首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel benzylidenethiazolidinedione has been discovered with antimicrobial activity. Here, we present the results of a structure-activity study on this compound with respect to its antimicrobial activity.  相似文献   

2.
Sixteen disulfides derived from disulfiram (Antabuse?) were evaluated as antibacterial agents. Derivatives with hydrocarbon chains of seven and eight carbons in length exhibited antibacterial activity against Gram-positive Staphylococcus, Streptococcus, Enterococcus, Bacillus, and Listeria spp. A comparison of the cytotoxicity and microsomal stability with disulfiram further revealed that the eight carbon chain analog was of lower toxicity to human hepatocytes and has a longer metabolic half-life. In the final analysis, this investigation concluded that the S-octylthio derivative is a more effective growth inhibitor of Gram-positive bacteria than disulfiram and exhibits more favorable cytotoxic and metabolic parameters over disulfiram.  相似文献   

3.
This paper describes the discovery of alpha-trifluoroketoacetamides as potent antibacterial agents against Gram-positive organisms. The initial SAR indicates that the aryl ethyl side chain is essential in maintaining antibacterial activity. The SAR observations have been utilized to design a bioisostere for the alpha-trifluoroketoacetamide with good activity against Gram-positive organisms.  相似文献   

4.
Vancomycin disulfide derivatives as antibacterial agents   总被引:1,自引:0,他引:1  
A series of lipidated vancomycin analogues 1 bearing disulfide bonds within their lipid chains was designed and synthesized to optimize their ADME profiles while retaining antibacterial potency. These compounds exhibited good activity against resistant organisms and low accumulation in tissues such as kidney and liver.  相似文献   

5.
Bacterial cell division occurs in conjunction with the formation of a cytokinetic Z-ring structure comprised of FtsZ subunits. Agents that disrupt Z-ring formation have the potential, through this unique mechanism, to be effective against several of the newly emerging multidrug-resistant strains of infectious bacteria. Several 1-phenylbenzo[c]phenanthridines exhibit notable antibacterial activity. Based upon their structural similarity to these compounds, a distinct series of substituted 1,6-diphenylnaphthalenes were synthesized and evaluated for antibacterial activity against Staphylococcus aureus and Enterococcus faecalis. In addition, the effect of select 1,6-diphenylnaphthalenes on the polymerization dynamics of S. aureus FtsZ and mammalian β-tubulin was also assessed. The presence of a basic functional group or a quaternary ammonium substituent on the 6-phenylnaphthalene was required for significant antibacterial activity. Diphenylnaphthalene derivatives that were active as antibiotics, did exert a pronounced effect on bacterial FtsZ polymerization and do not appear to cross-react with mammalian tubulin to any significant degree.  相似文献   

6.
7.
Over the years, polymers have attracted a great deal of interest because they offer a unique platform for the development of materials in fields as diverse as biomedicine and packaging. Many of these purposes use polymers that had been developed for totally different applications. Recently, however, chemical tailoring and molecular and supramolecular control of the chemistry and, thus, the physical and biological response have become a key interest of many researchers. In particular, systems that operate in aqueous media have become an intensely researched field. This is mostly because many devices must be biocompatible, which implies that they have to function in aqueous solutions. Over the past few years, new approaches for mimicking cell surfaces, for generating biocompatible and bioactive drug delivery systems, and for directed targeting have been developed. One recent development is polymeric systems with an enhanced biofunctionality, such as amphiphilic block copolymers that can act as mimetics for biological membranes. Because there are virtually no limits to combinations of monomers, biological and synthetic building blocks, ligands, receptors, and other proteins, polymer hybrid materials show a great promise for applications in biomedicine and biotechnology.  相似文献   

