首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Kidney-cortex slices and the perfused livers of vitamin B(12)-deficient rats removed propionate from the incubation and perfusion media at 33 and 17% respectively of the rates found with tissues from rats receiving either a normal or a vitamin B(12)-supplemented diet. There was a corresponding fall in the rates of glucose synthesis from propionate in both tissues. 2. The addition of hydroxocobalamin or dimethylbenzimidazolylcobamide coenzyme to kidney-cortex slices from vitamin B(12)-deficient rats in vitro failed to restore the normal capacity for propionate metabolism. 3. Although the vitamin B(12)-deficient rat excretes measurable amounts of methylmalonate, no methylmalonate production could be detected (probably because of the low sensitivity of the method) when kidney-cortex slices or livers from deficient rats were incubated or perfused with propionate. 4. The addition of methylmalonate (5mm) to kidney-cortex slices from rats fed on a normal diet inhibited gluconeogenesis from propionate by 25%. 5. Methylmalonate formation is normally only a small fraction of the flux through methylmalonyl-CoA. This fraction increases in vitamin B(12)-deficient tissues (as shown by the urinary excretion of methylmalonate) presumably because the concentration of methylmalonyl-CoA rises as a result of low activity of methylmalonyl-CoA mutase (EC 5.4.99.2). Slow removal of methylmalonyl-CoA might depress propionate uptake owing to the reversibility of the steps leading to methylmalonyl-CoA formation.  相似文献   

2.
1. Glycerol kinase (EC 2.7.1.30) is shown to catalyse a non-equilibrium reaction in rat liver; and, as it is the first enzyme in the pathway metabolizing glycerol, its properties may be pertinent to the metabolic regulation of glycerol uptake and utilization by this tissue. 2. The properties of hepatic glycerol kinase were studied by using a radiochemical technique to measure the enzyme activity. When the concentration of ATP is low the activity of glycerol kinase is inhibited by high concentrations of glycerol; but when the concentration of ATP is high there is no inhibition and the double-reciprocal plot is linear, providing a K(m) for glycerol of 3.16x10(-6)m. Glycerol kinase is activated by high ATP concentrations provided that the concentration of the second substrate (glycerol) is high; at low concentrations of glycerol ATP does not activate the enzyme so that the double-reciprocal plot is linear, providing a K(m) for ATP of 5.8x10(-5)m. It is suggested that these kinetics may be explained by a model similar to that described by Ferdinand (1966) for phosphofructokinase. 3. Hepatic glycerol kinase is inhibited by ADP and AMP, and raising the Mg(2+) concentration increases the inhibition by these two compounds; this suggests that ADP-Mg(2+) and AMP-Mg(2+) complexes are the inhibitory species. The physiological significance of these inhibitions may be to prevent phosphorylation of glycerol when the hepatic ATP concentration is low. It is suggested that this inhibition may provide an approach to the problem of measurement of rates of lipolysis by glycerol release in tissues that contain glycerol kinase (e.g. liver, kidney, muscle, adipose tissue). 4. Hepatic glycerol kinase is inhibited by l-3-glycerophosphate competitively with respect to glycerol. The physiological significance of this inhibition may be that factors that change the intracellular concentration of l-3-glycerophosphate could change glycerol uptake by the tissue. Thus it is suggested that thyroxine treatment or feeding rats on a diet high in glycerol, which increase the activity of glycerophosphate oxidase in liver and kidney cortex respectively, lead to an increased glycerol uptake through a decrease in the concentration of glycerophosphate in these tissues. It is known that ethanol administration decreases glycerol uptake by liver, and this can be explained by the increased concentration of l-3-glycerophosphate causing inhibition of glycerol kinase.  相似文献   

