterogeneity by a uniform distribution of binding energies over the population of surface binding sites. (c) 1995 John Wiley & Sons, Inc.  相似文献   

16.
The aim of this work was to test immobilized metal affinity chromatography (IMAC) for the purification of penicillin acylase. After evaluation of different metals, Cu2+ was selected. Different samples were tested: pure penicillin acylase, industrial clarified feedstock and crude extract. After comparing two eluents, NH4Cl and imidazole, it appeared that although both gave good results for recovery and activity, NH4Cl was a more selective eluent with a higher fold purification than imidazole (4.64 versus 2.04). Moreover, we shown that a multistep gradient of NH4Cl, greatly increased the degree of purification (12.36) compared with the one-step process as control (4.64). In addition, good recovery was obtained (97–100%).  相似文献   

17.
采用金属螯合亲和层析法,纯化了小鼠腹水来源的抗乙肝核心抗原单克隆抗体,对上样缓冲液的pH和离子强度、洗脱液种类和洗脱方式进行优化。结果表明,采用降低pH分步洗脱时,最佳上样缓冲液为pH8.0,20mmol/LPB+0.5mol/LNaCl,抗体在pH5.0被洗脱下来,抗体回收率80%,纯度85%。采用咪唑浓度梯度洗脱时,最佳的上样缓冲液为pH8.0,20mmol/LPB+5mmol/L咪唑,抗体纯度大于95%,回收率65%;在上样缓冲液中不添加NaCl而添加少量的咪唑,更有利于抗体分离。以上洗脱方式都能较好地保持mAb的生物学活性,为该抗体的应用提供了必要的实验基础。  相似文献   

18.
This work demonstrates that proper selection of a metal ion and chelating ligand enables recovery of a his(6)-tagged protein from canola (Brassica napus) extracts by immobilized metal affinity chromatography (IMAC). When using Co(2+) with iminodiacetate (IDA) as the chelating ligand, beta-glucuronidase-his(6) (GUSH6) can be purified from canola protein extract with almost homogeneous purity in a single chromatographic step. The discrimination with which metal ions bound native canola proteins followed the order Cu(2+) < Ni(2+) < Zn(2+) < Co(2+) in regard to elimination of proteins coeluted with the fusion protein. IDA- and nitrilotriacetate (NTA)-immobilized metal ions showed different binding patterns, whose cause is attributed to a more rigid binding orientation of the his(6) in forming a tridentate with Me(2+)-IDA than in forming a bidentate with Me(2+)-NTA. The more flexible binding allows for multisite interactions over the protein.  相似文献   

19.
Copper (Cu) is an essential micronutrient required for plant growth and development. However, excess Cu can inactivate and disturb protein structure as a result of unavoidable binding to proteins. To understand better the mechanisms involved in Cu toxicity and tolerance in plants, we developed a new immobilized metal affinity chromatography (IMAC) method for the separation and isolation of Cu-binding proteins extracted from roots of rice seedling exposed to excess Cu. In our method, IDA-Sepharose or EDDS-Sepharose column (referred as pre-chromatography) and Cu-IDA-Sepharose column (referred as Cu-IMAC) were connected in tandem. Namely, protein samples were pre-chromatographed with IDA-Sepharose column to removal metal ions, then protein solution was flowed into Cu-IMAC column for enriching Cu-binding proteins in vitro. Compared with the control (Cu-IMAC without any pre-chromatography), IDA-Sepharose pre-chromatography method markedly increased yield of the Cu-IMAC-binding proteins, and number of protein spots and the abundance of 40 protein spots on two-dimensional electrophoresis (2-DE) gels. Thirteen protein spots randomly selected from 2-DE gel and 11 proteins were identified using MALDI-TOF-TOF MS. These putative Cu-binding proteins included those involved in antioxidant defense, carbohydrate metabolism, nucleic acid metabolism, protein folding and stabilization, protein transport and cell wall synthesis. Ten proteins contained one or more of nine putative metal-binding motifs reported by Smith et al. (J Proteome Res 3:834–840, 2004) and seven proteins contained one or two of top six motifs reported by Kung et al. (Proteomics 6:2746–2758, 2006). Results demonstrated that more proteins specifically bound with Cu-IMAC could be enriched through removal of metal ions from samples by IDA-Sepharose pre-chromatography. Further studies are needed on metal-binding characteristics of these proteins in vivo and the relationship between Cu ions and protein biological activities to fully understand the mechanisms of Cu tolerance and toxicity in plants.  相似文献   

20.
To develop a convenient method to isolate lectins, we prepared an affinity gel by coupling plasma proteins with agarose beads under conditions where the pH did not exceed 7.5. The validity of the use of this affinity gel in combination with elution using a hapten saccharide was confirmed by isolation of concanavalin A from Jack bean meal. Successful application of the method was demonstrated by isolation of two novel vegetable lectins from udo (Aralia cordate) and wasabi (Wasabia japonica). The method would be useful to isolate new lectins from various sources including plant and animal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号