8.
Amphiphilic star polymers offer substantial promise for a range of drug delivery applications owing to their ability to encapsulate guest molecules. One appealing but underexplored application is transdermal drug delivery using star block copolymer reverse micelles as an alternative to the more common oral and intravenous routes. We prepared 6- and 12-arm amphiphilic star copolymers via atom transfer radical polymerization (ATRP) of sequential blocks of polar oligo (ethylene glycol)methacrylate and nonpolar lauryl methacrylate from brominated dendritic macroinitiators based on 2,2-bis(hydroxymethyl) propionic acid. These star block copolymers demonstrate the ability to encapsulate polar dyes such as rhodamine B and FITC-BSA in nonpolar media via UV/vis spectroscopic studies and exhibit substantially improved encapsulation efficiencies, relative to self-assembled "1-arm" linear block copolymer analogs. Furthermore, their transdermal carrier capabilities were demonstrated in multiple dye diffusion studies using porcine skin, verifying penetration of the carriers into the stratum corneum.  相似文献   

9.
Quinoline compounds have been extensively explored as anti-malaria and anti-cancer agents for decades and show profound functional bioactivities, however, the studies of these compounds in other medicinal fields have lagged dramatically. In this study, we report the development of a series of facilely accessible quinoline derivatives that display potent antibacterial activity against a panel of multidrug-resistant Gram-positive bacterial strains, especially C. difficile. We also demonstrated that these molecules are effective in vivo against C. difficile. These results revealed that these types of quinoline compounds could serve as prototypes for the development of an appealing class of antibiotic agents used to combat Gram-positive drug-resistant bacterial strains, including C. difficile.  相似文献   

10.
We attempted to optimize sulfonamide-based non-alkyne LpxC inhibitors by focusing on improvements in enzyme inhibitory and antibacterial activity. It was discovered that inhibitors possessing 2-aryl benzofuran as a hydrophobe exhibited good activity. In particular, compound 21 displayed impressive antibacterial activity (E. coli MIC = 0.063 μg/mL, K. pneumoniae MIC = 0.5 μg/mL, and P. aeruginosa MIC = 0.5 μg/mL), and is a promising lead for further exploration as an antibacterial agent.  相似文献   

11.
Identification of 2-aminobenzimidazole dimers as antibacterial agents   总被引:1,自引:0,他引:1  
The preparation and evaluation of 2-aminobenzimidazole dimers as antibacterial agents is described. Biological screening of the dimers indicated that compounds with multiple chloro substituents possessed optimal antibacterial activity.  相似文献   

12.
Lipid biosynthesis as a target for antibacterial agents   总被引:20,自引:0,他引:20  
Fatty acid biosynthesis, the first stage in membrane lipid biogenesis, is catalyzed in most bacteria by a series of small, soluble proteins that are each encoded by a discrete gene (Fig. 1; Table 1). This arrangement is termed the type II fatty acid synthase (FAS) system and contrasts sharply with the type I FAS of eukaryotes which is a dimer of a single large, multifunctional polypeptide. Thus, the bacterial pathway offers several unique sites for selective inhibition by chemotherapeutic agents. The site of action of isoniazid, used in the treatment of tuberculosis for 50 years, and the consumer antimicrobial agent triclosan were revealed recently to be the enoyl-ACP reductase of the type II FAS. The fungal metabolites, cerulenin and thiolactomycin, target the condensing enzymes of the bacterial pathway while the dehydratase/isomerase is inhibited by a synthetic acetylenic substrate analogue. Transfer of fatty acids to the membrane has also been inhibited via interference with the first acyltransferase step, while a new class of drugs targets lipid A synthesis. This review will summarize the data generated on these inhibitors to date, and examine where additional efforts will be required to develop new chemotherapeutics to help combat microbial infections.  相似文献   

13.
Antimicrobial and hemolytic activities of amphiphilic random copolymers were modulated by the structure of the cationic side chain spacer arms, including 2-aminoethylene, 4-aminobutylene, and 6-aminohexylene groups. Cationic amphiphilic random copolymers with ethyl methacrylate (EMA) comonomer were prepared with a range of comonomer fractions, and the library of copolymers was screened for antimicrobial and hemolytic activities. Copolymers with 4-aminobutylene cationic side chains showed an order of magnitude enhancement in their antimicrobial activity relative to those with 2-aminoethylene spacer arms, without causing adverse hemolysis. When the spacer arms were further elongated to hexylene, the copolymers displayed potent antimicrobial and hemolytic activities. The 4-aminobutylene side chain appears to be the optimal spacer arm length for maximal antimicrobial potency and minimal hemolysis, when combined with hydrophobic ethylmethacrylate in a roughly 70/30 ratio. The copolymers displayed relatively rapid bactericidal kinetics and broad-spectrum activity against a panel of Gram-positive and Gram-negative bacteria. The effect of the spacer arms on the polymer conformation in the membrane-bound state was investigated by molecular dynamics simulations. The polymer backbones adopt an extended chain conformation, parallel to the membrane surface. A facially amphiphilic conformation at the membrane surface was observed, with the primary ammonium groups localized at the lipid phoshophate region and the nonpolar side chains of EMA comonomers buried in the hydrophobic membrane environment. This study demonstrates that the antimicrobial activity and molecular conformation of amphiphilic methacrylate random copolymers can be modulated by adjustment of cationic side chain spacer arms.  相似文献   

