首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated a naturally arising human immunodeficiency type 1 (HIV-1) mutant containing a point mutation within the env gene. The point mutation resulted in complete loss of balanced splicing, with dominant production of aberrant mRNAs. The aberrant RNAs arose via activation of normally cryptic splice sites flanking the mutation within the env terminal exon to create exon 6D, which was subsequently incorporated in aberrant env, tat, rev, and nef mRNAs. Aberrant multiply spliced messages contributed to reduced virus replication as a result of a reduction in wild-type Rev protein. The point mutation within exon 6D activated exon 6D inclusion when the exon and its flanking splice sites were transferred to a heterologous minigene. Introduction of the point mutation into an otherwise wild-type HIV-1 proviral clone resulted in virus that was severely inhibited for replication in T cells and displayed elevated usage of exon 6D. Exon 6D contains a bipartite element similar to that seen in tat exon 3 of HIV-1, consisting of a potential exon splicing silencer (ESS) juxtaposed to a purine-rich sequence similar to known exon splicing enhancers. In the absence of a flanking 5' splice site, the point mutation within the exon 6D ESS-like element strongly activated env splicing, suggesting that the putative ESS plays a natural role in limiting the level of env splicing. We propose, therefore, that exon silencers may be a common element in the HIV-1 genome used to create balanced splicing of multiple products from a single precursor RNA.  相似文献   

2.
Duchenne muscular dystrophy (DMD) patients with mutations that disrupt the translational reading frame produce little or no dystrophin. Two exceptions are the deletion of exons 3-7 and the occurrence of rare dystrophin-positive fibers (revertant fibers) in muscle of DMD patients. Antibodies directed against the amino-terminus and the 5' end of exon 8 did not detect dystrophin in muscle from patients who have a deletion of exons 3-7. However, in all cases, dystrophin was detected with an antibody directed against the 3' end of exon 8. The most likely method of dystrophin production in these cases is initiation at a new start codon in exon 8. We also studied two patients who have revertant fibers: one had an inherited duplication of exons 5-7, which, on immunostaining, showed two types of revertant fibers; and the second patient had a 2-bp nonsense mutation in exon 51, which creates a cryptic splice site. An in-frame mRNA that uses this splice site in exon 51 was detected. Immunostaining demonstrated the presence of the 3' end of exon 51, which is in agreement with the use of this mRNA in revertant fibers. The most likely method of dystrophin production in these fibers is a second mutation that restores the reading frame.  相似文献   

3.
4.
We isolated and characterized three spontaneous mutants of Chinese hamster ovary cells that were deficient in dihydrofolate reductase activity. All three mutants contained no detectable enzyme activity and produced dihydrofolate reductase mRNA species that were shorter than those of the wild type by about 120 bases. Six exons are normally represented in this mRNA; exon 5 was missing in all three mutant mRNAs. Nuclease S1 analysis of the three mutants indicated that during the processing of the mutant RNA, exon 4 was spliced to exon 6. The three mutant genes were cloned, and the regions around exons 4 and 5 were sequenced. In one mutant, the GT dinucleotide at the 5' end of intron 5 had changed to CT. In a second mutant, the first base in exon 5 had changed from G to T. In a revertant of this mutant, this base was further mutated to A, a return to a purine. Approximately 25% of the mRNA molecules in the revertant were spliced correctly to produce an enzyme with one presumed amino acid change. In the third mutant, the AG at the 3' end of intron 4 had changed to AA. A mutation that partially reversed the mutant phenotype had changed the dinucleotide at the 5' end of intron 4 from GT to AT. The splicing pattern in this revertant was consistent with the use of cryptic donor and acceptor splice sites close to the original sites to produce an mRNA with three base changes and a protein with two amino acid changes. These mutations argue against a scanning model for the selection of splice site pairs and suggest that only a single splice site need be inactivated to bring about efficient exon skipping (a regulatory mechanism for some genes). The fact that all three mutants analyzed exhibited exon 5 splicing mutations indicates that these splice sites are hot spots for spontaneous mutation.  相似文献   

5.
6.
R M Stephens  D Derse    N R Rice 《Journal of virology》1990,64(8):3716-3725
We isolated and characterized six cDNA clones from an equine infectious anemia virus-infected cell line that displays a Rev-defective phenotype. With the exception of one splice site in one of the clones, all six cDNAs exhibited the same splicing pattern and consisted of four exons. Exon 1 contained the 5' end of the genome; exon 2 contained the tat gene from mid-genome; exon 3 consisted of a small section of env, near the 5' end of the env gene; and exon 4 contained the putative rev open reading frame from the 3' end of the genome. The structures of the cDNAs predict a bicistronic message in which Tat is encoded by exons 1 and 2 and the presumptive Rev protein is encoded by exons 3 and 4. tat translation appears to be initiated at a non-AUG codon within the first 15 codons of exon 1. Equine infectious anemia virus-specific tat activity was expressed in transient transfections with cDNA expression plasmids. The predicted wild-type Rev protein contains 30 env-derived amino acids and 135 rev open reading frame residues. All of the cDNAs had a frameshift in exon 4, leading to a truncated protein and thus providing a plausible explanation for the Rev-defective phenotype of the original cells. We used peptide antisera to detect the faulty protein, thus confirming the cDNA sequence, and to detect the normal protein in productively infected cells.  相似文献   

