首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
tRNA splicing endonucleases, essential enzymes found in Archaea and Eukaryotes, are involved in the processing of pre-tRNA molecules. In Archaea, three types of splicing endonuclease [homotetrameric: α(4), homodimeric: α(2), and heterotetrameric: (αβ)(2)] have been identified, each representing different substrate specificity during the tRNA intron cleavage. Here, we discovered a fourth type of archaeal tRNA splicing endonuclease (ε(2)) in the genome of the acidophilic archaeon Candidatus Micrarchaeum acidiphilum, referred to as ARMAN-2 and its closely related species, ARMAN-1. The enzyme consists of two duplicated catalytic units and one structural unit encoded on a single gene, representing a novel three-unit architecture. Homodimeric formation was confirmed by cross-linking assay, and site-directed mutagenesis determined that the conserved L10-pocket interaction between catalytic and structural unit is necessary for the assembly. A tRNA splicing assay reveal that ε(2) endonuclease cleaves both canonical and non-canonical bulge-helix-bulge motifs, similar to that of (αβ)(2) endonuclease. Unlike other ARMAN and Euryarchaeota, tRNAs found in ARMAN-2 are highly disrupted by introns at various positions, which again resemble the properties of archaeal species with (αβ)(2) endonuclease. Thus, the discovery of ε(2) endonuclease in an archaeon deeply branched within Euryarchaeota represents a new example of the coevolution of tRNA and their processing enzymes.  相似文献   

2.
Cleavage of introns from precursor transfer RNAs (tRNAs) by tRNA splicing endonuclease (EndA) is essential for tRNA maturation in Archaea and Eukarya. In the past, archaeal EndAs were classified into three types (α′2, α4 and α2β2) according to subunit composition. Recently, we have identified a fourth type of archaeal EndA from an uncultivated archaeon Candidatus Micrarchaeum acidiphilum, referred to as ARMAN-2, which is deeply branched within Euryarchaea. The ARMAN-2 EndA forms an ε2 homodimer and has broad substrate specificity like the α2β2 type EndAs found in Crenarchaea and Nanoarchaea. However, the precise architecture of ARMAN-2 EndA was unknown. Here, we report the crystal structure of the ε2 homodimer of ARMAN-2 EndA. The structure reveals that the ε protomer is separated into three novel units (αN, α and βC) fused by two distinct linkers, although the overall structure of ARMAN-2 EndA is similar to those of the other three types of archaeal EndAs. Structural comparison and mutational analyses reveal that an ARMAN-2 type-specific loop (ASL) is involved in the broad substrate specificity and that K161 in the ASL functions as the RNA recognition site. These findings suggest that the broad substrate specificities of ε2 and α2β2 EndAs were separately acquired through different evolutionary processes.  相似文献   

3.
4.
Down-regulation of expression of trmD, encoding the enzyme tRNA (guanosine-1)-methyltransferase, has shown that this gene is essential for growth of Streptococcus pneumoniae. The S. pneumoniae trmD gene has been isolated and expressed in Escherichia coli by using a His-tagged T7 expression vector. Recombinant protein has been purified, and its catalytic and physical properties have been characterized. The native enzyme displays a molecular mass of approximately 65,000 Da, suggesting that streptococcal TrmD is a dimer of two identical subunits. In fact, this characteristic can be extended to several other TrmD orthologs, including E. coli TrmD. Kinetic studies show that the streptococcal enzyme utilizes a sequential mechanism. Binding of tRNA by gel mobility shift assays gives a dissociation constant of 22 nM for one of its substrates, tRNA(Leu)(CAG). Other heterologous nonsubstrate tRNA species, like, tRNA (Thr)(GGT), tRNA(Phe), and tRNA (Ala)(TGC), bind the enzyme with similar affinities, suggesting that tRNA specificity is achieved via a postbinding event(s).  相似文献   

