首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.

Background

Determining the type and source of cells involved in regenerative processes has been one of the most important goals of researchers in the field of regeneration biology. We have previously used several cellular markers to characterize the cells involved in the regeneration of the intestine in the sea cucumber Holothuria glaberrima.

Results

We have now obtained a monoclonal antibody that labels the mesothelium; the outer layer of the gut wall composed of peritoneocytes and myocytes. Using this antibody we studied the role of this tissue layer in the early stages of intestinal regeneration. We have now shown that the mesothelial cells of the mesentery, specifically the muscle component, undergo dedifferentiation from very early on in the regeneration process. Cell proliferation, on the other hand, increases much later, and mainly takes place in the mesothelium or coelomic epithelium of the regenerating intestinal rudiment. Moreover, we have found that the formation of the intestinal rudiment involves a novel regenerative mechanism where epithelial cells ingress into the connective tissue and acquire mesenchymal phenotypes.

Conclusions

Our results strongly suggest that the dedifferentiating mesothelium provides the initial source of cells for the formation of the intestinal rudiment. At later stages, cell proliferation supplies additional cells necessary for the increase in size of the regenerate. Our data also shows that the mechanism of epithelial to mesenchymal transition provides many of the connective tissue cells found in the regenerating intestine. These results present some new and important information as to the cellular basis of organ regeneration and in particular to the process of regeneration of visceral organs.  相似文献   

2.
Summary Isoenzymes of glucose-6-phosphate isomerase (GPI: E.C. 5.3.1.9) were used as markers to determine the origin of cells which give rise to new muscle formed in allografts of whole intact muscle. GPI isoenzymes were also employed to see whether host precursor cells, which have been shown to contribute to muscle formation in grafts of minced muscle, can be derived from muscle lying adjacent to grafts.Excellent muscle regeneration was found in allografts of extensor digitorum longus (EDL) muscle examined after 58 days: 12 of 16 grafts contained 80% or more new muscle. Isoenzyme analysis showed that most, and in 2 instances all, new muscle was derived from implanted donor cells; however, there was strong evidence that in 5 grafts some, or all, new muscle must have resulted from host cells moving into the graft. Although hybrid isoenzyme was not detected this was attributed to factors associated with host tolerance which appear to interfere with fusion between host and donor myoblasts.Isografts of minced muscle were placed next to whole EDL muscle allografts to see if cells from allografts moved into adjacent regenerating tissue. Unfortunately, muscle regeneration in minced isografts was poor; only 3 contained 50% or more new muscle and most contained large amounts of fibrous connective tissue. Only a single isoenzyme band was detected in 11 isografts, but in five instances, the presence of a second band showed that cells from EDL allografts were also present. As no hybrid isoenzyme was detected, it is not known whether these cells which had moved into the regenerating minced grafts were muscle precursors, fibroblasts or some other cell types.  相似文献   

3.
Gut mesodermal tissues originate from the splanchnopleural mesenchyme. However, the embryonic gastrointestinal coelomic epithelium gives rise to mesenchymal cells, whose significance and fate are little known. Our aim was to investigate the contribution of coelomic epithelium-derived cells to the intestinal development. We have used the transgenic mouse model mWt1/IRES/GFP-Cre (Wt1cre) crossed with the Rosa26R-EYFP reporter mouse. In the gastrointestinal duct Wt1, the Wilms’ tumor suppressor gene, is specific and dynamically expressed in the coelomic epithelium. In the embryos obtained from the crossbreeding, the Wt1-expressing cell lineage produces the yellow fluorescent protein (YFP) allowing for colocalization with differentiation markers through confocal microscopy and flow cytometry. Wt1cre-YFP cells were very abundant throughout the intestine during midgestation, declining in neonates. Wt1cre-YFP cells were also transiently observed within the mucosa, being apparently released into the intestinal lumen. YFP was detected in cells contributing to intestinal vascularization (endothelium, pericytes and smooth muscle), visceral musculature (circular, longitudinal and submucosal) as well as in Cajal and Cajal-like interstitial cells. Wt1cre-YFP mesenchymal cells expressed FGF9, a critical growth factor for intestinal development, as well as PDGFRα, mainly within developing villi. Thus, a cell population derived from the coelomic epithelium incorporates to the gut mesenchyme and contribute to a variety of intestinal tissues, probably playing also a signaling role. Our results support the origin of interstitial cells of Cajal and visceral circular muscle from a common progenitor expressing anoctamin-1 and SMCα-actin. Coelomic-derived cells contribute to the differentiation of at least a part of the interstitial cells of Cajal.  相似文献   

