首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A breeding program with the aim of reducing the prevalence of mitral regurgitation (MR) caused by myxomatous mitral valve disease (MMVD) in Cavalier King Charles Spaniels (CKCS) is currently ongoing in Sweden. In this investigation 353 CKCS were selected as a sample of the population and 150 were examined by auscultation for heart murmurs when they reached the age of six years in 2007 and 2009. The aim with this investigation was to study the prevalence of heart murmurs in six-year-old CKCS and to estimate if prevalence has decreased since the breeding program was introduced 2001. The effect of the breeding program was evaluated by comparing the prevalence of heart murmurs in the two groups. In 2007, the prevalence of heart murmurs was 52% (50% for females and 54% for males) and in 2009, the prevalence was 55% (44% for females and 67% for males). No significant difference was found in the prevalence of heart murmurs between 2007 and 2009 (P = 0.8). For all six-year-old CKCS, the prevalence of heart murmur was 53% (females 46% and males 61%), which is higher than previous Swedish investigations.  相似文献   

2.
Selective breeding for desirable traits in strictly controlled populations has generated an extraordinary diversity in canine morphology and behaviour, but has also led to loss of genetic variation and random entrapment of disease alleles. As a consequence, specific diseases are now prevalent in certain breeds, but whether the recent breeding practice led to an overall increase in genetic load remains unclear. Here we generate whole genome sequencing (WGS) data from 20 dogs per breed from eight breeds and document a ~10% rise in the number of derived alleles per genome at evolutionarily conserved sites in the heavily bottlenecked cavalier King Charles spaniel breed (cKCs) relative to in most breeds studied here. Our finding represents the first clear indication of a relative increase in levels of deleterious genetic variation in a specific breed, arguing that recent breeding practices probably were associated with an accumulation of genetic load in dogs. We then use the WGS data to identify candidate risk alleles for the most common cause for veterinary care in cKCs–the heart disease myxomatous mitral valve disease (MMVD). We verify a potential link to MMVD for candidate variants near the heart specific NEBL gene in a dachshund population and show that two of the NEBL candidate variants have regulatory potential in heart-derived cell lines and are associated with reduced NEBL isoform nebulette expression in papillary muscle (but not in mitral valve, nor in left ventricular wall). Alleles linked to reduced nebulette expression may hence predispose cKCs and other breeds to MMVD via loss of papillary muscle integrity.  相似文献   

3.
Canine tricuspid valve malformation (CTVM) maps to canine chromosome 9 (CFA9), in a region syntenic with gene-dense human chromosome 17q. To define synteny blocks, we analyzed 148 markers on CFA9 using radiation hybrid mapping and established a four-way comparative map for human, mouse, rat, and dog. We identified a large number of rearrangements, allowing us to reconstruct the evolutionary history of individual synteny blocks and large chromosomal segments. A most parsimonious rearrangement scenario for all four species reveals that human chromosome 17q differs from CFA9 and the syntenic rodent chromosomes through two macroreversals of 9.2 and 23 Mb. Compared to a recovered ancestral gene order, CFA9 has undergone 11 reversals of <3 Mb and 2 reversals of >3 Mb. Interspecies reuse of breakpoints for micro- and macrorearrangements was observed. Gene order and content of the ctvm interval are best extrapolated from murine data, showing that multispecies genome rearrangement scenarios contribute to identifying gene content in canine mapping studies.  相似文献   