14.
The continuous emergence and rapid spread of a multidrug-resistant strain of bacterial pathogens have demanded the discovery and development of new antibacterial agents. A highly conserved prokaryotic cell division protein FtsZ is considered as a promising target by inhibiting bacterial cytokinesis. Inhibition of FtsZ assembly restrains the cell-division complex known as divisome, which results in filamentation, leading to lysis of the cell. This review focuses on details relating to the structure, function, and influence of FtsZ in bacterial cytokinesis. It also summarizes on the recent perspective of the known natural and synthetic inhibitors directly acting on FtsZ protein, with prominent antibacterial activities. A series of benzamides, trisubstituted benzimidazoles, isoquinolene, guanine nucleotides, zantrins, carbonylpyridine, 4 and 5-Substituted 1-phenyl naphthalenes, sulindac, vanillin analogues were studied here and recognized as FtsZ inhibitors that act either by disturbing FtsZ polymerization and/or GTPase activity. Doxorubicin, from a U.S. FDA, approved drug library displayed strong interaction with FtsZ. Several of the molecules discussed, include the prodrugs of benzamide based compound PC190723 (TXA-709 and TXA707). These molecules have exhibited the most prominent antibacterial activity against several strains of Staphylococcus aureus with minimal toxicity and good pharmacokinetics properties. The evidence of research reports and patent documentations on FtsZ protein has disclosed distinct support in the field of antibacterial drug discovery. The pressing need and interest shall facilitate the discovery of novel clinical molecules targeting FtsZ in the upcoming days.  相似文献   

15.
This study aimed at the synthesis of novel structurally promising steroidal heterocycles and to elucidate the potential role of these compounds as antibacterial agents. Epi-androsterone 1 reacted with CS2 and sodium hydride in dimethylsulfoxide to yield alpha-oxoketene dithiodisodium salt 2. The non-isolable salt 2 reacted with acetyl chloride, benzoyl chloride, phenacyl bromide and iodomethane to afford the corresponding alpha-oxodithioacetal derivatives 4a,b, 6 and 7, respectively. Interaction of 2 with the alkyl halide reagents 8a-d yielded the corresponding thiophene derivatives 10a-d. Alpha-oxoketene dithioacetal 7 reacted with urea and thiourea to furnish the pyrimidinoandrostane derivatives 12a,b. Compound 7 also reacted with ortho-phenylene diamine and ortho-aminophenol 13a,b to produce the dinucleophilic adducts 15a,b. The in vitro antibacterial evaluation of some newly prepared compounds showed that all compounds have high significant antibacterial activity against the used strains of gram positive and gram negative bacteria.  相似文献   

16.
Important resistance patterns in Gram-negative pathogens include active efflux of antibiotics out of the cell via a cellular pump and decreased membrane permeability. A 3-arylpiperidine derivative (1) has been identified by high-throughput assay as a potentiator with an IC(50) approximately 90 microM. This report details the evaluation of the tether length, aryl substitution and the importance of the fluorine on antibiotic accumulation. Evaluation of various tether lengths demonstrated that the two-carbon tethered analogues are optimal. Removal of the fluorine has a modest effect on antibiotic accumulation and the defluorinated analogue 17 is equally potent to the original lead 1.  相似文献   

