首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Stabilization of the MDM2 oncoprotein by mutant p53   总被引:3,自引:0,他引:3  
MDM2 is a short-lived protein that regulates p53 degradation. We report here that transient coexpression of MDM2 and several p53 hotspot mutants resulted in stabilization and increased expression of MDM2. Ectopic expression of the mutant p53(175H) allele by recombinant adenovirus infection or stable transfection also stabilized endogenous MDM2 in p53-null cells. A panel of human tumor cell lines expressing different endogenous mutant p53 alleles also contained stabilized nuclear MDM2 at elevated levels when compared with p53-null cells. MDM2 was present in complexes with mutant p53 in tumor cells, and stabilization of MDM2 required direct binding to mutant p53. These results reveal a novel property of mutant p53 and a unique feature of tumors with p53 missense mutations. Accumulation of stable MDM2 may contribute to tumorigenesis through its p53-independent transforming functions.  相似文献   

3.
The p53 tumor suppressor is regulated by the MDM2 oncoprotein through a negative feedback mechanism. MDM2 promotes the ubiquitination and proteasome-dependent degradation of p53, possibly by acting as a ubiquitin ligase. In cervical cancer cells containing high-risk human papillomaviruses (HPV), p53 is also targeted for degradation by the HPV E6 oncoprotein in combination with the cellular E6-AP ubiquitin ligase. In this report, we describe the identification of efficient antisense oligonucleotides against human E6-AP. The roles of MDM2 and E6-AP in p53 regulation were investigated using a novel E6-AP antisense oligonucleotide and a previously characterized MDM2 antisense oligonucleotide. In HPV16-positive and HPV-18 positive cervical cancer cells, inhibition of E6-AP, but not MDM2, expression results in significant induction of p53. In HPV-negative tumor cells, p53 is activated by inhibition of MDM2 but not E6-AP. Furthermore, treatment with both E6-AP and MDM2 antisense oligonucleotides in HPV-positive cells does not lead to further induction of p53 over inhibition of E6-AP alone. Therefore, E6-AP-mediated degradation is dominant over MDM2 in cervical cancer cells but does not have a significant role in HPV-negative cells.  相似文献   

4.
5.
6.
7.
8.
9.
The p53 tumor suppressor protein is a major regulator of cell growth arrest and apoptosis in response to DNA damage. Both p53 function and stability are tightly controlled by Mdm2, which binds to the p53 N-terminus and targets p53 for ubiquitin-mediated proteolysis. Previous studies suggest that adrenalectomy-induced neuronal apoptosis is p53-dependent. Here we demonstrate both nuclear accumulation and functional activation of p53 protein in apoptotic hippocampal neurons from adrenalectomized rats. Increased p53 expression occurred despite the accumulation of its negative regulator, Mdm2, and the formation of p53-Mdm2 complexes. The persistence of p53 expression was explained by a striking decrease in free ubiquitin in p53-positive neurons. The addition of exogenous ubiquitin to p53-Mdm2 complexes from apoptotic neurons restored p53 degradation. These findings demonstrate a novel mechanism of p53 stabilization mediated by decreased ubiquitin levels. Regulation of free ubiquitin may therefore be an effective way to modulate p53-dependent apoptosis in certain cell types.  相似文献   

10.
11.
12.
13.
p53具有抑制肿瘤细胞增殖的作用,但是细胞内p53蛋白的堆积反而加速细胞衰老或凋亡,因此对p53进行严格的调控显得格外重要.泛素化、磷酸化和乙酰化是p53蛋白最主要的几种修饰形式,但近来研究表明泛素化对p53调控发挥着中心作用.MDM2是主要的负调节因子,其具有泛素连接酶的活性,早先的研究认为MDM2的作用主要是特异性结合p53并介导其在蛋白酶作用下降解,但近来的研究发现MDM2还可以介导p53的核-浆交换,这种现象在DNA损伤时尤为明显.推测MDM2介导p53的泛素化在体内可能发挥着多种调控功能.  相似文献   

