首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitochondrial genome of grape (Vitis vinifera), the largestorganelle genome sequenced so far, is presented. The genomeis 773,279 nt long and has the highest coding capacity amongknown angiosperm mitochondrial DNAs (mtDNAs). The proportionof promiscuous DNA of plastid origin in the genome is also thelargest ever reported for an angiosperm mtDNA, both in absoluteand relative terms. In all, 42.4% of chloroplast genome of Vitishas been incorporated into its mitochondrial genome. In orderto test if horizontal gene transfer (HGT) has also contributedto the gene content of the grape mtDNA, we built phylogenetictrees with the coding sequences of mitochondrial genes of grapeand their homologs from plant mitochondrial genomes. Many incongruentgene tree topologies were obtained. However, the extent of incongruencebetween these gene trees is not significantly greater than thatobserved among optimal trees for chloroplast genes, the commonancestry of which has never been in doubt. In both cases, weattribute this incongruence to artifacts of tree reconstruction,insufficient numbers of characters, and gene paralogy. Thisfinding leads us to question the recent phylogenetic interpretationof Bergthorsson et al. (2003, 2004) and Richardson and Palmer(2007) that rampant HGT into the mtDNA of Amborella best explainsphylogenetic incongruence between mitochondrial gene trees forangiosperms. The only evidence for HGT into the Vitis mtDNAfound involves fragments of two coding sequences stemming fromtwo closteroviruses that cause the leaf roll disease of thisplant. We also report that analysis of sequences shared by bothchloroplast and mitochondrial genomes provides evidence fora previously unknown gene transfer route from the mitochondrionto the chloroplast.  相似文献   

2.
Two groups of normosmic subjects were instructed to feign a total olfactory loss when tested with the Olfactory Confusion Matrix (OCM). One of the groups was given specific instructions as to the number of odorants and trials in the test, as well as the number of items that might be expected to be correctly identified by chance. The responses of both groups of malingerers were compared with responses gathered from a group of anosmic patients. The groups did not differ in terms of performance level (percent correct). In spite of the similarity in terms of accuracy level, an analysis of the pattern of OCM responses to an irritant allowed the anosmic patients to be distinguished from subjects attempting to feign a loss. Subjects were given explicit details about the test performed at the same level as those simply told to feign a loss. These results suggest that the OCM is an effective tool in separating malingering from anosmia.  相似文献   

3.
Mechanisms of, and barriers to, horizontal gene transfer between bacteria   总被引:6,自引:0,他引:6  
Bacteria evolve rapidly not only by mutation and rapid multiplication, but also by transfer of DNA, which can result in strains with beneficial mutations from more than one parent. Transformation involves the release of naked DNA followed by uptake and recombination. Homologous recombination and DNA-repair processes normally limit this to DNA from similar bacteria. However, if a gene moves onto a broad-host-range plasmid it might be able to spread without the need for recombination. There are barriers to both these processes but they reduce, rather than prevent, gene acquisition.  相似文献   

4.
5.
6.
Davison J 《Nature biotechnology》2004,22(11):1349; author reply 1349-1349; author reply 1350
  相似文献   

7.
Ancient horizontal gene transfer   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
We suggest a likelihood-based approach to estimate an overall rate of horizontal gene transfer (HGT) in a simplified setting. To this end, we assume that the number of occurring HGT events within a given time interval follows a Poisson process. To obtain estimates for the rate of HGT, we simulate the distribution of tree topologies for different numbers of HGT events on a clocklike species tree. Using these simulated distributions, we estimate an HGT rate for a collection of gene trees representing a set of taxa. As an illustrative example, we use the "Clusters of Orthologous Groups of proteins" (COGs). We also perform a correction of the estimated rate taking into account the inaccuracies due to gene tree reconstructions. The results suggest a corrected HGT rate of about 0.36 per gene and unit time, in other words 11 HGT events have occurred on average among the 44 taxa of the COG species tree. A software package to estimate an HGT rate is available online (http://www.cibiv.at/software/hgt/).  相似文献   

10.
Gene acquisition by lateral gene transfer (LGT) is an important mechanism for natural variation among prokaryotes. Laboratory experiments show that protein-coding genes can be laterally transferred extremely fast among microbial cells, inherited to most of their descendants, and adapt to a new regulatory regime within a short time. Recent advance in the phylogenetic analysis of microbial genomes using networks approach reveals a substantial impact of LGT during microbial genome evolution. Phylogenomic networks of LGT among prokaryotes reconstructed from completely sequenced genomes uncover barriers to LGT in multiple levels. Here we discuss the kinds of barriers to gene acquisition in nature including physical barriers for gene transfer between cells, genomic barriers for the integration of acquired DNA, and functional barriers for the acquisition of new genes.  相似文献   