7.
The expression of Gag, Pol, Vif, Vpr, Vpu, and Env proteins from unspliced and partially spliced human immunodeficiency virus type 1 (HIV-1) mRNAs depends on the viral protein Rev, while the production of Tat, Rev, and Nef from multiply spliced mRNAs does not require Rev. To investigate the difference between gag and tat mRNAs, we generated plasmids expressing tat-gag hybrid mRNAs. Insertion of the gag gene downstream of the tat open reading frame in the tat cDNA resulted in the inhibition of Tat production. This inhibition was caused, at least in part, by a decrease in the stability of the produced mRNA. Deletions in gag defined a 218-nucleotide inhibitory sequence named INS-1 and located at the 5' end of the gag gene. Further experiments indicated the presence of more than one inhibitory sequence in the gag-protease gene region of the viral genome. The inhibitory effect of INS-1 was counteracted by the positive effect mediated by the Rev-Rev-responsive element interaction, indicating that this sequence is important for Rev-regulated gag expression. The INS-1 sequence did not contain any known HIV-1 splice sites and acted independently of splicing. It was found to have an unusually high AU content (61.5% AU), a common feature among cellular mRNAs with short half-lives. These results suggest that HIV-1 and possibly other lentiviruses have evolved to express unstable mRNAs which require additional regulatory factors for their expression. This strategy may offer the virus several advantages, including the ability to enter a state of low or latent expression in the host.  相似文献   

8.
9.
10.
Nonoverlapping deletions that eliminated the 5' (HIV-1US/603del), middle (HIV-1U5/206del), and 3' (HIV-1U5/604del) thirds of the U5 region of the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) were studied for their effects on virus replication (transient transfection of HeLa cells) and infectivity (T-cell lines and peripheral blood mononuclear cells). All three mutants exhibited a wild-type phenotype in directing the production and release of virus particles from transfected HeLa cells. In infectivity assays, HIV-1U5/206del was usually indistinguishable from wild-type virus whereas HIV-1U%/603del was unable to infect human peripheral blood mononuclear cells or MT4 and CEM cells. Investigations of HIV-1U5/603del particles revealed a packaging defect resulting in a 10-fold reduction of encapsidated genomic RNA. The HIV-1U5/604del mutant either was noninfectious or exhibited delayed infection kinetics, depending on the cell type and multiplicity of infection. Quantitative competitive PCR indicated that HIV-1U5/604del synthesized normal amounts of viral DNA in newly infected cells. During the course of a long-term infectivity assay, a revertant of the HIV-1U5/604del mutant that displayed rapid infection kinetics emerged. Nucleotide sequence analysis indicated that the original 26-nucleotide deletion present in HIV-1U5/604del had been extended an additional 19 nucleotides in the revertant virus. Characterization of the HIV-1U5/604del mutant LTR in in vitro integration reactions revealed defective 3' processing and strand transfer activities that were partially restored when the revertant LTR substrate was used, suggesting that the reversion corrected a similar defect in the mutant virus.  相似文献   

11.
J A Rambosek  J A Kinsey 《Gene》1984,27(1):101-107
We have cloned the unstable am mutant gene, am126, as well as the am gene from an am126 revertant. The mutation is a result of a 33-bp duplication that repeats a sequence starting 13 bp upstream of the 3' splice junction between intron 1 and exon 2 and extends 20 bp into exon 2. In addition, there is a G----A transition 2 bp upstream of the first copy of the duplicated sequence. In the revertant gene the wild-type sequence is precisely recovered, involving both the loss of the duplication and a reversion (A----G) of the associated transition. Our data suggest that only the more 5' of the two 3' splice junctions present in the duplicated version of the gene is used. This favors a 5'----3' scanning mechanism for exon splicing.  相似文献   

12.
We have isolated morphological transformants of cultured cells as dense foci on a monolayer of normal cells appproximately 4 weeks after microinjection of purified simian virus 40 DNA (200 to 400 molecules per cell) directly into the nucleus. Both Rat 1 (an established contact-inhibited rat embryo fibroblast line) and F1' 1--4 (a 5-fluorodeoxyuridine-selected flat revertant from the simian virus 40-transformed 14B cell line) were transformed with an efficiency of 5 to 10% of the cells injected. F1' 1--4 is not susceptible to retransformation by either viral or DNA infection (by calcium phosphate-facilitated cellular uptake), and as a result it had previously been thought to possess a host mutation preventing expression of the simian virus 40 genome.  相似文献   

