首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A methyltransferase which utilizes 3-hydroxyanthranilic acid (HAA) as a substrate was identified in detergent-treated extracts of the bacterium Streptomyces antibioticus. The enzyme catalyzes the transfer of methyl groups from [14C]S-adenosylmethionine to HAA, but does not catalyze the methylation of 3-hydroxy-DL-kynurenine. Enzyme, substrate, time, and pH dependencies for the methyl transfer reaction were examined. Reaction products obtained from scaled-up reaction mixtures were fractionated by chromatography on Dowex 1, and the Dowex 1 fractions were examined by paper and thin-layer chromatography. One Dowex fraction was shown to contain a radioactive product with the chromatographic properties of 4-methyl-3-hydroxyanthranilic acid (MHA), a known intermediate in the biosynthesis of actinomycin. Available evidence indicates that the conversion of HAA to MHA is an early step in the biosynthesis of actinomycin by S. antibioticus and other actinomycin-producing streptomycetes.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Mechanism of reaction of 3-hydroxyanthranilic acid with molecular oxygen   总被引:1,自引:0,他引:1  
The autoxidation of the tryptophan metabolite, 3-hydroxyanthranilic acid, at pH 7 gives rise to a p-quinone dimer and cinnabarinic acid. A novel dimer formed by radical-radical coupling of 3-hydroxyanthranilic acid is also produced. Labelling studies have shown that the C-2 oxygen in the p-quinone dimer is derived from molecular oxygen. A product versus time study of this reaction has revealed that, in the absence of catalase, cinnabarinic acid is formed but undergoes decomposition by hydrogen peroxide. At pH 7, in the presence of catalase, both the p-quinone dimer and cinnabarinic acid are formed at approximately the same rate and this rate of formation increases with increasing pH. Inclusion of superoxide dismutase was found to increase the rate of formation of cinnabarinic acid, suggesting that superoxide ions may also cause decomposition of cinnabarinic acid. This was confirmed by treating cinnabarinic acid with superoxide. A mechanism involving a common anthranilyl radical intermediate is proposed to account for the formation of the different oxidation products.  相似文献   

19.
20.
The autoxidation of 3-hydroxyanthranilate to cinnabarinate at 37 degrees C and at pH 7.4 is hastened by superoxide dismutase (SOD). The Cu,Zn-containing enzyme from bovine erythrocytes and the Mn-containing enzyme from Escherichia coli were equally effective in this regard; whereas the H2O2-inactivated Cu,Zn enzyme was ineffective. Catalase appears to augment the effect of superoxide dismutase, because it prevents the bleaching of cinnabarinate by H2O2. It follows that O2-, which is a product of the autoxidation, slows the net autoxidation by engaging in back reactions and that SOD increases the rate of autoxidation by removal of O2- and thus by prevention of these back reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号