4.
Previous research in Cavalier King Charles Spaniels (CKCS) has found that Chiari-like malformation and syringomyelia (CM/SM) are associated with a volume mismatch between the caudal cranial fossa (CCF) and the brain parenchyma contained within. The objectives of this study were to i) compare cerebellar volume in CKCS (a "high risk' group which frequently develops CM/SM), small breed dogs (medium risk--occasionally develop CM/SM), and Labradors (low risk--CM/SM not reported); ii) evaluate a possible association between increased cerebellar volume and CM/SM in CKCS; iii) investigate the relationship between increased cerebellar volume and crowding of the cerebellum in the caudal part of the CCF (i.e. the region of the foramen magnum). Volumes of three-dimensional, magnetic resonance imaging derived models of the CCF and cerebellum were obtained from 75 CKCS, 44 small breed dogs, and 31 Labradors. As SM is thought to be a late onset disease process, two subgroups were formed for comparison: 18 CKCS younger than 2 years with SM (CM/SM group) and 13 CKCS older than 5 years without SM (CM group). Relative cerebellar volume was defined as the volume of the cerebellum divided by the total volume of brain parenchyma. Our results show that the CKCS has a relatively larger cerebellum than small breed dogs and Labradors and provide evidence that increased cerebellar volume in CKCS is associated with crowding of cerebellum in the caudal part of the CCF. In CKCS there is an association between increased cerebellar volume and SM. These findings have implications for the understanding of the pathological mechanisms of CM/SM, and support the hypothesis that it is a multifactorial disease process governed by increased cerebellar volume and failure of the CCF to reach a commensurate size.  相似文献   

5.
Cone-rod dystrophy (CRD) is a form of inherited retinal degeneration (RD) causing blindness in man as well as in several breeds of dog. Previously, a 44 bp insertion in RPGRIP1 (retinitis pigmentosa GTPase regulator interacting protein-1) was associated with a recessive early-onset CRD (cone-rod dystrophy 1, cord1) in a Miniature longhaired dachshund (MLHD) research colony. Yet in the MLHD pet population, extensive range of the onset age has been observed among RD cases, with some RPGRIP1(-/-) dogs lacking obvious clinical signs. Phenotypic variation has been known in human homologous diseases, including retinitis pigmentosa and Leber congenital amaurosis, indicating possible involvement of modifiers. To explore additional genetic loci associated with the phenotypic variation observed in MLHDs, a genome-wide association study was carried out using Canine SNP20 arrays in 83 RPGRIP1(-/-) MLHDs with variable ages of onset or no clinical abnormality. Using these samples, comparison of 31 early-onset RD cases against 49 controls (15 late-onset RD and 34 normal dogs combined) identified a strong association (P = 5.05 × 10(-13)) at a single locus on canine chromosome 15. At this locus, the majority of early-onset RD cases but few of the controls were homozygous for a 1.49 Mb interval containing ~11 genes. We conclude that homozygosity at both RPGRIP1 and the newly mapped second locus is necessary to develop early-onset RD, whereas RPGRIP1(-/-) alone leads to late-onset RD or no apparent clinical phenotype. This study establishes a unique model of canine RD requiring homozygous mutations at two distinct genetic loci for the manifestation of early-onset RD.  相似文献   

6.
A high-density map of the region of canine Chromosome 5 (CFA5) surrounding the evolutionary breakpoint between human Chromosomes 1p32 and 17p11 was constructed by integrating a radiation hybrid map including 41 microsatellites, 10 BACs, and 59 genes and a linkage map including 18 markers. A collection of canine genomic survey sequences providing 1.5× coverage was used to identify dog orthologs of human genes, proving instrumental in the development of this map. Of particular interest is the canine BHD gene, within which we have previously described a single nucleotide polymorphism associated with Hereditary Multifocal Renal Cystadenocarcinoma and Nodular Dermatofibrosis (RCND) in German Shepherd dogs. The corresponding region of the human genome is particularly gene rich, containing genes involved in development, metabolism, and cancer that are likely to be of interest in future mapping studies. This current mapping effort on CFA5 expands the degree to which initial findings of linkage in canine families can be followed by successful positional cloning efforts and increases the value of the human genome sequence for defining candidate genes. Moreover, this study demonstrates the utility of genomic survey sequences when combined with accurate genome maps for rapid mapping of disease susceptibility loci.  相似文献   