4.
The intestinal epithelia consists of four lineages of differentiated cells, all of which arise from stem cells residing in the intestinal crypt. For proper regeneration from epithelial damage, both expansion of the epithelial cell number and appropriate regulation of lineage differentiation from the remaining stem cells are thought to be required. In a series of studies, we have shown that bone-marrow derived cells could promote the regeneration of damaged epithelia in the human intestinal tract. Donor-derived epithelial cells substantially repopulated the gastrointestinal tract of bone-marrow transplant recipients during epithelial regeneration after graft-versus-host disease. Furthermore, precise analysis of epithelial cell lineages revealed that during epithelial regeneration, secretory lineage epithelial cells that originated from bone-marrow significantly increased in number. These findings may lead to a novel therapy to repair damaged intestinal epithelia using bone marrow cells, and provide an alternative therapy for refractory inflammatory bowel diseases.  相似文献   

5.
The mouse mdr1a and mdr1b genes are expressed in skeletal muscle, though their precise role in muscle is unknown. Dystrophic muscle is characterized by repeated cycles of degeneration and regeneration. To explore the role of the mdr1 genes during muscle regeneration, we have created a triple knockout mouse lacking the mdr1a, mdr1b, and the dystrophin genes. The resulting ReX mice developed normally and were fertile. However, as adults, ReX had a higher proportion of degenerating muscle fibers and greater long-term loss of muscle mass than mdx. ReX muscles were also characterized by a reduced proportion of muscle side population (mSP) cells, of myogenic cells, and a reduced capacity for muscle regeneration. We found too that mSP cells derived from dystrophic muscle are more myogenic than those from normal muscle. Thus, in dystrophic muscle, the mdr1 gene plays an important role in the preservation of the mSP and of the myogenic regenerative potential. Moreover, our results suggest a hitherto unappreciated role of mdr1 in precursor cells of regenerating tissue; they therefore provide an important clue to the physiological significance of mdr1 expression in stem cells.  相似文献   

6.
Specialised respiratory organs, viz. the respiratory trees attached to the dorsal part of the cloaca, are present in most holothurians. These organs evolved within the class Holothuroidea and are absent in other echinoderms. Some holothurian species can regenerate their respiratory trees but others lack this ability. Respiratory trees therefore provide a model for investigating the origin and evolution of repair mechanisms in animals. We conducted a detailed morphological study of the regeneration of respiratory trees after their evisceration in the holothurian Apostichopus japonicus. Regeneration of the respiratory trees occurred rapidly and, on the 15th day after evisceration, their length reached 15–20 mm. Repair involved cells of the coelomic and luminal epithelia of the cloaca. Peritoneocytes and myoepithelial cells behaved differently during regeneration: the peritoneocytes kept their intercellular junctions and migrated as a united layer, whereas groups of myoepithelial cells disaggregated and migrated as individual cells. Although myoepithelial cells did not divide during regeneration, the peritoneocytes proliferated actively. The contractile system of the respiratory trees was assumed to develop during regeneration by the migration of myoepithelial cells from the coelomic epithelium of the cloaca. The luminal epithelium of the respiratory trees formed as a result of dedifferentiation, migration and transformation of cells of the cloaca lining. The mode of regeneration of holothurian respiratory trees is discussed. This work was funded by a grant from the Russian Foundation for Basic Research (project no. 08–04–00284) to I.Y.D. and by a grant from the Far Eastern Branch of the Russian Academy of Sciences and the Russian Foundation for Basic Research (project no. 09–04–98547) to T.T.G.  相似文献   

7.
8.
Two novel antimicrobial peptides named theromacin and theromyzin were isolated and characterized from the coelomic liquid of the leech Theromyzon tessulatum. Theromacin is a 75-amino acid cationic peptide containing 10 cysteine residues arranged in a disulfide array showing no similarities with other known antimicrobial peptides. Theromyzin is an 86-amino acid linear peptide and constitutes the first anionic antimicrobial peptide observed in invertebrates. Both peptides exhibit activity directed against Gram-positive bacteria. Theromacin and theromyzin cDNAs code precursor molecules containing a putative signal sequence directly followed by the mature peptide. The enhancement of theromacin and theromyzin mRNA levels has been observed after blood meal ingestion and upon bacterial challenge. In situ hybridization revealed that both genes are expressed in large fat cells in contact with coelomic cavities. Gene products were immunodetected in large fat cells, in intestinal epithelia, and at the epidermis level. In addition, a rapid release of the peptides into the coelomic liquid was observed after bacterial challenge. The presence of antimicrobial peptide genes in leeches and their expression in a specific tissue functionally resembling the insect fat body provide evidence for the first time of an antibacterial response in a lophotrochozoan comparable to that of holometabola insects.  相似文献   