3.
1. Analysis of transport of d-galactose was complicated by metabolism of the compound but appeared to have two components: a substrate-saturable component and a diffusion component. At low substrate concentration (<1mm) active transport was observed. Accumulation of galactose was largely independent of Na(+) concentration. The apparent K(m) for this component was 0.2mm. At substrate concentrations above 1mm the active transport system appeared saturated and further increases in substrate concentration resulted in a linear increase in the rate of galactose accumulation, but no concentration gradient was formed. 2. d-[1-(14)C]Galactose (2mm) was metabolized to (14)CO(2) by rat kidney-cortex slices incubated at 37 degrees C, at the rate of 68nmol/h per 100mg of tissue. 3. Intracellular components from such incubations were separated into a neutral fraction, the only major labelled component being galactose, and a phosphorylated fraction. 4. Phosphorylated metabolites found in galactose-incubated slices increased with increasing substrate concentration and achieved a limiting value of 0.42mm after 60min of incubation. 5. Galactose uptake was inhibited by anaerobiosis, dinitrophenol and phlorrhizin. 6. Methyl alpha-d-glucoside and d-glucose partially inhibited galactose uptake only at ratios of 100:1. 7. The presence of pyruvate did not decrease galactose metabolism although it did decrease production of (14)CO(2) from [1-(14)C]galactose. Gluconeogenesis occurred in the presence of pyruvate and (14)C from galactose was found in glucose. 8. Rat kidney-cortex slices metabolized 2mm-[1-(14)C]galactonate to (14)CO(2) at a rate of 20nmol/h per 100mg of tissue.  相似文献   

4.
1. The regulatory effects that adenine nucleotides are known to exert on enzymes of glycolysis and gluconeogenesis were demonstrated to operate in kidney-cortex slices and in the isolated perfused rat kidney by the addition of exogenous ATP, ADP and AMP to the incubation or perfusion media. 2. Both preparations rapidly converted added ATP into ADP and AMP, and ADP into AMP; added AMP was rapidly dephosphorylated. AMP formed from ATP was dephosphorylated at a lower rate than was added AMP, especially when the initial ATP concentration was high (10mm). Deamination of added AMP occurred more slowly than dephosphorylation of AMP. 3. Gluconeogenesis from lactate or propionate by rat kidney-cortex slices, and from lactate by the isolated perfused rat kidney, was inhibited by the addition of adenine nucleotides to the incubation or perfusion media. In contrast, oxygen consumption and the utilization of propionate or lactate by slices were not significantly affected by added ATP or AMP. 4. The extent and rapidity of onset of the inhibition of renal gluconeogenesis were proportional to the AMP concentration in the medium and the tissue, and were not due to the production of acid or P(i) or the formation of complexes with Mg(2+) ions. 5. Glucose uptake by kidney-cortex slices was stimulated 30-50% by added ATP, but the extra glucose removed was not oxidized to carbon dioxide and did not all appear as lactate. Glucose uptake, but not lactate production, by the isolated perfused kidney was also stimulated by the addition of ATP or AMP. 6. In the presence of either glucose or lactate, ATP and AMP greatly increased the concentrations of C(3) phosphorylated intermediates and fructose 1,6-diphosphate in the kidney. There was a simultaneous rise in the concentration of malate and fall in the concentration of alpha-oxoglutarate. 7. The effects of added adenine nucleotides on renal carbohydrate metabolism seem to be mainly due to an increased concentration of intracellular AMP, which inhibits fructose diphosphatase and deinhibits phosphofructokinase. This conclusion is supported by the accumulation of intermediates of the glycolytic pathway between fructose diphosphate and pyruvate. 8. ATP or ADP (10mm) added to the medium perfusing an isolated rat kidney temporarily increased the renal vascular resistance, greatly diminishing the flow rate of perfusion medium for a period of several minutes.  相似文献   

5.
  • 1.1. Administration of a carbohydrate-rich diet increased haemolymph glucose levels and glycogen concentration in hepatopancreas, mantle and muscle.
  • 2.2. Glycogen concentration in tissues decreases after 2 weeks of starvation and haemolymph glucose levels did not change significantly.
  • 3.3. However, starvation did not induce a decrease in the intrinsic synthetic capacity in tissues.
  • 4.4. Glycogen synthesis in tissues from animals fed with lettuce or a carbohydrate-rich diet, increases with increasing glucose concentration in the media.
  • 5.5. However, in mantle slices from snails adapted on a carbohydrate-rich diet, the glycogen synthetic capacity was lower than in slices from snails fed with lettuce.
  相似文献   