7.
Since the publication of the dog genome and the construction of high-quality genome-wide SNP arrays, thousands of dogs have been genotyped for disease studies. For many of these dogs, additional clinical phenotypes are available, such as hematological and clinical chemistry results collected during routine veterinary care. Little is known about the genetic basis of variation in blood phenotypes, but this variation may play an important role in the etiology and progression of many diseases. From a cohort of dogs that had been previously genotyped on a semi-custom Illumina CanineHD array for various genome-wide association studies (GWAS) at Cornell University Hospital for Animals, we chose 353 clinically healthy, adult dogs for our analysis of clinical pathologic test results (14 hematological tests and 25 clinical chemistry tests). After correcting for age, body weight and sex, genetic associations were identified for amylase, segmented neutrophils, urea nitrogen, glucose, and mean corpuscular hemoglobin. Additionally, a strong genetic association (P = 8.1×10−13) was evident between a region of canine chromosome 13 (CFA13) and alanine aminotransferase (ALT), explaining 23% of the variation in ALT levels. This region of CFA13 encompasses the GPT gene that encodes the transferase. Dogs homozygous for the derived allele exhibit lower ALT activity, making increased ALT activity a less useful marker of hepatic injury in these individuals. Overall, these associations provide a roadmap for identifying causal variants that could improve interpretation of clinical blood tests and understanding of genetic risk factors associated with diseases such as canine diabetes and anemia, and demonstrate the utility of holistic phenotyping of dogs genotyped for disease mapping studies.  相似文献   

8.
Neuronal ceroid lipofuscinosis (NCL) is a progressive neurodegenerative disease characterized by brain and retinal atrophy and the intracellular accumulation of autofluorescent lysosomal storage bodies resembling lipofuscin in neurons and other cells. Tibetan terriers show a late-onset lethal form of NCL manifesting first visible signs at 5-7 years of age. Genome-wide association analyses for 12 Tibetan-terrier-NCL-cases and 7 Tibetan-terrier controls using the 127K canine Affymetrix SNP chip and mixed model analysis mapped NCL to dog chromosome (CFA) 2 at 83.71-84.72 Mb. Multipoint linkage and association analyses in 376 Tibetan terriers confirmed this genomic region on CFA2. A mutation analysis for 14 positional candidate genes in two NCL-cases and one control revealed a strongly associated single nucleotide polymorphism (SNP) in the MAPK PM20/PM21 gene and a perfectly with NCL associated single base pair deletion (c.1620delG) within exon 16 of the ATP13A2 gene. The c.1620delG mutation in ATP13A2 causes skipping of exon 16 presumably due to a broken exonic splicing enhancer motif. As a result of this mutation, ATP13A2 lacks 69 amino acids. All known 24 NCL cases were homozygous for this deletion and all obligate 35 NCL-carriers were heterozygous. In a sample of 144 dogs from eleven other breeds, the c.1620delG mutation could not be found. Knowledge of the causative mutation for late-onset NCL in Tibetan terrier allows genetic testing of these dogs to avoid matings of carrier animals. ATP13A2 mutations have been described in familial Parkinson syndrome (PARK9). Tibetan terriers with these mutations provide a valuable model for a PARK9-linked disease and possibly for manganese toxicity in synucleinopathies.  相似文献   

9.
Immunoglobulin E (IgE)-mediated hypersensitivity against environmental allergens, commonly including Dermatophagoides farinae, is associated with atopic diseases in both humans and dogs. We have recently identified a family of clinically healthy West Highland white terriers (WHWTs) with high-serum D. farinae-IgE levels. In this study, we investigated the genetic mechanism controlling IgE responsiveness in dogs by performing a genome-wide association study (GWAS) using the Affymetrix V2 Dog SNP array in 31 high-IgE and 24 low-IgE responder WHWTs. A gene-dropping simulation method, using SIB-PAIR software, showed significant allelic association between serum D. farinae-specific IgE levels and a 2.3-Mb area on CFA35 (best empirical P = 1 × 10(-5)). A nearby candidate gene, CD83, encodes a protein which has important immunological functions in antigen presentation and regulation of humoral immune responses. We sequenced this gene in 2 high-IgE responders and 2 low-IgE responders and identified an intronic polymorphic repeat sequence with a predicted functional effect, but the association was insufficient to explain the GWAS association signal in this population (P = 1 × 10(-3)). Further studies are necessary to investigate the significance of these findings for IgE responsiveness and atopic disease in the dog.  相似文献   