11.
The evolutionary events in organisms can be tracked to the transfer of genetic material. The inheritance of genetic material among closely related organisms is a slow evolutionary process. On the other hand, the movement of genes among distantly related species can account for rapid evolution. The later process has been quite evident in the appearance of antibiotic resistance genes among human and animal pathogens. Phylogenetic trees based on such genes and those involved in metabolic activities reflect the incongruencies in comparison to the 16S rDNA gene, generally used for taxonomic relationships. Such discrepancies in gene inheritance have been termed as horizontal gene transfer (HGT) events. In the post-genomic era, the explosion of known sequences through large-scale sequencing projects has unraveled the weakness of traditional 16S rDNA gene tree based evolutionary model. Various methods to scrutinize HGT events include atypical composition, abnormal sequence similarity, anomalous phylogenetic distribution, unusual phyletic patterns, etc. Since HGT generates greater genetic diversity, it is likely to increase resource use and ecosystem resilience.  相似文献   

12.
Kalia VC  Lal S  Cheema S 《Gene》2007,389(1):19-26
Polyhydroxyalkanoates (PHAs) are gaining more and more importance the world over due to their structural diversity and close analogy to plastics. Their biodegradability makes them extremely desirable substitutes for synthetic plastics. PHAs are produced in organisms under certain stress conditions. Here, we investigated 253 sequenced (completely and unfinished) genomes for the diversity and phylogenetics of the PHA biosynthesis. Discrepancies in the phylogenetic trees for phaA, phaB and phaC genes of the PHA biosynthesis have led to the suggestion that horizontal gene transfer (HGT) may be a major contributor for its evolution. Twenty four organisms belonging to diverse taxa were found to be involved in HGT. Among these, Bacillus cereus ATCC 14579 and Xanthomonas axonopodis pv. citri str. 306 seem to have acquired all the three genes through HGT events and have not been characterized so far as PHA producers. This study also revealed certain potential organisms such as Streptomyces coelicolor A3(2), Staphylococcus epidermidis ATCC 12228, Brucella suis 1330, Burkholderia sp., DSMZ 9242 and Leptospira interrogans serovar lai str. 56601, which can be transformed into novel PHA producers through recombinant DNA technology.  相似文献   

13.
In a horizontal gene transfer (HGT) event, a gene is transferred between two species that do not have an ancestor-descendant relationship. Typically, no more than a few genes are horizontally transferred between any two species. However, several studies identified pairs of species between which many different genes were horizontally transferred. Such a pair is said to be linked by a highway of gene sharing. We present a method for inferring such highways. Our method is based on the fact that the evolutionary histories of horizontally transferred genes disagree with the corresponding species phylogeny. Specifically, given a set of gene trees and a trusted rooted species tree, each gene tree is first decomposed into its constituent quartet trees and the quartets that are inconsistent with the species tree are identified. Our method finds a pair of species such that a highway between them explains the largest (normalized) fraction of inconsistent quartets. For a problem on n species and m input quartet trees, we give an efficient O(m + n(2))-time algorithm for detecting highways, which is optimal with respect to the quartets input size. An application of our method to a dataset of 1128 genes from 11 cyanobacterial species, as well as to simulated datasets, illustrates the efficacy of our method.  相似文献   

14.
Monitoring and modeling horizontal gene transfer   总被引:1,自引:0,他引:1  
Monitoring efforts have failed to identify horizontal gene transfer (HGT) events occurring from transgenic plants into bacterial communities in soil or intestinal environments. The lack of such observations is frequently cited in biosafety literature and by regulatory risk assessment. Our analysis of the sensitivity of current monitoring efforts shows that studies to date have examined potential HGT events occurring in less than 2 g of sample material, when combined. Moreover, a population genetic model predicts that rare bacterial transformants acquiring transgenes require years of growth to out-compete wild-type bacteria. Time of sampling is there-fore crucial to the useful implementation of monitoring. A population genetic approach is advocated for elucidating the necessary sample sizes and times of sampling for monitoring HGT into large bacterial populations. Major changes in current monitoring approaches are needed, including explicit consideration of the population size of exposed bacteria, the bacterial generation time, the strength of selection acting on the transgene-carrying bacteria, and the sample size necessary to verify or falsify the HGT hypotheses tested.  相似文献   

15.
16.
Evolving insights: symbiosis islands and horizontal gene transfer   总被引:6,自引:0,他引:6  
Finan TM 《Journal of bacteriology》2002,184(11):2855-2856
  相似文献   

17.
18.
Yanai I  Wolf YI  Koonin EV 《Genome biology》2002,3(5):research0024.1-research002413

Background  

Gene fusions can be used as tools for functional prediction and also as evolutionary markers. Fused genes often show a scattered phyletic distribution, which suggests a role for processes other than vertical inheritance in their evolution.  相似文献   

19.
The give-and-take of DNA: horizontal gene transfer in plants   总被引:1,自引:0,他引:1  
  相似文献   

20.

Background  

Phylogenetic trees based on sequences from a set of taxa can be incongruent due to horizontal gene transfer (HGT). By identifying the HGT events, we can reconcile the gene trees and derive a taxon tree that adequately represents the species' evolutionary history. One HGT can be represented by a rooted Subtree Prune and Regraft (RSPR) operation and the number of RSPRs separating two trees corresponds to the minimum number of HGT events. Identifying the minimum number of RSPRs separating two trees is NP-hard, but the problem can be reduced to fixed parameter tractable. A number of heuristic and two exact approaches to identifying the minimum number of RSPRs have been proposed. This is the first implementation delivering an exact solution as well as the intermediate trees connecting the input trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号