6.
Glycolysis from [6-(3)H]glucose and gluconeogenesis from [U-(14)C]glycerol were examined in isolated hepatocytes from fasted rats. A 5 mm bolus of glycerol inhibited phosphorylation of 40 mm glucose by 50% and glycolysis by more than 60%, and caused cellular ATP depletion and glycerol 3-phosphate accumulation. Gluconeogenesis from 5 mm glycerol was unaffected by the presence of 40 mm glucose. When nonsaturating concentrations of glycerol (< 200 microm) were maintained in the medium by infusion of glycerol, cellular ATP concentrations remained normal. The rate of uptake of infused glycerol was unaffected by 40 mm glucose, but carbohydrate synthesis from glycerol was inhibited 25%, a corresponding amount of glycerol being diverted to glycolytic products, whereas 10 mm glucose had no inhibitory effect on conversion of infused glycerol into carbohydrate. Glycerol infusion depressed glycolysis from 10 mm and 40 mm glucose by 15 and 25%, respectively; however, the overall rates of glycolysis were unchanged because of a concomitant increase in glycolysis from the infused glycerol. These studies show that exposure of hepatocytes to glucose and low quasi-steady-state concentrations of glycerol result in the simultaneous occurrence, at substantial rates, of glycolysis from glucose and gluconeogenesis from the added glycerol. We interpret our results as demonstrating that, in hepatocytes from normal rats, segments of the pathways of glycolysis from glucose and gluconeogenesis from glycerol are compartmentalized and that this segregation prevents substantial cross-over of phosphorylated intermediates from one pathway to the other. The competition between glucose and glycerol implies that glycolysis and phosphorylation of glycerol take place in the same cells, and that the occurrence of simultaneous glycolysis and gluconeogenesis may indicate channelling within the cytoplasm of individual hepatocytes.  相似文献   

7.
In starvation, glycerol is released from adipose tissue and serves as an important precursor for hepatic gluconeogenesis. By unknown sex-specific mechanisms, women suppress the endogenous glucose production better than men and respond to metabolic stress with higher plasma glycerol levels. Hepatic glycerol uptake is facilitated by aquaporin-9 (AQP9), a broad-selectivity neutral solute channel, and represents an insulin-regulated step in supplying gluconeogenesis with glycerol. In the present study, hepatic AQP9 abundance was increased 2.6-fold in starved male rats as assessed by immunoblotting and immunohistochemistry. By contrast, starvation had no significant effect on hepatic AQP9 expression in female rats. Coordinately, plasma glycerol levels remained unchanged with starvation in male rats, whereas it was increased in female rats. The different responses to starvation were paralleled by higher glycerol permeability in basolateral hepatocyte membranes from starved male rats compared with starved females. Ovariectomy led to a starvation-response pattern identical to that observed in male rats with increased hepatic AQP9 expression and unchanged plasma glycerol levels. In cultured hepatocytes, 17β-estradiol and the selective estrogen receptor α-agonist, propyl pyrazole triol, caused a decrease in AQP9 expression. Our results support that a sex-specific regulation of the hepatic glycerol channel AQP9 during starvation contributes to the higher plasma glycerol levels observed in women during fasting and possibly results in a lower cytosolic availability of glycerol. Furthermore, the sexual dimorphism in the hepatic handling of glycerol during starvation might be explained by 17β-estradiol preventing the starvation-induced increase in hepatic AQP9 abundance.  相似文献   

8.
Control of glycolysis and gluconeogenesis in rat kidney cortex slices   总被引:15,自引:12,他引:3       下载免费PDF全文
1. Glucose uptake or glucose formation has been studied in kidney cortex slices to investigate metabolic control of phosphofructokinase and fructose-diphosphatase activities. 2. Glucose uptake is increased and glucose formation is decreased by anoxia, cyanide or an uncoupling agent. Under these conditions the intracellular concentrations of glucose 6-phosphate and ATP decreased whereas that of fructose diphosphate either increased or remained constant, and the concentrations of AMP and ADP increased. 3. Glucose uptake was decreased, and glucose formation from glycerol or dihydroxyacetone was increased, by the presence of ketone bodies or fatty acids, or after starvation of the donor animal. Under these conditions, the concentrations of glucose 6-phosphate and citrate were increased, whereas those of fructose diphosphate and the adenine nucleotides were unchanged (see also Newsholme & Underwood, 1966). 4. It is concluded that anoxia and cell poisons increase glucose uptake and decrease gluconeogenesis by stimulating phosphofructokinase and inhibiting fructose diphosphatase, whereas ketone bodies, fatty acids or starvation increase gluconeogenesis and decrease glucose uptake through the citrate inhibition of phosphofructokinase.  相似文献   

