首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is well established that beta-endorphin has a regulatory influence on the reproductive function at the level of the hypothalamic-pituitary axis. However, recent immunohistochemical evidence demonstrated that beta-endorphin is also present in the Leydig cells of fetal, neonatal and adult mice and hamsters. In addition, beta-endorphin synthesis was localized in the Leydig cells of adult rats, leading to the hypothesis of a direct function of the peptide in the reproductive organs. Our interest was to investigate the role of beta-endorphin at testicular level. We have demonstrated the presence of high-affinity opioid binding sites (Kd in the nanomolar range) in tubular homogenates and Sertoli cells in culture of adult (50 days) and immature (18 days post-natal) rat testes. Also, chronic beta-endorphin treatment of the Sertoli cells significantly inhibited basal and FSH-stimulated androgen-binding protein production, this effect being prevented by the universal opiate antagonist naloxone. No opiate binding was observed on Leydig cell cultures. Furthermore, we have demonstrated that acute or chronic beta-endorphin treatment does not affect testosterone production by Leydig cells in vitro, consistent with the absence of receptors on these cells. On the other hand, fetal Leydig cells (21 days fetal life) in culture produced considerable amounts of beta-endorphin. Also, fetal Leydig cells represented a preferred in vitro system to study beta-endorphin release since in adult cell culture a marked degradation of the peptide was detected (greater than 50%). beta-endorphin accumulation for 3 and 5 days was markedly increased by inhibitors of steroid biosynthesis (1.5-fold); a significant reduction by GnRH at both days (by 50-30%) was observed, while by dexamethasone the reduction was only noted after 5 days of treatment (by 50%). Acute stimulation (3 h) of control cells with hCG enhanced by 10-12-fold the beta-endorphin secretion. The hormone stimulation of beta-endorphin production was not mediated by testosterone. On the contrary, inhibition of Leydig cells steroid biosynthesis markedly increased basal and hCG-stimulated beta-endorphin production (150-200%), suggesting autocrine negative modulation of Leydig cell beta-endorphin by androgen and/or its metabolites. In contrast, dexamethasone reduced basal and hCG-stimulated beta-endorphin production (by 50%). Altogether these findings indicate that beta-endorphin produced within the Leydig cells may behave as a paracrine inhibitor of the Sertoli cell function and demonstrate that the peptide production is under direct control by gonadotropins and is modulated by steroids.  相似文献   

2.
Elephant beta-endorphin and its analog, elephant beta-endorphin(6-31) were synthesized by standard solid phase method. Receptor binding activity showed that elephant beta-endorphin was five to six times more potent than human beta-endorphin in its ability to bind to opiate receptors on rat brain membrane. In a previous study (Wong, C.-L., Wai, M.-K., Cheng, H.-C., Chung, D. & Yamashiro, D (1990) Clinical and Experimental Pharmacology and Physiology 16, 33-37), tail flick test for intracerebroventricularly administered beta-endorphin showed that the antinociceptive potency of elephant beta-endorphin was seven to eight times higher than that of human beta-endorphin in mice. Results from both studies suggest that elephant beta-endorphin was a much more potent antinociceptive agent than human beta-endorphin in tail flick test and its higher analgesic activity might be due to its higher affinity for opiate receptors in the brain.  相似文献   

3.
X Z Khawaja  I C Green 《Peptides》1991,12(2):227-233
Intraperitoneal administration of beta-endorphin (1 mg/kg) to ob/ob mice doubled fasting plasma insulin concentrations within 30 min, while plasma glucose concentrations were unaltered. In lean mice, beta-endorphin failed to alter plasma insulin or glucose responses. In glucose-loaded ob/ob mice, beta-endorphin (1 mg/kg) reduced insulin levels at 40 min, and delayed glucose disposal. A lower dose of beta-endorphin (0.1 mg/kg) decreased plasma insulin at 90 min, with no effect on plasma glucose disposal. In lean mice, only the higher dose of beta-endorphin suppressed the glucose-stimulated rise in plasma insulin concentrations, without affecting plasma glucose. Beta-endorphin's actions were blocked by naltrexone and could not be mimicked by N-acetyl-beta-endorphin. Beta-endorphin (10(-8)M) enhanced insulin release from isolated ob/ob and lean mouse islets incubated in medium containing 6 mM glucose, but inhibited release when 20 mM glucose was present. These effects were naloxone reversible. The results indicate that 1) ob/ob mice display a greater magnitude of response in vivo to beta-endorphin's actions on insulin release compared with lean mice, 2) high concentrations of beta-endorphin exacerbate glucose disposal in ob/ob mice. 3) the prevailing glucose concentration is an important determinant of whether beta-endorphin's effects on insulin release will be stimulatory or inhibitory and 4) these actions are mediated via opiate receptors.  相似文献   