9.
In this study, we use three monoclonal antibodies that recognise antigens present in the central nervous system of the ascidian Ciona intestinalis to study regeneration and post-metamorphic development of the neural ganglion. We have also used bromodeoxyuridine labelling to study generation of the neuronal precursor cells. The first antibody, CiN 1, recognises all neurones in the ganglion, whereas the second, CiN 2, recognises only a subpopulation of the large cortical neurones. Western blotting studies show that CiN 2 recognises two membrane-bound glycoproteins of apparent Mr 129 and 100 kDa. CiN 1 is not reactive on Western blots. Immunocytochemical studies with these antibodies show that CiN 1-immunoreactive neurone-like cells are present at the site of regeneration as early as 5–7 days post-ablation, a sub-population of CiN 2-immunoreactive cells being detected by 9–12 days post-ablation. The third antibody, ECM 1, stains extracellular matrix components and recognises two diffuse bands on Western blots of whole-body and ganglion homogenates. The temporal and spatial pattern of appearance of CiN 1 and CiN 2 immunoreactivity both during post-metamorphic development and in regeneration occurs in the same sequence in both processes. Studies with bromodeoxyuridine show labelled nuclei in some neurones in the regenerating ganglion. Plausibly these originate from the dorsal strand, an epithelial tube that reforms by cell proliferation during the initial phases of regeneration. A second population of cells, the large cortical neurones, do not incorporate bromodeoxyuridine and thus must have been born prior to the onset of regeneration. This latter finding indicates a mechanism involving trans-differentiation of other cell types or differentiation of long-lived totipotent stem cells.  相似文献   

10.
Leukocytic organs of Amynthas diffringens are aggregations of leukocytes contained within a smooth muscle and stromal cell framework suspended in the coelom. Elongate processes of stromal cells subdivide each organ into numerous cell-filled compartments and are perforated by 130-nm pores that may permit the exchange of humoral substances between compartments, or between the organ and the surrounding coelomic fluid. We divide leukocytes within the organs into four morphotypes. Phagocytic leukocytes have many lysosomelike vesicles and may possess phagosomes. Mature types I, II, and III granulocytic leukocytes share certain features but are readily distinguished by cell shape and by the size, shape, and electron density of the cytoplasmic inclusions. Immature as well as mature phagocytes and granulocytes occur within these organs, suggesting that they are sites of leukocyte maturation and storage. Concentrations of leukocytes within the organs result in extensive cell to cell contact, especially within islets and tightly packed cords. Phagocytosis of cell debris occurs throughout the organs. Immature stages of the four morphotypes are difficult to distinguish even at high magnification, raising the possibility that they may originate from a common precursor. Our inability to observe mitoses or to detect lymphocytelike stem cells suggests that immature leukocytes migrate to the organs via coelomic fluid from as yet unidentified primary sites of production.  相似文献   

11.
Muscle regeneration requires the coordinated interaction of multiple cell types. Satellite cells have been implicated as the primary stem cell responsible for regenerating muscle, yet the necessity of these cells for regeneration has not been tested. Connective tissue fibroblasts also are likely to play a role in regeneration, as connective tissue fibrosis is a hallmark of regenerating muscle. However, the lack of molecular markers for these fibroblasts has precluded an investigation of their role. Using Tcf4, a newly identified fibroblast marker, and Pax7, a satellite cell marker, we found that after injury satellite cells and fibroblasts rapidly proliferate in close proximity to one another. To test the role of satellite cells and fibroblasts in muscle regeneration in vivo, we created Pax7(CreERT2) and Tcf4(CreERT2) mice and crossed these to R26R(DTA) mice to genetically ablate satellite cells and fibroblasts. Ablation of satellite cells resulted in a complete loss of regenerated muscle, as well as misregulation of fibroblasts and a dramatic increase in connective tissue. Ablation of fibroblasts altered the dynamics of satellite cells, leading to premature satellite cell differentiation, depletion of the early pool of satellite cells, and smaller regenerated myofibers. Thus, we provide direct, genetic evidence that satellite cells are required for muscle regeneration and also identify resident fibroblasts as a novel and vital component of the niche regulating satellite cell expansion during regeneration. Furthermore, we demonstrate that reciprocal interactions between fibroblasts and satellite cells contribute significantly to efficient, effective muscle regeneration.  相似文献   