10.
The positional cloning of the hypocretin receptor 2, the gene for autosomal recessive canine narcolepsy, has led to the development of a physical map spanning a large portion of canine chromosome 12 (CFA12), in a region corresponding to human chromosome 6p12-q13. More than 40 expressed sequence tags (ESTs) were used in homology search experiments, together with chromosome walking, to build both physical and radiation hybrid maps of the CFA12 13-21 region. The resulting map of bacterial artificial chromosome ends, ESTs, and microsatellite markers represents the longest continuous high-density map of the dog genome reported to date. These data further establish the dog as a system for studying disease genes of interest to human populations and highlight feasible approaches for positional cloning of disease genes in organisms where genomic resources are limited.  相似文献   

11.
Glaucoma is an optic neuropathy and one of the leading causes of blindness. Its hereditary forms are classified into primary closed-angle (PCAG), primary open-angle (POAG) and primary congenital glaucoma (PCG). Although many loci have been mapped in human, only a few genes have been identified that are associated with the development of glaucoma and the genetic basis of the disease remains poorly understood. Glaucoma has also been described in many dog breeds, including Dandie Dinmont Terriers (DDT) in which it is a late-onset (>7 years) disease. We designed clinical and genetic studies to better define the clinical features of glaucoma in the DDT and to identify the genetic cause. Clinical diagnosis was based on ophthalmic examinations of the affected dogs and 18 additionally investigated unaffected DDTs. We collected DNA from over 400 DTTs and a genome wide association study was performed in a cohort of 23 affected and 23 controls, followed by a fine mapping, a replication study and candidate gene sequencing. The clinical study suggested that ocular abnormalities including abnormal iridocorneal angles and pectinate ligament dysplasia are common (50% and 72%, respectively) in the breed and the disease resembles human PCAG. The genetic study identified a novel 9.5 Mb locus on canine chromosome 8 including the 1.6 Mb best associated region (p = 1.63×10−10, OR = 32 for homozygosity). Mutation screening in five candidate genes did not reveal any causative variants. This study indicates that although ocular abnormalities are common in DDTs, the genetic risk for glaucoma is conferred by a novel locus on CFA8. The canine locus shares synteny to a region in human chromosome 14q, which harbors several loci associated with POAG and PCG. Our study reveals a new locus for canine glaucoma and ongoing molecular studies will likely help to understand the genetic etiology of the disease.  相似文献   

12.
13.
Progressive retinal atrophy (PRA) is the collective name of a class of hereditary retinal dystrophies in the dog and is often described as the equivalent of retinitis pigmentosa in humans. PRA is characterized by visual impairment due to degeneration of the photoreceptors in the retina, usually leading to blindness. PRA has been reported in dogs from more than 100 breeds and can be genetically heterogeneous both between and within breeds. The disease can be subdivided by age at onset and rate of progression. Using genome‐wide association with 15 Shetland Sheepdog (Sheltie) cases and 14 controls, we identified a novel PRA locus on CFA13 (Praw = 8.55 × 10?7, Pgenome = 1.7 × 10?4). CNGA1, which is known to be involved in human cases of retinitis pigmentosa, was located within the associated region and was considered a likely candidate gene. Sequencing of this gene identified a 4‐bp deletion in exon 9 (c.1752_1755delAACT), leading to a frameshift and a premature stop codon. The study indicated genetic heterogeneity as the mutation was present in all PRA‐affected individuals in one large family of Shelties, whereas some other cases in the studied Sheltie population were not associated with this CNGA1 mutation. To our knowledge, this is the first report of a mutation in CNGA1 causing PRA in dogs.  相似文献   

14.