17.
Bacteriophage endolysins as a novel class of antibacterial agents   总被引:5,自引:0,他引:5  
Endolysins are double-stranded DNA bacteriophage-encoded peptidoglycan hydrolases produced in phage-infected bacterial cells toward the end of the lytic cycle. They reach the peptidoglycan through membrane lesions formed by holins and cleave it, thus, inducing lysis of the bacterial cell and enabling progeny virions to be released. Endolysins are also capable of degrading peptidoglycan when applied externally (as purified recombinant proteins) to the bacterial cell wall, which also results in a rapid lysis of the bacterial cell. The unique ability of endolysins to rapidly cleave peptidoglycan in a generally species-specific manner renders them promising potential antibacterial agents. Originally developed with a view to killing bacteria colonizing mucous membranes (with the first report published in 2001), endolysins also hold promise for the treatment of systemic infections. As potential antibacterials, endolysins possess several important features, for instance, a novel mode of action, a narrow antibacterial spectrum, activity against bacteria regardless of their antibiotic sensitivity, and a low probability of developing resistance. However, there is only one report directly comparing the activity of an endolysin with that of an antibiotic, and no general conclusions can be drawn regarding whether lysins are more effective than traditional antibiotics. The results of the first preclinical studies indicate that the most apparent potential problems associated with endolysin therapy (e.g., their immunogenicity, the release of proinflammatory components during bacteriolysis, or the development of resistance), in fact, may not seriously hinder their use. However, all data regarding the safety and therapeutic effectiveness of endolysins obtained from preclinical studies must be ultimately verified by clinical trials. This review discusses the prophylactic and therapeutic applications of endolysins, especially with respect to their potential use in human medicine. Additionally, we outline current knowledge regarding the structure and natural function of the enzymes in phage biology, including the most recent findings.  相似文献   

18.
Synthesis of N-alkylated derivatives of imidazole as antibacterial agents   总被引:2,自引:0,他引:2  
N-Alkylation of imidazole, 2-methylimidazole and 2-methyl-4-nitroimidazole have been carried out to achieve effective antibacterial agents. The products were then investigated for antibacterial activity against Escherichia coil, Staphylococcus aureus and Pseudomonas aeruginosa. Antibacterial effects of 1-alkylimidazole derivatives increase as the number of carbons in alkyl chain increases up to nine carbons. Also substitution of 2-methyl and 2-methyl-4-nitro groups on imidazole ring increases the antibacterial activity.  相似文献   

19.
The emergence of multidrug-resistant bacteria has created an urgent need for antibiotics with a novel mechanism of action. The bacterial cell division protein FtsZ is an attractive target for the development of novel antibiotics. The benzo[c]phenanthridinium sanguinarine and the dibenzo[a,g]quinolizin-7-ium berberine are two structurally similar plant alkaloids that alter FtsZ function. The presence of a hydrophobic functionality at either the 1-position of 5-methylbenzo[c]phenanthridinium derivatives or the 2-position of dibenzo[a,g]quinolizin-7-ium derivatives is associated with significantly enhanced antibacterial activity. 3-Phenylisoquinoline represents a subunit within the ring-systems of both of these alkaloids. Several 3-phenylisoquinolines and 3-phenylisoquinolinium derivatives have been synthesized and evaluated for antibacterial activity against Staphylococcus aureus and Enterococcus faecalis, including multidrug-resistant strains of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). A number of derivatives were found to have activity against both MRSA and VRE. The binding of select compounds to S. aureus FtsZ (SaFtsZ) was demonstrated and characterized using fluorescence spectroscopy. In addition, the compounds were shown to act as stabilizers of SaFtsZ polymers and concomitant inhibitors of SaFtsZ GTPase activity. Toxicological assessment of select compounds revealed minimal cross-reaction mammalian β-tubulin as well as little or no human cytotoxicity.  相似文献   

20.
We report the synthesis and biological activity of analogues of VRC3375 (N-hydroxy-3-R-butyl-3-[(2-S-(tert-butoxycarbonyl)-pyrrolidin-1-ylcarbonyl]propionamide), an orally active peptide deformylase inhibitor. This study explores the structure-activity relationship of various chelator groups, alpha substituents, P(2)' and P(3)' substituents in order to achieve optimal antibacterial activity with minimal toxicity liability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号