9.
Inhibition of glucose uptake by acetoacetate and relief of this inhibition by insulin found previously in slices of rat mammary gland [Williamson, McKeown & Ilic (1975) Biochem. J. 150. 145-152] was confirmed in acini, which represent a more homogeneous population of cells. Glycerol (1mM) behaved like insulin (50 minuits/ml) in its ability to relieve the inhibition of glucose (5 mM) utilization caused by acetoacetate (2 mM) in acini. Both glycerol and insulin reversed the increase in [citrate] and the decrease in [glycerol 3-phosphate] and the [lactate]/[pyruvate] ratio in the presence of acetoacetate. Lipogenesis from 3H2O, [3-14C] acetoacetate, [1-14C]- and [6-14C]-glucose was stimulated, whereas 14CO2 formation from [3-14C]acetoacetate was decreased. Neither insulin nor glycerol relieved the acetoacetate inhibition of glucose uptake when lipogenesis was inhibited by 5-(tetradecyloxy)-2-furoic acid. From measurements of [3-14C]acetoacetate incorporation into lipid in the various situations it is suggested that a cytosolic pathway for acetoacetate utilization may exist in rat mammary gland. In the absence of acetoacetate, glycerol inhibited glucose utilization by 60% and increased both [glycerol 3-phosphate] and the [lactate/[pyruvate] ratio. Possible ways in which glycerol may mimic the effects of insulin are discussed.  相似文献   

10.
1. The effective volume of distribution of labelled glycerol was studied in conscious young adult rabbits provided with in-dwelling cannulae in the femoral blood vessels. This could be estimated after sampling arterial blood throughout an intravenous infusion of [2-3H]glycerol. The volume was calculated by using an algebraic method of graphical area analysis over 100 min of equilibration, and is symbolized 100V e or 100V e%. It occupied 34.1 +/- 2.2% (mean +/- S.E.M.; n = 13) of the body weight. The pool of endogenous glycerol occupying this space is distinguished in the present paper by calling it the transit pool, symbolized 100Me. 2. The median time of transit of glycerol through this pool was approx. 6 min in these conscious rabbits with normal (less than 0.2 mM) blood glycerol concentrations. 3. The metabolism of glycerol was also studied in rabbits while anaesthetized with urethane or while conscious. On average, half of the change in glycerol concentration that occurred on overnight starvation could be attributed to a decrease in clearance, whereas half was due to an increase in lipolysis. 4. The correlation between the reciprocal of glycerol concentration and clearance showed that in these animals about a quarter of the variation in concentration was due to an association with clearance. The remainder of the variation was attributed to variations in the rate of glycerol formation (lipolysis). 5. The regression of glycerol turnover rate on concentration implied that turnover was positive at zero glycerol concentration. This confirms previous findings from studies on other species. The explanation offered for this phenomenon is that the well-known physiological changes induced by feeding (decreased lipolysis, increased splanchnic blood flow) may independently decrease the glycerol concentration by both decreasing its release into the blood and simultaneously increasing its clearance.  相似文献   