4.
5.
Perinatal exposure to the synthetic estrogen, diethylstilbestrol (DES), affects the structure of both male and female reproductive systems. Changes may also occur in the levels of steroid hormone receptors. Cytosolic and nuclear androgen and estrogen receptor levels (expressed per mg DNA) from the sex accessory glands of male BALB/c mice exposed neonatally to DES were analyzed by exchange assays. Neonatal DES exposure caused significant decreases in: (1) cytosolic androgen and cytosolic and nuclear estrogen receptor levels in the anterior prostate and (2) cytosolic estrogen receptor levels in the ventral prostate. A significant increase was seen in the cytosolic estrogen receptor levels in the seminal vesicle. Significant decreases in cytosolic protein levels occurred in all DES-exposed glands.  相似文献   

6.
Though administration of opioid peptides depresses ventilation and ventilatory responsiveness, the role of endogenous opioid peptides in modulating ventilatory responsiveness is not clear. We studied the interaction of endogenous opioids and ventilatory responses in 12 adult male volunteers by relating hypercapnic responsiveness to plasma levels of immunoactive beta-endorphin and by administering the opiate antagonist naloxone. Ventilatory responsiveness to hypercapnia was not altered by pretreatment with naloxone, and this by itself suggests that endogenous opioids have no role in modulating this response. However, there was an inverse relationship between basal levels of immunoactive beta-endorphin in plasma and ventilatory responsiveness to CO2. Furthermore, plasma beta-endorphin levels rose after short-term hypercapnia but only when subjects had been pretreated with naloxone. We conclude that measurement of plasma endorphin levels suggests relationships between endogenous opioid peptides and ventilatory responses to CO2 that are not apparent in studies limited to assessing the effect of naloxone.  相似文献   

7.
Inhibin, a hormone produced by Sertoli cells in response to FSH, regulates androgen production in nearby Leydig cells. Beta-endorphin synthesized by Leydig cells under LH control is also known to regulate Sertoli function. To delineate whether beta-endorphin might constitute part of a short loop regulatory system between these two testicular cells, the effect of this opiate on inhibin secretion was examined. Beta-endorphin alone did not alter basal inhibin accumulation in primary Sertoli cell-enriched cultures, however it did significantly reduce FSH-induced inhibin production and adenylyl cyclase activity but had no effect on forskolin-stimulated inhibin accumulation or adenylyl cyclase activity. Other opioid peptides (ACTH, dMSH, methionine-enkephalin) were without effect. These observations suggest that beta-endorphin regulates inhibin secretion by inhibiting FSH receptor coupling to adenylyl cyclase.  相似文献   

8.
Plasma beta-endorphin and prolactin profiles were obtained from groups of unstressed, adult male rats. The infusion of caffeine (20 mg/kg) via a chronic, indwelling intra-atrial cannula results in a prompt and sustained (2-2.5 h) rise In plasma beta-endorphin levels. The infusion of the opiate antagonist naloxone causes a modest (40%) decrease in plasma beta-endorphin and blunts the elevation in plasma beta-endorphin following caffeine administration. In contrast, plasma prolactin levels were unchanged following caffeine administration and were decreased by treatment with naloxone. Caffeine treatment did not effect CSF beta-endorphin levels or the release of beta-endorphin from hemipituitaries incubated in vitro.  相似文献   

