首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Horner SM  DiMaio D 《Journal of virology》2007,81(12):6254-6264
Viral DNA binding proteins that direct nucleases or other protein domains to viral DNA in lytically or latently infected cells may provide a novel approach to modulate viral gene expression or replication. Cervical carcinogenesis is initiated by high-risk human papillomavirus (HPV) infection, and viral DNA persists in the cancer cells. To test whether a DNA binding domain of a papillomavirus protein can direct a nuclease domain to cleave HPV DNA in cervical cancer cells, we fused the DNA binding domain of the bovine papillomavirus type 1 (BPV1) E2 protein to the catalytic domain of the FokI restriction endonuclease, generating a BPV1 E2-FokI chimeric nuclease (BEF). BEF introduced DNA double-strand breaks on both sides of an E2 binding site in vitro, whereas DNA binding or catalytic mutants of BEF did not. After expression of BEF in HeLa cervical carcinoma cells, we detected cleavage at E2 binding sites in the integrated HPV18 DNA in these cells and also at an E2 binding site in cellular DNA. BEF-expressing cells underwent senescence, which required the DNA binding activity of BEF, but not its nuclease activity. These results demonstrate that DNA binding domains of viral proteins can target effector molecules to cognate binding sites in virally infected cells.  相似文献   

2.
Papillomavirus DNA replication requires the viral trans-acting factors E1 and E2 in addition to the host cell's general replication machinery. The origins of DNA replication in bovine and human papillomavirus genomes have been localized to a specific part of the upstream regulatory region (URR) which includes recognition sites for E1 and E2 proteins. To fine map cis-acting elements influencing human papillomavirus type 11 (HPV-11) DNA replication and to determine the relative contributions of such sites, we engineered consecutive linker substitution mutations across a region of 158 bp in the HPV-11 origin and tested mutant origins for replication function in a cell-based transient replication assay. Our results both confirm and extend the findings of others. E2 binding sites are the major cis components of HPV-11 DNA replication, and there is evidence for synergy between these sites. Differential capacity of the three E2 binding sites within the origin to affect replication may be attributed, at least in part, to context. At least one E2 binding site is essential for replication. The imperfect AT-rich palindrome of the E1 helicase binding site is not essential since replication occurs even in the absence of this sequence. However, replication is enhanced by the presence of the palindromic sequence in the HPV-11 origin. Sequence components adjacent to the E1 and E2 binding sites, comprising AT-rich and purine-rich elements and the consensus TATA box sequence, probably contribute to the overall efficiency of replication, though they are nonessential. None of the other cis elements of the HPV-11 origin region analyzed seems to influence replication significantly in the system described. The HPV-11 origin of DNA replication therefore differs from those of the other papovaviruses, simian virus 40 and polyomavirus, inasmuch as an intact helicase binding site and adjacent AT-rich components, while influential, are not absolutely essential.  相似文献   

3.
The consensus binding site for the muscle regulatory factor myogenin was determined from an unbiased set of degenerate oligonucleotides using CASTing (cyclic amplification and selection of targets). Stretches of totally random sequence flanked by polymerase chain reaction priming sequences were mixed with purified myogenin or myotube nuclear extracts, DNA-protein complexes were immunoprecipitated with an antimyogenin antibody, and the DNA was amplified by polymerase chain reaction. Specific binding was obtained after four to six cycles of CASTing. The population of selected binding sites was then cloned, and a consensus was determined from sequencing individual isolates. Starting from a pool with 14 random bases, purified myogenin yielded a consensus binding site of AACAG[T/C]TGTT, while nuclear extracts retrieved the sequence TTGCACCTGTTNNTT from a pool containing 35 random bases. The latter sequence is consistent with that predicted from combining an E12/E47 half-site (N[not T]CAC) with the purified myogenin half-site ([T/C] TGTT). The presence of paired E boxes in many of the sequences isolated following CASTing with nuclear extracts proves that myogenin can bind cooperatively with other E-box-binding factors.  相似文献   

4.
5.
Saikia P  Fensterl V  Sen GC 《Journal of virology》2010,84(24):13036-13039
The interferon (IFN)-induced protein P56 inhibits human papillomavirus (HPV) DNA replication by binding to HPV E1, which has several distinct functions in initiating viral DNA replication. Here, we determined that P56 inhibited HPV type 18 (HPV18) E1's DNA helicase activity, E2 binding, and HPV Ori sequence-specific DNA binding but not nonspecific DNA binding. We observed that deletion of a single amino acid, F399, produced an E1 mutant that could not bind P56. This E1 mutant retained its ability to support Ori DNA replication, but this activity was not inhibited by IFN, demonstrating that P56 is the principal executor of the anti-HPV action of IFN.  相似文献   