Background

Congenital sensorineural deafness is an inherited condition found in many dog breeds, including Australian Stumpy-tail Cattle Dogs (ASCD). This deafness is evident in young pups and may affect one ear (unilateral) or both ears (bilateral). The genetic locus/loci involved is unknown for all dog breeds. The aims of this study were to determine incidence, inheritance mechanism, and possible association of congenital sensorineural deafness with coat colour in ASCD and to identify the genetic locus underpinning this disease.

Methodology/Principal Findings

A total of 315 ASCD were tested for sensorineural deafness using the brain stem auditory evoked response (BAER) test. Disease penetrance was estimated directly, using the ratio of unilaterally to bilaterally deaf dogs, and segregation analysis was performed using Mendel. A complete genome screen was undertaken using 325 microsatellites spread throughout the genome, on a pedigree of 50 BAER tested ASCD in which deafness was segregating. Fifty-six dogs (17.8%) were deaf, with 17 bilaterally and 39 unilaterally deaf. Unilaterally deaf dogs showed no significant left/right bias (p = 0.19) and no significant difference was observed in frequencies between the sexes (p = 0.18). Penetrance of deafness was estimated as 0.72. Testing the association of red/blue coat colour and deafness without accounting for pedigree structure showed that red dogs were 1.8 times more likely to be deaf (p = 0.045). The within family association between red/blue coat colour and deafness was strongly significant (p = 0.00036), with red coat colour segregating more frequently with deafness (COR = 0.48). The relationship between deafness and coat speckling approached significance (p = 0.07), with the lack of statistical significance possibly due to only four families co-segregating for both deafness and speckling. The deafness phenotype was mapped to CFA10 (maximum linkage peak on CFA10 −log10 p-value = 3.64), as was both coat colour and speckling. Fine mapping was then performed on 45 of these 50 dogs and a further 48 dogs (n = 93). Sequencing candidate gene Sox10 in 6 hearing ASCD, 2 unilaterally deaf ASCD and 2 bilaterally deaf ASCD did not reveal any disease-associated mutations.

Conclusions

Deafness in ASCD is an incompletely penetrant autosomal recessive inherited disease that maps to CFA10.  相似文献   

15.
The Alaskan sled dog offers a unique mechanism for studying the genetics of elite athletic performance. They are a group of mixed breed dogs, comprised of multiple common breeds, and a unique breed entity seen only as a part of the sled dog mix. Alaskan sled dogs are divided into 2 primary groups as determined by their racing skills. Distance dogs are capable of running over 1000 miles in 10 days, whereas sprint dogs run much shorter distances, approximately 30 miles, but in faster times, that is, 18-25 mph. Finding the genes that distinguish these 2 types of performers is likely to illuminate genetic contributors to human athletic performance. In this study, we tested for association between polymorphisms in 2 candidate genes; angiotensin-converting enzyme (ACE) and myostatin (MSTN) and enhanced speed and endurance performance in 174 Alaskan sled dogs. We observed 81 novel genetic variants within the ACE gene and 4 within the MSTN gene, including a polymorphism within the ACE gene that significantly (P value 2.38 × 10(-5)) distinguished the sprint versus distance populations.  相似文献   