9.
Previously, we demonstrated that naloxone, an opiate antagonist, prolonged survival of strain 13 guinea pigs infected with Pichinde virus. Thus, endogenous opiates may be involved in the pathogenesis of this viral disease. To determine whether endogenous opiate levels were affected by Pichinde viral infection, beta-endorphin concentrations in plasma and cerebrospinal fluid (CSF) of normal and infected strain 13 guinea pigs were measured by radioimmunoassay. Cerebrospinal fluid beta-endorphin concentrations were 78.0 +/- 13.2 pg/ml on postinoculation day (PID) 7, 59.0 +/- 5.6 pg/ml on PID 12, and 58.8 +/- 5.4 pg/ml on PID 14. These values were significantly higher than baseline levels of CSF beta-endorphin: 30.8 +/- 1.9 pg/ml. Plasma beta-endorphin concentrations of infected animals increased significantly to 202.1 +/- 17.9 pg/ml on PID 7 and to 154.2 +/- 21.4 pg/ml on PID 12 from a mean baseline value of 84.2 +/- 13.1 pg/ml. After a primer intravenous injection of beta-endorphin (10, 15, or 30 micrograms/kg), followed by constant infusion of beta-endorphin (15, 45, or 90 micrograms/kg.hr) to control noninfected guinea pigs, heart rate (except with the lowest dose) and mean blood pressure decreased markedly. Under these experimental conditions, concentrations of plasma and CSF beta-endorphin increased simultaneously with different magnitude. Because both Pichinde viral infection and beta-endorphin administration produced a similar trend of cardiovascular disturbances, leading to hypotension and bradycardia, increased concentrations of plasma and CSF beta-endorphin may play a partial role in the pathophysiological mechanisms of Pichinde virus infection.  相似文献   

10.
Our approach to the modeling of beta-endorphin has been based on the proposal that three basic structural units can be distinguished in the natural peptide hormone: a highly specific opiate recognition sequence at the N terminus (residues 1-5) connected via a hydrophilic link (residues 6-12) to a potential amphiphilic helix in the C-terminal residues 13-31. Our previous studies showed the validity of this approach and have demonstrated the importance of the amphiphilic helical structure in the C terminus of beta-endorphin. The present model, peptide 5, has been designed in order to evaluate further the requirements of the amphiphilic secondary structure as well as to determine the importance of this basic structural element as compared to more specific structural features which might occur in the C-terminal segment. For these reasons, peptide 5 retains the three structural units previously postulated for beta-endorphin; the major difference with regard to previous models is that the whole C-terminal segment, residues 13-31, has been built using only D-amino acids. In aqueous buffered solutions as well as in 2,2,2-trifluoroethanol-containing solutions, the CD spectra of peptide 5 show the presence of a considerable amount of left-handed helical structure. Enzymatic degradation studies employing rat brain homogenate indicate that peptide 5 is stable in this milieu. In delta- and mu-opiate receptor-binding assays, peptide 5 shows a slightly higher affinity than beta-endorphin for both receptors while retaining the same delta/mu selectivity. In opiate assays on the guinea pig ileum, the potency of peptide 5 is twice that of beta-endorphin. In the rat vas deferens assay, which is very specific for beta-endorphin, peptide 5 displays mixed agonist-antagonist activity. Most remarkably, peptide 5 displays a potent opiate analgesic effect when injected intracerebroventricularly into mice. At equal doses, the analgesic effect of peptide 5 is less than that of beta-endorphin (10-15%) but longer lasting. In conjunction with our previous model studies, these results clearly demonstrate that the amphiphilic helical structure in the C terminus of beta-endorphin is of predominant importance with regard to activity in rat vas deferens and analgesic assays. The similarity between the in vitro and in vivo opiate activities of beta-endorphin and peptide 5, when compared to the drastic change in chirality in the latter model, demonstrates that even a left-handed amphiphilic helix formed by D-amino acids can function satisfactorily as a structural unit in a beta-endorphin-like peptide.  相似文献   