6.
7.
8.
9.
M Remm  R Brain    J R Jenkins 《Nucleic acids research》1992,20(22):6015-6021
Human papillomaviruses (HPV-s) have been shown to possess transforming and immortalizing activity for many different, mainly keratinocyte cell lines and they have been detected in 90% of anogenital cancer tissues, which suggests a causative role in the induction of anogenital and other tumours. We have exploited a quantitative assay to identify and characterize the origin of replication of the human papillomavirus type 18 (HPV-18), one of the most prevalent types in the high-risk HPV group. Replication of HPV origin fragments was studied transiently by cotransfection with a protein expression vector providing replication proteins E1 and E2. We have localized the HPV-18 origin to nucleotides 7767-119. This region contains three E2 binding sites and an essential A/T rich DNA region (nucleotides 9-35) that is partly homologous to the E1 binding site found in bovine papillomavirus type 1 (BPV-1) genome. At least one of the three E2 binding sites was absolutely required for origin function; addition of other E2 sites had cooperative stimulating effect. This is the first quantitative analysis of the E2 binding sites for papillomavirus replication.  相似文献   

10.
11.
12.
‘Indirect readout’ refers to the proposal that proteins can recognize the intrinsic three-dimensional shape or flexibility of a DNA binding sequence apart from direct protein contact with DNA base pairs. The differing affinities of human papillomavirus (HPV) E2 proteins for different E2 binding sites have been proposed to reflect indirect readout. DNA bending has been observed in X-ray structures of E2 protein–DNA complexes. X-ray structures of three different E2 DNA binding sites revealed differences in intrinsic curvature. DNA sites with intrinsic curvature in the direction of protein-induced bending were bound more tightly by E2 proteins, supporting the indirect readout model. We now report solution measurements of intrinsic DNA curvature for three E2 binding sites using a sensitive electrophoretic phasing assay. Measured E2 site curvature agrees well the predictions of a dinucleotide model and supports an indirect readout hypothesis for DNA recognition by HPV E2.  相似文献   

13.
Park RB  Androphy EJ 《Journal of virology》2002,76(22):11359-11364
Papillomaviruses possess small DNA genomes that encode five early (E) proteins. Transient DNA replication requires activities of the E1 and E2 proteins and a DNA segment containing their binding sites. The E6 and E7 proteins of cancer-associated human papillomavirus (HPV) transform cells in culture. Recent reports have shown that E6 and E7 are necessary for episomal maintenance of HPV in primary keratinocytes. The functions of E6 necessary for viral replication have not been determined, and to address this question we used a recently developed transfection system based on HPV31. To utilize a series of HPV16 E6 mutations, HPV31 E6 was replaced by its HPV16 counterpart. This chimeric genome was competent for both transient and stable replication in keratinocytes. Four HPV16 E6 mutations that do not stimulate p53 degradation were unable to support stable viral replication, suggesting this activity may be necessary for episomal maintenance. E7 has also been shown to be essential for episomal maintenance of the HPV31 genome. A point mutation in the Rb binding motif of HPV E7 has been reported to render HPV31 unable to stably replicate. Interestingly, HPV31 genomes harboring two of the three p53 degradation-defective E6 mutations combined with this E7 mutation were maintained as replicating episomes. These findings imply that the balance between E6 and E7 functions in infected cells is critical for episomal maintenance of high-risk HPV genomes. This model will be useful to dissect the activities of E6 and E7 necessary for viral DNA replication.  相似文献   