11.
Previous studies with rabbit kidneys in our laboratories have used a plasma-like solution as the vehicle for the introduction and removal of glycerol. Other workers have usually employed high-potassium solutions. In this study we have assayed the function of rabbit renal cortical slices after incubation in a range of solutions, each of which contained 1 M glycerol, for 4 hr, followed by stepwise removal of the cryoprotectant. The functions measured were endogenous oxygen consumption, p-aminohippurate uptake, and the ability of the slices to accumulate potassium. Exposure to glycerol produced a considerable reduction of slice function, but, in the presence of glycerol, elevation of the potassium concentration was beneficial, whereas high concentrations of magnesium were detrimental. The optimum potassium concentration was 70-100 mM. Replacement of chloride by a range of anions of higher molecular weight was either without benefit (glycerophosphate) or detrimental (sulfate, citrate, and gluconate). Elevation of total osmolality from 300 to 400 mosmolal with glucose, mannitol, glycerophosphate, or Pipes reduced slice function, but when the same osmolality was achieved by raising the concentration of all the components of the solution in the same ratio, there was no significant loss of function. There was a weak optimum pH at ca. 7.0. These experiments led to the formulation of a bicarbonate-buffered perfusate containing 80 mM potassium and 17.5 g Haemaccel per liter, having a pH of 7.0 with 5% CO2 at 10 degrees C, and an osmolality of 400 mosmol/kg. This solution was used to preserve rabbit kidneys for 20 hr at 10 degrees C, by continuous perfusion, and was compared with our previous Haemaccel perfusate, HP5, which contained 4 mM K+, 111 mM mannitol, and had a pH of 7.4. The two solutions were equally effective.  相似文献   

12.
Glycerol and dihydroxyacetone are metabolized by rabbit kidney-cortex tubules, isolated by collagenase treatment. Half-maximal concentrations of both substrates were determined with regard to uptake rates and product formations. Maximal uptake rates were 643 and 329 mumol/h per g of protein for dihydroxyacetone and glycerol respectively. Glucose and lactate were found as major metabolic products. Glycerol kinase, the enzyme catalysing the first step in renal glycerol and dihydroxyacetone metabolism, was measured radiochemically as described by Newsholme, Robinson & Taylor [(1967) Biochim, Biophys. Acta 132, 338-346] and adapted for studies of the localization of this enzyme along the different structures of rabbit nephron. The results show that glycerol kinase is located exclusively in the proximal segments, i.e. the proximal convoluted tubules and the pars recta, but is negligible in the other structures studied. The activities were close to the maximal dihydroxyacetone uptake rates measured in tubule suspensions.  相似文献   

13.
Triglyceride synthesis in mammalian tissues requires glycerol 3-phosphate as the source of triglyceride glycerol. In this study the relative contribution of glyceroneogenesis and glycolysis to triglyceride glycerol synthesis was quantified in vivo in adipose tissue, skeletal muscle, and liver of the rat in response to a chow diet (controls), 48-h fast, and lipogenic (high sucrose) diet. The rate of glyceroneogenesis was quantified using the tritium ([(3)H(2)]O) labeling of body water, and the contribution of glucose, via glycolysis, was determined using a [U-(14)C]glucose tracer. In epididymal and mesenteric adipose tissue of control rats, glyceroneogenesis accounted for approximately 90% of triglyceride glycerol synthesis. Fasting for 48 h did not alter glyceroneogenesis in adipose tissue, whereas the contribution of glucose was negligible. In response to sucrose feeding, the synthesis of triglyceride glycerol via both glyceroneogenesis and glycolysis nearly doubled (versus controls); however, glyceroneogenesis remained quantitatively higher as compared with the contribution of glucose. Enhancement of triglyceride-fatty acid cycling by epinephrine infusion resulted in a higher rate of glyceroneogenesis in adipose tissue, as compared with controls, whereas the contribution of glucose via glycolysis was not measurable. Glyceroneogenesis provided the majority of triglyceride glycerol in the gastrocnemius and soleus. In the liver the fractional contribution of glyceroneogenesis remained constant (approximately 60%) under all conditions and was higher than that of glucose. Thus, glyceroneogenesis, in contrast to glucose, via glycolysis, is quantitatively the predominant source of triglyceride glycerol in adipose tissue, skeletal muscle, and liver of the rat during fasting and high sucrose feeding.  相似文献   