11.
The present study was designed to investigate the in vivo effects of beta-endorphin on plasma levels of glucagon, insulin and glucose in rabbits, and to elucidate some of the mechanisms involved. beta-Endorphin (50 micrograms) injected intravenously into fasted rabbits, decreased plasma levels of insulin (-4.5 +/- 1.3 microU/ml, P less than 0.05) and increased plasma levels of glucose (+2.7 +/- 0.4 mmol/l, P less than 0.05). Similar hypoinsulinemic and hyperglycemic effects were observed for 25 and 2.5 micrograms beta-endorphin in fasted and 50 and 0.5 micrograms beta-endorphin in fed rabbits. beta-Endorphin produced slight and transient increases in plasma levels of glucagon at the highest dose in fed rabbits, only (+80 +/- 9 pg/ml, P less than 0.05). The beta-endorphin-induced hypoinsulinemia was not inhibited by phentolamine, yohimbine, propranolol or atropine, which is in consistency with a direct inhibitory effect of beta-endorphin on the beta-cell in rabbits. The beta-endorphin-induced hyperglycemia was reduced by naloxone (+0.8 +/- 0.1 mmol/l) but not by N-methyl-naloxone (ORG 10908) a peripheral opiate receptor blocking drug (+2.2 +/- 0.2 mmol/l), suggesting a central nervous action on opiate receptors. This central action of beta-endorphin was probably not mediated by catecholamine release or other stimulation of adrenergic or muscarinic receptors, since the beta-endorphin-induced hyperglycemia was not inhibited by phentolamine, yohimbine, propranolol or atropine. These results suggest that the beta-endorphin-induced hyperglycemia was caused, at least in part, by a peripheral inhibition of insulin release and a central stimulation on glucoregulation.  相似文献   

12.
Perinatal sex-steroid exposure may result in permanent modifications in the structure and function of the prostate gland. The mechanism of such long-range alterations in hormonal sensitivity is not known. This study aimed to define the molecular requirements for neonatal sex-steroid imprinting and to investigate whether combined administration of neonatal androgens and estrogens had synergistic effects upon the mature mouse prostate. Since the interaction between endogenous and exogenous sex steroids in normal mice makes it difficult to dissociate direct from indirect effects, we used the hypogonadal (hpg) mouse, characterized by congenital androgen deficiency yet still fully responsive to exogenous androgens. Newborn mice (Days 1-2) were administered a single s.c. injection of androgens alone or in combination with an estrogen followed by testosterone-induced maximal prostate growth at maturity. The final effects were determined in 7-wk-old mice through study of ductal architecture in microdissected ventral prostates (VP) and quantitation of volume densities and diameters of prostate tissue components. A single neonatal dose of androgens, but not of estrogen, increased branching morphogenesis and VP weights at adulthood. These effects did not differ significantly between various androgens; in addition, combined androgen and estrogen treatment failed to demonstrate any synergistic effects on the prostate. We conclude that neonatal androgens induce long-range effects upon the mature VP structure as well as its secretory function and that this imprinting occurs via the androgen receptor without requiring aromatization of androgens. However, these conclusions, based on a specific treatment protocol, are confined only to the distal segment of VP, and effects of neonatal sex-steroid exposure in other regions or lobes of VP may differ.  相似文献   

13.
The interaction of beta-endorphin with opiate receptors was studied by using the radioiodinated, metabolically stable D-Ala2 derivative of human beta-endorphin. This analog binds specifically to rat brain membrane preparations with an apparent Kd of about 2.5 x 10-9 M. The ability of various enkephalin analogs, as well as opiate agonists and antagonists, to inhibit the binding of beta-endorphin clearly demonstrates that this peptide can bind to opiate receptors. However, the effects of various cations on the binding of 125I-[D-Ala2]beta-endorphin are markedly different from those found for enkephalin binding. Sodium ion at physiological concentrations decreases substantially the binding of enkephalins but only slightly decreases endorphin binding, whereas manganese enhances enkephalin binding but has no effect on endorphin binding. Moreover, potassium (100 mM) decreases the binding of beta-endorphin but does not affect enkephalin binding. These results suggest that beta-endorphin and enkephalin bind differently to the same receptor or bind to different receptors with overlapping specificity.  相似文献   