14.
Human papillomavirus (HPV) E2 proteins regulate viral replication by binding to sites in the upstream regulatory region (URR) and by complex formation with the E1 origin recognition protein. In the genital HPV types, the distribution and location of four E2 binding sites (BS1 to BS4) which flank a single E1 binding site are highly conserved. We have examined the roles of these four E2 sites in the viral life cycle of HPV type 31 (HPV31) by using recently developed methods for the biosynthesis of papillomaviruses from transfected DNA templates (M. G. Frattini et al., Proc. Natl. Acad. Sci. USA 93:3062–3067, 1996). In transient assays, no single site was found to be necessary for replication, and mutation of the early promoter-proximal site (BS4) led to a fourfold increase in replication. Cotransfection of the HPV31 wild-type (HPV-wt) and mutant genomes with expression vectors revealed that E1 stimulated replication of HPV31-wt as well as the HPV31-BS1, -BS2, and -BS3 mutants. In contrast, increased expression of E2 decreased replication of these genomes. Replication of the HPV31-BS4 mutant genome was not further increased by cotransfection of E1 expression vectors but was stimulated by E2 coexpression. In stably transfected normal human keratinocytes, mutation of either BS1, BS3, or BS4 resulted in integration of viral genomes into host chromosomes. In contrast, mutation of BS2 had no effect on stable maintenance of episomes or copy number. Following growth of stably transfected lines in organotypic raft cultures, the differentiation-dependent induction of late gene expression and amplification of viral DNA of the BS2 mutant was found to be similar to that of HPV31-wt. We were unable to find a role for BS2 in our assays for viral functions. We conclude that at least three of the four E2 binding sites in the URRs of HPVs are essential for the productive viral life cycle. The specific arrangement of E2 binding sites within the URR appears to be more important for viral replication than merely the number of sites.  相似文献   

15.
16.
The viral replication factors E1 and E2 of papillomaviruses are necessary and sufficient to replicate plasmids containing the minimal origin of DNA replication in transient assays. Under physiological conditions, the upstream regulatory region (URR) governs expression of the early viral genes. To determine the effect of URR elements on E1 and E2 expression specifically, and on the regulation of DNA replication during the various phases of the viral life cycle, we carried out a systematic replication study with entire genomes of human papillomavirus type 31 (HPV31), a high-risk oncogenic type. We constructed a series of URR deletions, spacer replacements, and point mutations to analyze the role of the keratinocyte enhancer (KE) element, the auxiliary enhancer (AE) domain, and the L1-proximal end of the URR (5′-URR domain) in DNA replication during establishment, maintenance, and vegetative viral DNA amplification. Using transient and stable replication assays, we demonstrate that the KE and AE are necessary for efficient E1 and E2 gene expression and that the KE can also directly modulate viral replication. KE-mediated activation of replication is dependent on the position and orientation of the element. Mutation of either one of the four Ap1 sites, the single Sp1 site, or the binding site for the uncharacterized footprint factor 1 reduced replication efficiency through decreased expression of E1 and E2. Furthermore, the 5′-URR domain and the Oct1 DNA binding site are dispensable for viral replication, since such HPV31 mutants are able to replicate efficiently in a transient assay, maintain a stable copy number over several cell generations, and amplify viral DNA under vegetative conditions. Interestingly, deletion of the 5′-URR domain leads to increased transient and stable replication levels. These findings suggest that elements in the HPV31 URR outside the minimal origin modulate viral replication through both direct and indirect mechanisms.  相似文献   

17.
18.
19.
20.
Human papillomaviruses (HPVS) that infect the genital tract can be divided into two groups: high-risk HPV types, such as HPV 16 and HPV 18, are associated with cancer, low-risk HPV types, such as HPV 6, are associated with benign warts. In both high-risk and low-risk HPV types, the papillomavirus E2 protein binds to four sites within the viral long control region (LCR) and regulates viral gene expression. Here, we present the crystal structure of the minimal DNA-binding domain (DBD) from the HPV 6 E2 protein. We show that the HPV 6 E2 DBD is structurally more similar to the HPV 18 and bovine papillomavirus type 1 (BPV1) E2 proteins than it is to the HPV 16 E2 protein. Using gel retardation assays, we show that the hierarchy of E2 sites within the HPV 16 and HPV 6 LCRs are different. However, despite these differences in structure and site preference, both the HPV 16 and 6 E2 DBDs recognise an extended version of the consensus E2 binding site derived from studies of the BPV1 E2 protein. In both cases, the preferred binding site is 5'AACCGN(4)CGGTT3', where the additional flanking base-pairs are in bold and N(4) represents a four base-pair central spacer. Both of these HPV proteins bind preferentially to E2 sites that contain an A:T-rich central spacer. We show that the preference for an A:T-rich central spacer is due, at least in part, to the need to adopt a DNA conformation that facilitates protein contacts with the flanking base-pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号