12.
Recent studies have shown that bone marrow (BM) cells, including the BM side population (BM-SP) cells that enrich hematopoietic stem cells (HSCs), are incorporated into skeletal muscle during regeneration, but it is not clear how and what kinds of BM cells contribute to muscle fiber regeneration. We found that a large number of SP cells migrated from BM to muscles following injury in BM-transplanted mice. These BM-derived SP cells in regenerating muscles expressed different surface markers from those of HSCs and could not reconstitute the mouse blood system. BM-derived SP/Mac-1(low) cells increased in number in regenerating muscles following injury. Importantly, our co-culture studies with activated satellite cells revealed that this fraction carried significant potential for myogenic differentiation. By contrast, mature inflammatory (Mac-1(high)) cells showed negligible myogenic activities. Further, these BM-derived SP/Mac-1(low) cells gave rise to mononucleate myocytes, indicating that their myogenesis was not caused by stochastic fusion with host myogenic cells, although they required cell-to-cell contact with myogenic cells for muscle differentiation. Taken together, our data suggest that neither HSCs nor mature inflammatory cells, but Mac-1(low) early myeloid cells in the BM-derived SP fraction, play an important role in regenerating skeletal muscles.  相似文献   

13.
14.
The annual regeneration of deer antlers is a unique developmental event in mammals, which as a rule possess only a very limited capacity to regenerate lost appendages. Studying antler regeneration can therefore provide a deeper insight into the mechanisms that prevent limb regeneration in humans and other mammals, and, with regard to medical treatments, may possibly even show ways how to overcome these limitations. Traditionally, antler regeneration has been characterized as a process involving the formation of a blastema from de-differentiated cells. More recently it has, however, been hypothesized that antler regeneration is a stem cell-based process. Thus far, direct evidence for the presence of stem cells in primary or regenerating antlers was lacking. Here we demonstrate the presence of cells positive for the mesenchymal stem cell marker STRO-1 in the chondrogenic growth zone and the perivascular tissue of the cartilaginous zone in primary and regenerating antlers as well as in the pedicle of fallow deer (Dama dama). In addition, cells positive for the stem cell/progenitor cell markers STRO-1, CD133 and CD271 (LNGFR) were isolated from the growth zones of regenerating fallow deer antlers as well as the pedicle periosteum and cultivated for extended periods of time. We found evidence that STRO-1(+) cells isolated from the different locations are able to differentiate in vitro along the osteogenic and adipogenic lineages. Our results support the view that the annual process of antler regeneration might depend on the periodic activation of mesenchymal progenitor cells located in the pedicle periosteum. The findings of the present study indicate that not only limited tissue regeneration, but also extensive appendage regeneration in a postnatal mammal can occur as a stem cell-based process.  相似文献   

15.
The peritoneal mesothelium exhibits a high regenerative ability. Peritoneal regeneration is concomitant with the appearance, in the coelomic cavity, of a free‐floating population of cells whose origin and functions are still under discussion. We have isolated and characterized this cell population and we have studied the process of mesothelial regeneration through flow cytometry and confocal microscopy in a murine model lethally irradiated and reconstituted with GFP‐expressing bone marrow cells. In unoperated control mice, most free cells positive for mesothelin, a mesothelial marker, are green fluorescent protein (GFP). However, 24 hrs after peritoneal damage, free mesothelin+/ GFP+ cells appear in peritoneal lavages. Cultured lavage peritoneal cells show colocalization of GFP with mesothelial (mesothelin, cytokeratin) and fibroblastic markers. Immunohistochemical staining of the peritoneal wall also revealed colocalization of GFP with mesothelial markers and with procollagen‐1 and smooth muscle α‐actin. This was observed in the injured area as well as in the surrounding not‐injured peritoneal surfaces. These cells, which we herein call peritoneal repairing cells (PRC), are very abundant 1 week after surgery covering both the damaged peritoneal wall and the surrounding uninjured area. However, they become very scarce 1 month later, when the mesothelium has completely healed. We suggest that PRC constitute a type of monocyte‐derived cells, closely related with the tissue‐repairing cells known as ‘fibrocytes’ and specifically involved in peritoneal reparation. Thus, our results constitute a synthesis of the different scenarios hitherto proposed about peritoneal regeneration, particularly recruitment of circulating progenitor cells and adhesion of free‐floating coelomic cells.  相似文献   

16.
17.
Immunological tolerance in the mouse thymus cell population induced by the intravenous injection of deaggregated bovine gamma globulin was terminated by whole body irradiation. After irradiation, the weight of the thymus recovered biphasically, and the termination of tolerance occurred as early as in the first phase. Both Thy-1 antigen expression and helper activity of the thymus cell population in irradiated mice recovered in parallel with the recovery of the thymus weight. Sensitivity of the regenerating thymus cell to the tolerogen was not different from that of the normal thymus cell. The first phase of thymus regeneration may be caused by the proliferation and differentiation of relatively radioresistant and tolerogen insensitive precursors residing in the thymus. Tolerogen and/or immunogen reactive thymus cells may originate from the precursor.  相似文献   