5.
6.
Transfer RNA (guanosine-2')-methyltransferase (Gm-methylase) catalyzes the transfer of a methyl group from S-adenosyl-l-methionine to 2'-OH of G18 in the D-loop of tRNA. Based on their mode of tRNA recognition, Gm-methylases can be divided into the following two types: type I having broad specificity toward the substrate tRNA, and type II that methylates only limited tRNA species. Protein synthesized by in vitro cell-free translation revealed that Gm-methylase encoded in the Aquifex aeolicus genome is a novel type II enzyme. Experiments with chimeric tRNAs and mini- and micro-helix RNAs showed that the recognition region of this enzyme is included within the D-arm structure of tRNALeu and that a bulge is essentially required. Variants of tRNALeu, tRNASer, and tRNAPhe revealed that a combination of certain base pairs in the D-stem is strongly recognized by the enzyme, that 4 bp in the D-stem enhance methyl acceptance activity, and that the Py16Py17G18G19 sequence is important for efficient methyl transfer. The methyl acceptance activities of all the A. aeolicus tRNA genes, which can be classified into 14 categories on the basis of their D-arm structure, were tested. The results clearly showed that the substrate recognition mechanism elucidated by the variant experiments was applicable to their native substrates.  相似文献   

7.
Y Komine  H Inokuchi 《FEBS letters》1990,272(1-2):55-57
The tRNA(Thr2) isoacceptor of E. coli has a G-A mismatch at positions 27-43. When the anticodon of this tRNA was converted to an amber anticodon (CUA), this tRNA showed suppressor activity in E. coli. Moreover, introduction of the base pair (G-C or U-A) at positions 27-43 of this suppressor tRNA reduced its suppressor activity. These results indicate that the G27-A43 mismatch is necessary for full function of tRNA(Thr2).  相似文献   

8.
The 3-methylcytidine (m3C) modification is widely found in eukaryotic species of tRNA(Ser), tRNA(Thr), and tRNA(Arg); at residue 32 in the anti-codon loop; and at residue e2 in the variable stem of tRNA(Ser). Little is known about the function of this modification or about the specificity of the corresponding methyltransferase, since the gene has not been identified. We have used a primer extension assay to screen a battery of methyltransferase candidate knockout strains in the yeast Saccharomyces cerevisiae, and find that tRNA(Thr(IGU)) from abp140-Δ strains lacks m3C. Curiously, Abp140p is composed of a poorly conserved N-terminal ORF fused by a programed +1 frameshift in budding yeasts to a C-terminal ORF containing an S-adenosylmethionine (SAM) domain that is highly conserved among eukaryotes. We show that ABP140 is required for m3C modification of substrate tRNAs, since primer extension is similarly affected for all tRNA species expected to have m3C and since quantitative analysis shows explicitly that tRNA(Thr(IGU)) from an abp140-Δ strain lacks m3C. We also show that Abp140p (now named Trm140p) purified after expression in yeast or Escherichia coli has m3C methyltransferase activity, which is specific for tRNA(Thr(IGU)) and not tRNA(Phe) and occurs specifically at C??. We suggest that the C-terminal ORF of Trm140p is necessary and sufficient for activity in vivo and in vitro, based on analysis of constructs deleted for most or all of the N-terminal ORF. We also suggest that m3C has a role in translation, since trm140-Δ trm1-Δ strains (also lacking m2,2G??) are sensitive to low concentrations of cycloheximide.  相似文献   

9.
Baeyer-Villiger monooxygenases catalyze oxidations that are of interest for biocatalytic applications. Among these enzymes, phenylacetone monooxygenase (PAMO) from Thermobifida fusca is the only protein showing remarkable stability. While related enzymes often present a broad substrate scope, PAMO accepts only a limited number of substrates. Due to the absence of a substrate in the elucidated crystal structure of PAMO, the substrate binding site of this protein has not yet been defined. In this study, a structural model of cyclopentanone monooxygenase, which acts on a broad range of compounds, has been prepared and compared with the structure of PAMO. This revealed 15 amino acid positions in the active site of PAMO that may account for its relatively narrow substrate specificity. We designed and analyzed 30 single and multiple mutants in order to verify the role of these positions. Extensive substrate screening revealed several mutants that displayed increased activity and altered regio- or enantioselectivity in Baeyer-Villiger reactions and sulfoxidations. Further substrate profiling resulted in the identification of mutants with improved catalytic properties toward synthetically attractive compounds. Moreover, the thermostability of the mutants was not compromised in comparison to that of the wild-type enzyme. Our data demonstrate that the positions identified within the active site of PAMO, namely, V54, I67, Q152, and A435, contribute to the substrate specificity of this enzyme. These findings will aid in more dedicated and effective redesign of PAMO and related monooxygenases toward an expanded substrate scope.  相似文献   