16.
We investigated a hereditary cerebellar ataxia in Belgian Shepherd dogs. Affected dogs developed uncoordinated movements and intention tremor at two weeks of age. The severity of clinical signs was highly variable. Histopathology demonstrated atrophy of the CNS, particularly in the cerebellum. Combined linkage and homozygosity mapping in a family with four affected puppies delineated a 52 Mb critical interval. The comparison of whole genome sequence data of one affected dog to 735 control genomes revealed a private homozygous structural variant in the critical interval, Chr4:66,946,539_66,963,863del17,325. This deletion includes the entire protein coding sequence of SELENOP and is predicted to result in complete absence of the encoded selenoprotein P required for selenium transport into the CNS. Genotypes at the deletion showed the expected co-segregation with the phenotype in the investigated family. Total selenium levels in the blood of homozygous mutant puppies of the investigated litter were reduced to about 30% of the value of a homozygous wildtype littermate. Genotyping >600 Belgian Shepherd dogs revealed an additional homozygous mutant dog. This dog also suffered from pronounced ataxia, but reached an age of 10 years. Selenop-/- knock-out mice were reported to develop ataxia, but their histopathological changes were less severe than in the investigated dogs. Our results demonstrate that deletion of the SELENOP gene in dogs cause a defect in selenium transport associated with CNS atrophy and cerebellar ataxia (CACA). The affected dogs represent a valuable spontaneous animal model to gain further insights into the pathophysiological consequences of CNS selenium deficiency.  相似文献   

17.
18.
Canine atopic dermatitis (AD) is an allergic inflammatory skin disease that shares similarities with AD in humans. Canine AD is likely to be an inherited disease in dogs and is common in West Highland white terriers (WHWTs). We performed a genome-wide association study using the Affymetrix Canine SNP V2 array consisting of over 42,800 single nucleotide polymorphisms, on 35 atopic and 25 non-atopic WHWTs. A gene-dropping simulation method, using SIB-PAIR, identified a projected 1.3 Mb area of association (genome-wide P = 6 × 10−5 to P = 7 × 10−4) on CFA 17. Nineteen genes on CFA 17, including 1 potential candidate gene (PTPN22), were located less than 0.5 Mb from the interval of association identified on the genome-wide association analysis. Four haplotypes within this locus were differently distributed between cases and controls in this population of dogs. These findings suggest that a major locus for canine AD in WHWTs may be located on, or in close proximity to an area on CFA 17.  相似文献   

19.
A genome-wide association study for canine hip dysplasia (CHD) and canine elbow dysplasia (CED) using the Illumina canine high density bead chip had been performed for 174 Bernese mountain dogs. General and mixed linear model analysis identified two different regions with single nucleotide polymorphisms (SNPs) on dog chromosome (CFA) 14 significantly associated with CHD and a further significantly CHD-associated region on CFA37. For CED, four SNPs on CFA11 and 27 were significantly associated. The identified SNPs of four associated regions included nearby candidate genes. These possible positional candidates were the genes PON2 on CFA14 and FN1 on CFA37 for CHD and the genes LMNB1 on CFA11 and WNT10B on CFA27 for CED.  相似文献   

20.
Gliomas are the most common form of malignant primary brain tumors in humans and second most common in dogs, occurring with similar frequencies in both species. Dogs are valuable spontaneous models of human complex diseases including cancers and may provide insight into disease susceptibility and oncogenesis. Several brachycephalic breeds such as Boxer, Bulldog and Boston Terrier have an elevated risk of developing glioma, but others, including Pug and Pekingese, are not at higher risk. To identify glioma-associated genetic susceptibility factors, an across-breed genome-wide association study (GWAS) was performed on 39 dog glioma cases and 141 controls from 25 dog breeds, identifying a genome-wide significant locus on canine chromosome (CFA) 26 (p = 2.8 x 10−8). Targeted re-sequencing of the 3.4 Mb candidate region was performed, followed by genotyping of the 56 SNVs that best fit the association pattern between the re-sequenced cases and controls. We identified three candidate genes that were highly associated with glioma susceptibility: CAMKK2, P2RX7 and DENR. CAMKK2 showed reduced expression in both canine and human brain tumors, and a non-synonymous variant in P2RX7, previously demonstrated to have a 50% decrease in receptor function, was also associated with disease. Thus, one or more of these genes appear to affect glioma susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号