18.
During the differentiation of the mammalian embryonic testis, two compartments are defined: the testis cords and the interstitium. The testis cords give rise to the adult seminiferous tubules, whereas steroidogenic Leydig cells and other less well characterized cell types differentiate in the interstitium (the space between testis cords). Although the process of testis cord formation is essential for male development, it is not entirely understood. It has been viewed as a Sertoli-cell driven process, but growing evidence suggests that interstitial cells play an essential role during testis formation. However, little is known about the origin of the interstitium or the molecular and cellular diversity within this early stromal compartment. To better understand the process of mammalian gonad differentiation, we have undertaken an analysis of developing interstitial/stromal cells in the early mouse testis and ovary. We have discovered molecular heterogeneity in the interstitium and have characterized new markers of distinct cell types in the gonad: MAFB, C-MAF, and VCAM1. Our results show that at least two distinct progenitor lineages give rise to the interstitial/stromal compartment of the gonad: the coelomic epithelium and specialized cells along the gonad–mesonephros border. We demonstrate that both these populations give rise to interstitial precursors that can differentiate into fetal Leydig cells. Our analysis also reveals that perivascular cells migrate into the gonad from the mesonephric border along with endothelial cells and that these vessel-associated cells likely represent an interstitial precursor lineage. This study highlights the cellular diversity of the interstitial cell population and suggests that complex cell–cell interactions among cells in the interstitium are involved in testis morphogenesis.  相似文献   

19.
Muscle regeneration in the holothurian Stichopus japonicus   总被引:5,自引:0,他引:5  
The regeneration of longitudinal muscle bands (LMBs) in the sea cucumber Stichopus japonicus was studied using light and electron microscopic and immunocytochemical methods. Previous investigations of holothurian organs showed the presence of some cytoskeletal proteins which were specific for LMBs only. One of them, the 98 KDa protein, was isolated by means of SDS-electrophoresis and used as an antigen to obtain polyclonal antibodies. When tested on paraffin sections of sea cucumber organs, the antibodies were shown to interact only with coelomic epithelial cells covering the LMBs. The antibodies were used to study LMB regeneration after transverse cutting. During regeneration no signs of myocyte dedifferentiation or mitotic division were observed. In the wound region, damaged myocytes degenerated and muscle bundles desintegrated. However, the coelomic epithelial cells dedifferentiated and began to invade the LMB. Just beneath the surface these cells formed clusters (muscle bundle rudiments). The number and size of the clusters gradually increased, the cells lengthened and developed contractile filaments. These observations suggest that new muscle bundles arise from coelomic epithelial cells covering the LMBs. The migration of coelomic epithelial cells into the damaged LMBs and their myogenic transformation are the basic mechanism of holothurian muscle regeneration.  相似文献   

20.
The cellular and molecular features of multipotent epithelial cells during regeneration and asexual reproduction in colonial tunicates are described in the present study. The epicardium has been regarded as the endodermal tissue-forming epithelium in the order Enterogona, because only body fragments having the epicardium exhibit the regenerative potential. Epicardial cells in Polycitor proliferus have two peculiar features; they always accompany coelomic undifferentiated cells, and they contain various kinds of organelles in the cytoplasm. During strobilation a large amount of organelles are discarded in the lumen, and then, each tissue-forming cell takes an undifferentiated configuration. Septum cells in the stolon are also multipotent in Enterogona. Free cells with a similar configuration to the septum inhabit the hemocoel. They may provide a pool for epithelial septum cells. At the distal tip of the stolon, septum cells are columnar in shape and apparently undifferentiated. They are the precursor of the stolonial bud. In Pleurogona, the atrial epithelium of endodermal origin is multipotent. In Polyandrocarpa misakiensis, it consists of pigmented squamous cells. The cells have ultrastructurally fine granules in the cytoplasm. During budding, coelomic cells with similar morphology become associated with the atrial epithelium. Then, cells of organ placodes undergo dedifferentiation, enter a cell division cycle, and commence morphogenesis. Retinoic acid-related molecules are involved in this dedifferentiation process of multipotent cells. We conclude that in colonial tunicates two systems support the flexibility of tissue remodeling during regeneration and asexual reproduction; dedifferentiation of epithelial cells and epithelial transformation of coelomic free cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号