14.
In our approach to beta-endorphin modeling, we have proposed that the biological properties of the natural peptide are determined by the combination of three basic structural units: a highly specific opiate recognition sequence at the NH2 terminus (residues 1-5) connected via a hydrophilic peptide link (residues 6-12) to a potential amphiphilic helix in the COOH-terminal residues 13-31. In the alpha-helical conformation the hydrophobic domain twists around the length of the helix and covers almost one-half of its surface. The other distinctive features of the helix include its basicity and the two aromatic residues Phe18 and Tyr27. In contrast to previous models we have studied, peptide 4 is a "negative" model in the sense that it was designed and examined in order to determine how the lack of a well defined amphiphilic structure affects the biological properties of beta-endorphin. For this purpose, peptide 4 retains the three structural units previously postulated for beta-endorphin, but the amino acids of the 13-31 region are arranged in such a way that no definite continuous hydrophobic zone could be formed in an alpha- or pi-helical conformation of this region. In aqueous buffered solutions, peptide 4 showed almost the same amount of alpha-helical structure as beta-endorphin, with a slight tendency toward less helicity in 50% aqueous 2,2,2-trifluoroethanol. In rat brain homogenate, peptide 4 was degraded slightly slower than beta-endorphin, in contrast to the apparently much higher stability of previous models under the same conditions. With regard to opiate receptor binding, peptide 4 was twice as potent as beta-endorphin in mu-receptor assays but half as potent in delta-receptor assays. The opiate potency of peptide 4 on the guinea pig ileum was higher than that of beta-endorphin. In contrast, in the rat vas deferens assay, which is very specific for beta-endorphin, the potency of peptide 4 was very low and could be shown not to be mediated by the same opiate mechanism or by the same opiate receptor. A comparison of these results with those of previous model peptides provides further evidence for the importance of an amphiphilic helical structure in beta-endorphin residues 13-31, which determines the resistance to proteolysis of the natural molecule and contributes to the delta- and mu-opiate receptor interaction. The amphiphilicity of this helical structure must also be essential for high opiate activity on the rat vas deferens (epsilon-receptors), whereas no such structural requirement appears to be necessary for interaction with the opiate receptors on the guinea pig ileum.  相似文献   

15.
Morphine inhibits suckling-induced oxytocin (OT) release in lactating mice. Since beta-endorphin and enkephalins have several actions in common with morphine, the action of these opioid peptides on OT release was investigated. In anesthetized lactating rats, OT release was achieved by intraventricular injection of acetylcholine (ACh) or by the physiological stimulus of suckling. The amount of OT released was estimated by comparing milk-ejection responses to these stimuli to those following known amounts of intravenous (IV) OT. Both beta-endorphin and [D-Ala2]Met-enkephalin inhibited ACh-induced and suckling-induced OT release. Naloxone antagonized opiate inhibition in both cases.  相似文献   

16.
An assay system is described to measure the specific binding of beta-endorphin to opiate sites (receptors) in rat brain membrane preparations using the tritiated hormone as the primary ligand. By this assay procedure, the radioreceptor activity of beta-endorphin and synthetic analogs with various chain lengths has been determined. The results suggest that both NH2- and COOH-terminal sequences of the molecule are involved in the interaction of beta-endorphin with opiate receptors.  相似文献   

17.
Immunoreactivity of synthetic human beta-endorphin analogs with various chain lengths has been examined using a specific radioimmunoassay. It was found that beta-endorphin-(1--21) and analogs of shortened chain exhibit no immunoreactivity, whereas beta-endorphin-(1--15) possesses significant in vitro opiate activity. It appears that immunoreactivity of beta-endorphin resides in the COOH-terminal segment of residues (22--31). The data also show the lack of correlation between opiate and immunological activities of beta-endorphin.  相似文献   