14.
Gluconeogenesis in the kidney cortex. Effects of d-malate and amino-oxyacetate   总被引:15,自引:13,他引:2  
1. Rat kidney-cortex slices incubated with d-malate alone formed very little glucose. d-Malate, however, augmented gluconeogenesis from l-lactate and inhibited gluconeogenesis from pyruvate and l-malate. 2. d-Malate had little effect on the rate of the tricarboxylic acid cycle with or without other substrates added. 3. d-Malate inhibited the activity of the l-malate dehydrogenase in a high-speed-supernatant fraction from kidney cortex. 4. It was concluded that d-malate inhibited either the operation of the cytoplasmic l-malate dehydrogenase or malate outflow from the mitochondria in the intact kidney-cortex cell. This supports the hypothesis of Lardy, Paetkau & Walter (1965) and Krebs, Gascoyne & Notton (1967) on the role of malate as carrier for carbon and reducing equivalents in gluconeogenesis. 5. Gluconeogenesis from l-lactate in kidney-cortex slices was strongly inhibited by a low concentration (0.1mm) of amino-oxyacetate, whereas glucose formation from pyruvate, malate, aspartate and several other compounds was only slightly affected. 6. High concentrations of l-aspartate largely reversed the inhibition of gluconeogenesis from l-lactate caused by amino-oxyacetate. 7. Amino-oxyacetate inhibited strongly the glutamate-oxaloacetate transaminase in the 30000g supernatant fraction of a kidney-cortex homogenate. The presence of l-aspartate decreased the inhibition of the transaminase by amino-oxyacetate. 8. Detritiation of l-[2-(3)H]aspartate was inhibited by 90% during an incubation of kidney-cortex slices with l-lactate and amino-oxyacetate. 9. Low concentrations (10mum) of artificial electron acceptors such as Methylene Blue and phenazine methosulphate abolished most of the inhibition of gluconeogenesis from l-lactate by amino-oxyacetate. This is interpreted as an activation of net malate outflow from the mitochondria by-passing the inhibited transfer of oxaloacetate. 10. These findings support the concept that transamination to aspartate is involved in the transfer of oxaloacetate from mitochondria to cytosol required in gluconeogenesis from l-lactate.  相似文献   

15.
Carbohydrate metabolism of the perfused rat liver   总被引:17,自引:16,他引:1  
1. The rates of gluconeogenesis from most substrates tested in the perfused livers of well-fed rats were about half of those obtained in the livers of starved rats. There was no difference for glycerol. 2. A diet low in carbohydrate increased the rates of gluconeogenesis from some substrates but not from all. In general the effects of a low-carbohydrate diet on rat liver are less marked than those on rat kidney cortex. 3. Glycogen was deposited in the livers of starved rats when the perfusion medium contained about 10mm-glucose. The shedding of glucose from the glycogen stores by the well-fed liver was greatly diminished by 10mm-glucose and stopped by 13.3mm-glucose. Livers of well-fed rats that were depleted of their glycogen stores by treatment with phlorrhizin and glucagon synthesized glycogen from glucose. 4. When two gluconeogenic substrates were added to the perfusion medium additive effects occurred only when glycerol was one of the substrates. Lactate and glycerol gave more than additive effects owing to an increased rate of glucose formation from glycerol. 5. Pyruvate also accelerated the conversion of glycerol into glucose, and the accelerating effect of lactate can be attributed to a rapid formation of pyruvate from lactate. 6. Butyrate and oleate at 2mm, which alone are not gluconeogenic, increased the rate of gluconeogenesis from lactate. 7. The acceleration of gluconeogenesis from lactate by glucagon was also found when gluconeogenesis from lactate was stimulated by butyrate and oleate. This finding is not compatible with the view that the primary action of glucagon in promoting gluconeogenesis is an acceleration of lipolysis. 8. The rate of gluconeogenesis from pyruvate at 10mm was only 70% of that at 5mm. This ;inhibition' was abolished by oleate or glucagon.  相似文献   