14.
The tumor suppressor p53 is activated in response to many types of cellular and environmental insults via mechanisms involving post-translational modification. Here we demonstrate that, unlike phosphorylation, p53 invariably undergoes acetylation in cells exposed to a variety of stress-inducing agents including hypoxia, anti-metabolites, nuclear export inhibitor and actinomycin D treatment. In vivo, p53 acetylation is mediated by the p300 and CBP acetyltransferases. Overexpression of either p300 or CBP, but not an acetyltransferase-deficient mutant, efficiently induces specific p53 acetylation. In contrast, MDM2, a negative regulator of p53, actively suppresses p300/CBP-mediated p53 acetylation in vivo and in vitro. This inhibitory activity of MDM2 on p53 acetylation is in turn abrogated by tumor suppressor p19(ARF), indicating that regulation of acetylation is a central target of the p53-MDM2-p19(ARF) feedback loop. Functionally, inhibition of deacetylation promotes p53 stability, suggesting that acetylation plays a positive role in the accumulation of p53 protein in stress response. Our results provide evidence that p300/CBP-mediated acetylation may be a universal and critical modification for p53 function.  相似文献   

15.
Inactivation of p53 is present in almost every tumor, and hence, p53-reactivation strategies are an important aspect of cancer therapy. Common mechanisms for p53 loss in cancer include expression of p53-negative regulators such as MDM2, which mediate the degradation of wildtype p53 (p53α), and inactivating mutations in the TP53 gene. Currently, approaches to overcome p53 deficiency in these cancers are limited. Here, using non–small cell lung cancer and glioblastoma multiforme cell line models, we show that two alternatively spliced, functional truncated isoforms of p53 (p53β and p53γ, comprising exons 1 to 9β or 9γ, respectively) and that lack the C-terminal MDM2-binding domain have markedly reduced susceptibility to MDM2-mediated degradation but are highly susceptible to nonsense-mediated decay (NMD), a regulator of aberrant mRNA stability. In cancer cells harboring MDM2 overexpression or TP53 mutations downstream of exon 9, NMD inhibition markedly upregulates p53β and p53γ and restores activation of the p53 pathway. Consistent with p53 pathway activation, NMD inhibition induces tumor suppressive activities such as apoptosis, reduced cell viability, and enhanced tumor radiosensitivity, in a relatively p53-dependent manner. In addition, NMD inhibition also inhibits tumor growth in a MDM2-overexpressing xenograft tumor model. These results identify NMD inhibition as a novel therapeutic strategy for restoration of p53 function in p53-deficient tumors bearing MDM2 overexpression or p53 mutations downstream of exon 9, subgroups that comprise approximately 6% of all cancers.  相似文献   

16.
17.
Cyclooxygenase-2 (COX-2) content is increased in many types of tumor cells. We have investigated the mechanism by which resveratrol, a stilbene that is pro-apoptotic in many tumor cell lines, causes apoptosis in human head and neck squamous cell carcinoma UMSCC-22B cells by a mechanism involving cellular COX-2. UMSCC-22B cells treated with resveratrol for 24 h, with or without selected inhibitors, were examined: (1) for the presence of nuclear activated ERK1/2, p53 and COX-2, (2) for evidence of apoptosis, and (3) by chromatin immunoprecipitation to demonstrate p53 binding to the p21 promoter. Stilbene-induced apoptosis was concentration-dependent, and associated with ERK1/2 activation, serine-15 p53 phosphorylation and nuclear accumulation of these proteins. These effects were blocked by inhibition of either ERK1/2 or p53 activation. Resveratrol also caused p53 binding to the p21 promoter and increased abundance of COX-2 protein in UMSCC-22B cell nuclei. Resveratrol-induced nuclear COX-2 accumulation was dependent upon ERK1/2 activation, but not p53 activation. Activation of p53 and p53-dependent apoptosis were blocked by the COX-2 inhibitor, NS398, and by transfection of cells with COX-2-siRNA. In UMSCC-22B cells, resveratrol-induced apoptosis and induction of nuclear COX-2 accumulation share dependence on the ERK1/2 signal transduction pathway. Resveratrol-inducible nuclear accumulation of COX-2 is essential for p53 activation and p53-dependent apoptosis in these cancer cells.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号