13.
14.
15.
16.
We generated a number of small deletions and insertions in the 5' noncoding region of an infectious cDNA copy of the poliovirus RNA genome. Transfection of these mutated cDNAs into COS-1 cells produced the following phenotypic categories: (i) wild-type mutations, (ii) lethal mutations, (iii) mutations exhibiting slow growth or low-titer properties, and (iv) temperature-sensitive (ts) mutations. The deletion of nucleotides 221 to 224 produced a ts virus, 220D1. Mutant 220D1 was found to have a dramatic reduction in growth, virus-specific protein and RNA synthesis, and the shutoff of host cell protein synthesis at 37 or 39 degrees C compared with 33 degrees C. Temperature shift experiments showed that the mutant viral RNA is not an effective template for protein or RNA synthesis at 39 degrees C and suggested a decreased stability of the 220D1 RNA at 39 degrees C. Selection for a non-ts revertant of 220D1 yielded the virus R2, which was no longer ts for growth or viral protein and RNA synthesis. Sequencing the 5' noncoding region of the genomic RNA from R2 revealed the deletion of 41 proximal nucleotides for an overall deletion of nucleotides 184 to 228. These data suggest that the deleted sequences are nonessential to the poliovirus life cycle during growth in HeLa cells. According to computer-predicted RNA secondary structures of the 5' noncoding region of poliovirus RNA, the R2 revertant virus has deleted an entire predicted stem-loop structure.  相似文献   

17.
The human immunodeficiency virus type-1 regulatory protein Rev is absolutely required for the production of viral structural proteins. Splice sites have been seen to function ascis-acting repressor sequendes (CRS) and inhibit expression of the Rev-dependent RNAs. In order to analyze the role of a splice donor in Rev dependence, the wild-type 5 splice donor of HIV-1 was mutated in the context of othergag sequences. Following transient transfection, RNA expression by RT-PCR was analyzed. The unspliced RNA produced by the mutant construct still required Rev for the cytoplasmic accumulation of the RNA. Despite deletion of the wild-type 5 splice donor and thetat splice acceptor was used. A cryptic splice donor was identified by PCR and subsequent cloning of the spliced RNA. The cryptic site is 5/9 to the consensus sequence and located immediately downstream of the initiation codon (ATG) for Gag. Analysis of the RNA product containing the cryptic splice donor revealed that the Rev was required for the cytoplasmic accumulation of unspliced RNA, while spliced RNA was Rev independent. Transfection of a wild-type construct also demonstrated usage of the cryptic splice donor. These results indicate that a cryptic splice donor can be activated when the wild-type splice donor is inactivated and that the cryptic splice donor may retain Rev regulation. The findings also suggest the potential for cryptic splice sites to serve as CRS in the determining the Rev dependence of viral RNAs.  相似文献   

18.
Cryptic splice sites are used only when use of a natural splice site is disrupted by mutation. To determine the features that distinguish authentic from cryptic 5′ splice sites (5′ss), we systematically analyzed a set of 76 cryptic 5′ss derived from 46 human genes. These cryptic 5′ss have a similar frequency distribution in exons and introns, and are usually located close to the authentic 5′ss. Statistical analysis of the strengths of the 5′ss using the Shapiro and Senapathy matrix revealed that authentic 5′ss have significantly higher score values than cryptic 5′ss, which in turn have higher values than the mutant ones. β-Globin provides an interesting exception to this rule, so we chose it for detailed experimental analysis in vitro. We found that the sequences of the β-globin authentic and cryptic 5′ss, but not their surrounding context, determine the correct 5′ss choice, although their respective scores do not reflect this functional difference. Our analysis provides a statistical basis to explain the competitive advantage of authentic over cryptic 5′ss in most cases, and should facilitate the development of tools to reliably predict the effect of disease-associated 5′ss-disrupting mutations at the mRNA level.  相似文献   

19.
20.
In this study, we examined the mechanism of translation of the human immunodeficiency virus type 1 tat mRNA in eucaryotic cells. This mRNA contains the tat open reading frame (ORF), followed by rev and nef ORFs, but only the first ORF, encoding tat, is efficiently translated. Introduction of premature stop codons in the tat ORF resulted in efficient translation of the downstream rev ORF. We show that the degree of inhibition of translation of rev is proportional to the length of the upstream tat ORF. An upstream ORF spanning 84 nucleotides was predicted to inhibit 50% of the ribosomes from initiating translation at downstream AUGs. Interestingly, the distance between the upstream ORF and the start codon of the second ORF also played a role in efficiency of downstream translation initiation. It remains to be investigated if these conclusions relate to translation of mRNAs other than human immunodeficiency virus type 1 mRNAs. The strong inhibition of rev translation exerted by the presence of the tat ORF may reflect the different roles of Tat and Rev in the viral life cycle. Tat acts early to induce high production of all viral mRNAs. Rev induces a switch from the early to the late phase of the viral life cycle, resulting in production of viral structural proteins and virions. Premature Rev production may result in entrance into the late phase in the presence of suboptimal levels of viral mRNAs coding for structural proteins, resulting in inefficient virus production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号