16.
1. Flow of carbon atoms from glucose and glycogen glucose to glyceride glycerol, glyceride fatty acids and glycerol was calculated in the perfused rat heart and incubated epididymal adipose tissue from the incorporation of (14)C from [U-(14)C]-glucose (into glyceride glycerol, glyceride fatty acids and glycerol in the medium), and from measurements of the specific activity of l-glycerol 3-phosphate, and the effects of insulin, adrenaline and alloxan-diabetes were studied. Measurements were also made of the uptake of glucose and the outputs of lactate, pyruvate and glycerol. 2. New methods are described for the measurement of radioactivity in small amounts of metabolites (glycerol, glucose 6-phosphate and fructose 6-phosphate and l-glycerol 3-phosphate) in which use has been made of alterations in charge induced by enzymic conversions to effect resolution by ion-exchange chromatography. 3. In hearts the specific activity of l-glycerol 3-phosphate was less than that of glucose in the medium but similar to that of lactate released during perfusion. Because repeated measurements of the specific activity of l-glycerol 3-phosphate was impracticable, the specific activity of lactate has been used as an indirect measurement of glycerol phosphate specific activity. 4. In fat pads, specific activity of lactate was the same as that of glucose in the medium and thus the specific activity of l-glycerol 3-phosphate was taken to be the same as that of medium glucose. 5. In hearts from alloxan-diabetic rats, despite decreased glucose uptake and l-glycerol 3-phosphate concentration, flow of carbon atoms through l-glycerol 3-phosphate to glyceride glycerol was increased about threefold. 6. In fat pads, flow of carbon atoms through l-glycerol 3-phosphate to glyceride glycerol was increased by insulin (twofold), by adrenaline in the presence of insulin (fivefold) and by diabetes in pads incubated with insulin (1.5-fold). These increases could not be correlated either with increases in glucose uptake, which was unchanged by adrenaline and decreased in diabetes, or with the concentration of l-glycerol 3-phosphate, which was decreased by adrenaline and unchanged in diabetes. 7. These results are discussed in relation to the control of glyceride synthesis in heart and adipose tissue and to the regulation of glyceride fatty acid oxidation in the perfused rat heart.  相似文献   

17.
1. In pancreatic islets, a rise in glucose concentration is known to increase the ratio between D-[6-14C]glucose oxidation and D-[5-3H]glucose utilization. The opposite situation was found to prevail in parotid cells. 2. In rat pancreatic islets, D-glucose caused a concentration-related stimulation of 3H2O production from [2-3H]glycerol, but failed to affect 3H2O production from [1(3)-3H]glycerol or 14CO2 production from [U-14C]glycerol. At the low concentration used in most of these experiments (i.e. 1.0 mM), glycerol failed to affect D-[U-14C]glucose oxidation. 3. These findings suggest that the preferential stimulation by D-glucose of mitochondrial oxidative events in pancreatic islets represents an unusual situation in secretory cells and involves an accelerated circulation in the glycerol phosphate shuttle.  相似文献   

18.
Summary Seven mutant strains defective for utilization of glycerol, glyceraldehyde or dihydroxyacetone were isolated. One strain was deficient for NAD-linked glycerol-3-phosphate dehydrogenase, two for glycerol kinase, and four had no detected enzymatic deficiency, although one of the latter strains was deficient in glycerol uptake. Glycerol uptake was increased by incubation in glycerol, glycerol-3-phosphate, erythritol, and propanediol, and was protein-mediated below 0.14 mM glycerol, but at higher concentrations free diffusion predominated. Glycerol uptake was decreased by cycloheximide and was more sensitive to sodium azide than to iodoacetate.  相似文献   

19.
The effects of feeding with a histidine-excess diet and subsequent starvation on liver and muscle glycogen, and on serum glucose were investigated in young and adult rats.

Feeding with a histidine-excess diet resulted in the accumulation of liver glycogen in both young and adult rats. The hepatic glycogen continued to decrease during starvation, and the liver became almost totally depleted of glycogen after starvation for 48 hr. Glycogen in the liver of young rats starved for 24 hr after previous feeding with a histidine-excess diet was significantly higher than that of young rats starved for 24 hr after previous feeding with a basal diet.

Muscle glycogen after feeding and subsequent starvation was not affected by the types of diets fed previously, muscle glycogen during starvation showing a slight decrease in young rats and a slight increase in adult rats.

Feeding with a histidine-excess diet caused a significant decrease of serum glucose in young rats, but not in adult rats. Serum glucose in young rats was markedly reduced by starvation after previous feeding with a basal diet, but not after previous feeding with a histidine-excess diet. In adult rats, there were no changes in serum glucose between rats starved after feeding with either a basal diet or a histidine-excess diet, and serum glucose was decreased slightly by starvation after feeding with the test diets.

The overall results indicate that the maintenance of serum glucose in young rate even during starvation after previous feeding with a histidine-excess diet might be partially concerned with the export of glucose from the accumulated glycogen in the liver due to the diet.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号