10.
The solution structure of Escherichia coli tRNA(3Thr) (anticodon GGU) and the residues of this tRNA in contact with the alpha 2 dimeric threonyl-tRNA synthetase were studied by chemical and enzymatic footprinting experiments. Alkylation of phosphodiester bonds by ethylnitrosourea and of N-7 positions in guanosines and N-3 positions in cytidines by dimethyl sulphate as well as carbethoxylation of N-7 positions in adenosines by diethyl pyrocarbonate were conducted on different conformers of tRNA(3Thr). The enzymatic structural probes were nuclease S1 and the cobra venom ribonuclease. Results will be compared to those of three other tRNAs, tRNA(Asp), tRNA(Phe) and tRNA(Trp), already mapped with these probes. The reactivity of phosphates towards ethylnitrosourea of the unfolded tRNA was compared to that of the native molecule. The alkylation pattern of tRNA(3Thr) shows some similarities to that of yeast tRNA(Phe) and mammalian tRNA(Trp), especially in the D-arm (positions 19 and 24) and with tRNA(Trp), at position 50, the junction between the variable region and the T-stem. In the T-loop, tRNA(3Thr), similarly to the three other tRNAs, shows protections against alkylation at phosphates 59 and 60. However, tRNA(3Thr) is unique as far as very strong protections are also found for phosphates 55 to 58 in the T-loop. Compared with yeast tRNA(Asp), the main differences in reactivity concern phosphates 19, 24 and 50. Mapping of bases with dimethyl sulphate and diethyl pyrocarbonate reveal conformational similarities with yeast tRNA(Phe). A striking conformational feature of tRNA(3Thr) is found in the 3'-side of its anticodon stem, where G40, surrounded by two G residues, is alkylated under native conditions, in contrast to other G residues in stem regions of tRNAs which are unreactive when sandwiched between two purines. This data is indicative of a perturbed helical conformation in the anticodon stem at the level of the 30-40 base pairs. Footprinting experiments, with chemical and enzymatic probes, on the tRNA complexed with its cognate threonyl-tRNA synthetase indicate significant protections in the anticodon stem and loop region, in the extra-loop, and in the amino acid accepting region. The involvement of the anticodon of tRNA(3Thr) in the recognition process with threonyl-tRNA synthetase was demonstrated by nuclease S1 mapping and by the protection of G34 and G35 against alkylation by dimethyl sulphate. These data are discussed in the light of the tRNA/synthetase recognition problem and of the structural and functional properties of the tRNA-like structure present in the operator region of the thrS mRNA.  相似文献   

11.
In archaeal species, several transfer RNA genes have been reported to contain endogenous introns. Although most of the introns are located at anticodon loop regions between nucleotide positions 37 and 38, a number of introns at noncanonical sites and six cases of tRNA genes containing two introns have also been documented. However, these tRNA genes are often missed by tRNAscan-SE, the software most widely used for the annotation of tRNA genes. We previously developed SPLITS, a computational tool to identify tRNA genes containing one intron at a noncanonical position on the basis of its discriminative splicing motif, but the software was limited in the detection of tRNA genes with multiple introns at noncanonical sites. In this study, we initially updated the system as SPLITSX in order to correctly predict known tRNA genes as well as novel ones with multiple introns. By a comprehensive search for tRNA genes in 29 archaeal genomes using SPLITSX, we listed 43 novel candidates that contain introns at noncanonical sites. As a result, 15 contained two introns and three contained three introns within the respective putative tRNA genes. Moreover, the candidates completely complemented all the codons of two archaeal species of uncultured methanogenic archaeon, RC-I and Thermofilum pendens Hrk 5, with novel candidates that were not detectable by tRNAscan-SE alone.  相似文献   