18.
Immunoreactive beta-endorphin (IR-BE) levels in the plasma, anterior pituitary (AP), the neurointermediate lobe of the pituitary (NIL), and the hypothalamus were determined in castrated female rats and castrated female rats treated with estradiol benzoate (estrogen), after exposure to acute (once for 45 min) or chronic (45 min each day for 15 consecutive days) immobilization stress. Acute and chronic stress increased plasma levels of IR-BE to the same extent in castrated female rats and castrated female rats treated with estrogen. In castrated female rats, acute stress produced an increase in the concentration of IR-BE in the AP, which was attenuated by the administration of estrogen. Although IR-BE in the NIL was not influenced by acute stress in castrated animals, exposure to acute stress resulted in an elevation in IR-BE levels in the NIL of rats given estrogen. Chronic stress did not affect the concentration of IR-BE in the AP of castrated females or castrated females treated with estrogen. Chronic stress did, however, increase the concentration of IR-BE in the NIL of castrated animals. This affect of stress on IR-BE levels in the NIL was potentiated by estrogen administration. IR-BE levels in the hypothalamus were reduced by estrogen and were not affected by acute or chronic stress, regardless of the gonadal steroid environment. As determined by column chromatography, administration of estrogen, as well as subjection to chronic stress, promoted the processing of the proopiomelanocortin precursor to form beta-lipotropin rather than beta-endorphin in the AP. By these methods, the only immunoreactivity detected in the NIL and the hypothalamus was beta-endorphin. These data indicate that IR-BE levels in the plasma, the AP, and the NIL of female rats are affected by immobilization stress and that estrogen modulates the effects of acute immobilization stress on IR-BE levels in the AP and the NIL and the effects of chronic immobilization stress on the levels of IR-BE in the NIL.  相似文献   

19.
Neurointermediate lobes from amphibians (Rana pipiens) were incubated in Medium 199 containing dopamine, beta-endorphin or dopamine plus beta-endorphin. Dopamine inhibited melanocyte-stimulating hormone (MSH) secretion as measured by bioassay in hypophysectomized frogs, an effect which was transiently reversed by beta-endorphin. The effects of endorphin were in turn partially suppressed by the opiate antagonist, naloxone hydrochloride. Cells treated with all three agents exhibited expanded rough endoplasmic reticulum and decreased secretory granule content, indicative of peptide release and new synthesis. Beta-Endorphin alone did not stimulate MSH secretion above control levels, and at one time period was seen to reduce MSH secretion. The findings indicate a complex interaction between beta-endorphin and dopamine directly upon MSH secretion at the level of the neurointermediate lobe.  相似文献   

20.
Double-label immunocytochemistry was used to determine whether estradiol-induced progestin receptors and either beta-endorphin or leucine-enkephalin are colocalized in female guinea pig brain. Ovariectomized, adult guinea pigs were implanted with capsules containing estradiol-17 beta to induce high levels of progestin receptors, and injected intracerebroventricularly with colchicine to improve visualization of the opiate peptides. Sections through the hypothalamus and preoptic area were processed for progestin receptor, followed by beta-endorphin or leucine-enkephalin immunocytochemistry. As reported previously, high concentrations of progestin receptor-immunoreactive (PR-IR) cells were found in the preoptic area (medial and periventricular portions, medial preoptic nucleus) and hypothalamus (anterior hypothalamic and arcuate nuclei, ventrolateral area). Many beta-endorphin-IR cells contained PR-IR in the arcuate nucleus and its surroundings (33%) and in the dorsomedial area of the hypothalamus (64%). Scattered enkephalin-IR cells were found in the septal nucleus, medial and lateral preoptic area, bed nucleus of the stria terminalis, and the arcuate nucleus. The ventromedial nucleus of the hypothalamus and dorsolateral magnocellular nucleus, respectively, contained moderate and heavy concentrations of enkephalin-IR cells. Although some of these areas also contained PR-IR, enkephalin-IR was colocalized consistently with PR-IR only in a small number of cells in the arcuate nucleus and ventromedial/ventrolateral area of the hypothalamus. These data, taken together with earlier observations that virtually all cells containing estradiol-induced PR-IR also contain estrogen receptor-IR, provide neuroanatomical evidence that hypothalamic actions of progesterone and estradiol may be mediated by beta-endorphin and/or enkephalin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号