12.
13.
The acidothermophilic crenarchaeon, Sulfolobus tokodaii strain7, was isolated from a hot spring in Beppu, Kyushu, Japan. Whole genomic data of this microorganism indicated that among 46 putative tRNA genes identified, 24 were interrupted tRNA genes containing an intron. A sequence comparison between the cDNA sequences for unspliced and spliced tRNAs indicated that all predicted tRNAs were expressed and all intron portions were spliced in this microorganism. However, the actual cleavage site in the splicing process was not determined for 13 interrupted tRNAs because of the presence of the same nucleotides at both 5′ and 3′ border regions of each intron. The cleavage sites for all the introns, which were determined by an in vitro cleavage experiment with recombinant splicing endonuclease as well as cDNA sequencing of the spliced tRNAs, indicated that non-canonical BHB structure motifs were also recognized and processed by the splicing machinery in this organism. This is the first report to empirically determine the actual cleavage and splice sites of introns in the whole set of archaeal tRNA genes, and reassigns the exon-intron borders with a novel and more plausible non-canonical BHB structure.  相似文献   

14.
15.
Translation is the process by which ribosomes direct protein synthesis using the genetic information contained in messenger RNA (mRNA). Transfer RNAs (tRNAs) are charged with an amino acid and brought to the ribosome, where they are paired with the corresponding trinucleotide codon in mRNA. The amino acid is attached to the nascent polypeptide and the ribosome moves on to the next codon. Thus, the sequential pairing of codons in mRNA with tRNA anticodons determines the order of amino acids in a protein. It is therefore imperative for accurate translation that tRNAs are only coupled to amino acids corresponding to the RNA anticodon. This is mostly, but not exclusively, achieved by the direct attachment of the appropriate amino acid to the 3'-end of the corresponding tRNA by the aminoacyl-tRNA synthetases. To ensure the accurate translation of genetic information, the aminoacyl-tRNA synthetases must display an extremely high level of substrate specificity. Despite this highly conserved function, recent studies arising from the analysis of whole genomes have shown a significant degree of evolutionary diversity in aminoacyl-tRNA synthesis. For example, non-canonical routes have been identified for the synthesis of Asn-tRNA, Cys-tRNA, Gln-tRNA and Lys-tRNA. Characterization of non-canonical aminoacyl-tRNA synthesis has revealed an unexpected level of evolutionary divergence and has also provided new insights into the possible precursors of contemporary aminoacyl-tRNA synthetases.  相似文献   

16.
The present study was undertaken to investigate the pattern of optimal codon usage in Archaea. Comparative analysis was executed to understand the pattern of codon usage bias between the high expression genes (HEG) and the whole genomes in two Archaeal phyla, Crenarchaea and Euryarchaea. The G + C% of the HEG was found to be less in comparison to the genome G + C% in Crenarchaea, whereas reverse was the case in Euryarchaea. The preponderance of U/A ending codons that code for HEG in Crenarchaea was in sharp contrast to the C/G ended ones in Euryarchaea. The analysis revealed prevalence of U-ending codons even within the WWY (nucleotide ambiguity code) families in Crenarchaea vis-à-vis Euryarchaea, bacteria and Eukarya. No plausible interpretation of the observed disparity could be made either in the context of tRNA gene composition or genome G + C%. The results in this study attested that the preferential biasness for codons in HEG of Crenarchaea might be different from Euryarchaea. The main highlights are (i) varied CUB in the HEG and in the whole genomes in Euryarchaea and Crenarchaea. (ii) Crenarchaea was found to have some unusual optimal codons (OCs) compared to other organisms. (iii) G + C% (and GC3) of the HEG were different from the genome G + C% in the two phyla. (iv) Genome G + C% and tRNA gene number failed to explain CUB in Crenarchaea. (v) Translational selection is possibly responsible for A + T rich OCs in Crenarchaea.  相似文献   

17.
One of the two major species of brewer's yeast tRNA threonine (tRNA Thr 1) has been purified by countercurrent distribution followed by two chromatographic steps (respectively on a Sepharose 4B and a BD-cellulose column). Complete digestion with pancreatic and T1 RNases and a partial hydrolysis with T1 RNase followed by the isolation and determination of the nucleotide sequences of the resulting fragments permitted the derivation of its primary structure. tRNA Thr 1 is in fact a mixture of two subspecies differing only by a A49-U65 base pair in 50 per cent of the molecules which is replaced by a G49-C65 pair in the other 50 per cent. These two subspecies consist of 76 nucleotide residues including 14 minor nucleotides. They show a characteristic m3C at the 3'terminal end of the anticodon loop, an anticodon I-G-U followed by t6A and C48, uncompletely modified (50 per cent) to m5C within the 5 nucleotides long extra-arm. The minor nucleotides m2G m2 2G are located at positions in which they generally occur in the tRNA structures as does m1A within the T-psi-C loop.  相似文献   

18.
The multifunctional protein phosphoglucose isomerase, also known as neuroleukin, autocrine motility factor, and differentiation and maturation mediator, has different roles inside and outside the cell. In the cytoplasm, it catalyzes the second step in glycolysis. Outside the cell, it serves as a nerve growth factor and cytokine. We have determined the three-dimensional structure of rabbit muscle phosphoglucose isomerase complexed with the competitive inhibitor D-gluconate 6-phosphate by X-ray crystallography at 2.5 A resolution. The structure shows that the enzyme is a dimer with two alpha/beta-sandwich domains in each subunit. The location of the bound D-gluconate 6-phosphate inhibitor leads to the identification of residues involved in substrate specificity (Ser209, Ser159, Thr214, Thr217, and Thr211). The results of previously published kinetic studies suggest that a lysine and a histidine are involved in the catalytic mechanism. The crystal structure suggests active site residues Lys518 and His388 might be these residues. In addition, the positions of amino acid residues that are substituted in the genetic disease nonspherocytic hemolytic anemia suggest how these substitutions can result in altered catalysis or protein stability.  相似文献   

19.
The 3C-like proteinase of severe acute respiratory syndrome (SARS) coronavirus has been proposed to be a key target for structural-based drug design against SARS. In order to understand the active form and the substrate specificity of the enzyme, we have cloned, expressed, and purified SARS 3C-like proteinase. Analytic gel filtration shows a mixture of monomer and dimer at a protein concentration of 4 mg/ml and mostly monomer at 0.2 mg/ml, which correspond to the concentration used in the enzyme assays. The linear decrease of the enzymatic-specific activity with the decrease of enzyme concentration revealed that only the dimeric form is active and the dimeric interface could be targeted for structural-based drug design against SARS 3C-like proteinase. By using a high pressure liquid chromatography assay, SARS 3C-like proteinase was shown to cut the 11 peptides covering all of the 11 cleavage sites on the viral polyprotein with different efficiency. The two peptides corresponding to the two self-cleavage sites are the two with highest cleavage efficiency, whereas peptides with non-canonical residues at P2 or P1' positions react slower. The P2 position of the substrates seems to favor large hydrophobic residues. Secondary structure studies for the peptide substrates revealed that substrates with more beta-sheetlike structure tend to react fast. This study provides a basic understanding of the enzyme catalysis and a full substrate specificity spectrum for SARS 3C-like proteinase, which are helpful for structural-based inhibitor design against SARS and other coronavirus.  相似文献   

20.
Combinatorial libraries of the lid domain of Rhizopus oryzae lipase (ROL; Phe88Xaa, Ala91Xaa, Ile92Xaa) were displayed on the yeast cell surface using yeast cell-surface engineering. Among the 40,000 transformants in which ROL mutants were displayed on the yeast cell surface, ten clones showed clear halos on soybean oil-containing plates. Among these, some clones exhibited high activities toward fatty acid esters of fluorescein and contained non-polar amino acid residues in the mutated positions. Computer modeling of the mutants revealed that hydrophobic interactions between the substrates and amino acid residues in the open form of the lid might be critical for ROL activity. Based on these results, Thr93 and Asp94 were further combinatorially mutated. Among 6,000 transformants, the Thr93Thr, Asp94Ser and Thr93Ser, Asp94Ser transformants exhibited a significant shift in substrate specificity toward a short-chain substrate. Computer modeling of these mutants suggested that a unique oxyanion hole, which is composed of Thr85 Oγ and Ser94 Oγ, was formed and thus the substrate specificity was changed. Therefore, coupling combinatorial mutagenesis with the cell surface display of ROL could lead to the production of a unique ROL mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号