首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Despite the importance of randomized, dose-response studies for proper evaluation of effective clinical interventions, there have been no dose-response studies on the effects of exercise amount on abdominal obesity, a major risk factor for metabolic syndrome, diabetes, and cardiovascular disease. One hundred seventy-five sedentary, overweight men and women with mild to moderate dyslipidemia were randomly assigned to participate for 6 mo in a control group or for approximately 8 mo in one of three exercise groups: 1) low amount, moderate intensity, equivalent to walking 12 miles/wk (19.2 km) at 40-55% of peak oxygen consumption; 2) low amount, vigorous intensity, equivalent to jogging 12 miles/wk at 65-80% of peak oxygen consumption; or 3) high amount, vigorous intensity, equivalent to jogging 20 miles/wk (32.0 km). Computed tomography scans were analyzed for abdominal fat. Controls gained visceral fat (8.6 +/- 17.2%; P = 0.001). The equivalent of 11 miles of exercise per week, at either intensity, prevented significant accumulation of visceral fat. The highest amount of exercise resulted in decreased visceral (-6.9 +/- 20.8%; P = 0.038) and subcutaneous (-7.0 +/- 10.8%; P < 0.001) abdominal fat. Significant gains in visceral fat over only 6 mo emphasize the high cost of continued inactivity. A modest exercise program, consistent with recommendations from the Centers for Disease Control/American College of Sports Medicine (CDC/ACSM), prevented significant increases in visceral fat. Importantly, a modest increase over the CDC/ACSM exercise recommendations resulted in significant decreases in visceral, subcutaneous, and total abdominal fat without changes in caloric intake.  相似文献   

2.
We examined the independent associations among abdominal adipose tissue (AT), liver fat, cardiorespiratory fitness (CRF), and lipid variables in 161 Caucasian men who had a wide variation in adiposity. We measured AT and liver fat by computed tomography and CRF by a maximal exercise test on a treadmill. Visceral AT remained a significant (P or= 0.05) correlate of any lipid variable after control for visceral AT and CRF. Furthermore, subdivision of subcutaneous AT into deep and superficial depots did not alter these observations. Visceral AT was the strongest correlate of liver fat and remained so after control for abdominal subcutaneous AT, CRF, and alcohol consumption (r = -0.34, P < 0.01). In contrast, abdominal subcutaneous AT and CRF were not significant (P > 0.10) correlates of liver fat after control for visceral AT. Visceral AT remained a significant (P < 0.01) correlate of TG, HDL-C, and TC/HDL-C independent of liver fat. However, liver fat was also a significant correlate (P 相似文献   

3.
The aim of this study was to investigate whether endurance training improves lipid mobilization and oxidation in overweight subjects. Eleven young men (25.6 +/- 1.4 yr and body mass index 27.7 +/- 0.2) performed a 4-mo training program consisting of practicing aerobic exercise 5 days/wk. Before and after the training period, lipid oxidation was explored during a 60-min exercise at 50% of peak O2 consumption by use of indirect calorimetry. Lipid mobilization and antilipolytic alpha2-adrenoceptor effect were also studied using the microdialysis method in abdominal subcutaneous adipose tissue (SCAT). After training, plasma nonesterified fatty acid (NEFA) levels, at rest and during exercise, were significantly lower than before (P < 0.001). Lipolysis in SCAT was significantly higher after than before training. An antilipolytic alpha2-adrenoceptor effect in SCAT was underlined during exercise before training and disappeared after. The respiratory exchange ratio was lower after training, i.e., the percentage of lipid oxidation was higher only at rest. The amount of lipid oxidized was higher after training, at rest, and during exercise. Although exercise power was higher after training, the relative intensity was equivalent, as suggested by a similar increase in plasma catecholamine concentrations before and after training. In conclusion, 4-mo training in overweight men improved lipid mobilization through a decrease of antilipolytic alpha2-adrenoceptor effect in SCAT and lipid oxidation during moderate exercise. Training induced a decrease of blood NEFA, predicting better prevention of obesity.  相似文献   

4.
A lower activity of the thyroid axis within the clinical reference range is related to a dysmetabolic phenotype in adult populations. We posited that such an association is already present as early as in prepubertal childhood. Serum thyroid stimulating hormone (TSH) and free T4, body fat (bioelectric impedance), insulin resistance (homeostasis model assessment of insulin resistance (HOMA(IR))), total and high molecular weight (HMW)-adiponectin and serum lipids were assessed in 234 euthyroid prepubertal children (113 boys and 121 girls) attending primary care clinics. Visceral fat (abdominal ultrasound) was measured in a subset of these subjects (n = 147; 74 boys and 73 girls). Explants of visceral adipose tissue from an additional six prepubertal children (three boys and three girls) were used to study the regulation of total and HMW-adiponectin by thyroid hormone. Serum free T4 was in girls independently associated with HMW-adiponectin, HOMA(IR) and visceral fat, so that circulating HMW-adiponectin decreased by 30% (β = 0.305 P < 0.005, R(2) = 0.13) and HOMA(IR) and visceral fat increased, respectively, by 90% (β = -0.255 P < 0.01, R(2) = 0.05) and 30% (β = -0.369, P < 0.005, R(2) = 0.12) from the highest to the lowest tertile of serum free T4. Nonsignificant differences in these parameters were found in boys. Treatment of visceral fat explants with thyroid hormone increased total and HMW-adiponectin by 70% and 53%, respectively, above control values (P < 0.01). In conclusion, a dysmetabolic phenotype, consisting of relative hypoadiponectinemia, insulin resistance and increased visceral fat, is associated with low-normal serum free thyroxine in euthyroid prepubertal girls. These associations may be partly explained by a positive regulation of HMW-adiponectin secretion by thyroid hormone.  相似文献   

5.
Exercise has beneficial effects on lipoproteins. Little is known about how long the effects persist with detraining or whether the duration of benefit is effected by training intensity or amount. Sedentary, overweight subjects (n = 240) were randomized to 6-mo control or one of three exercise groups: 1) high-amount/vigorous-intensity exercise; 2) low-amount/vigorous-intensity exercise; or 3) low-amount/moderate-intensity exercise. Training consisted of a gradual increase in amount of exercise followed by 6 mo of exercise at the prescribed level. Exercise included treadmill, elliptical trainer, and stationary bicycle. The number of minutes necessary to expend the prescribed kilocalories per week (14 kcal x kg body wt(-1) x wk(-1) for both low-amount groups; 23 kcal x kg body wt(-1) x wk(-1) for high-amount group) was calculated for each subject. Average adherence was 83-92% for the three groups; minutes per week were 207, 125, and 203 and sessions per week were 3.6, 2.9, and 3.5 for high-amount/vigorous-intensity, low-amount/vigorous intensity, and low-amount/moderate-intensity groups, respectively. Plasma was obtained at baseline, 24 h, 5 days, and 15 days after exercise cessation. Continued inactivity resulted in significant increases in low-density lipoprotein (LDL) particle number, small dense LDL, and LDL-cholesterol. A modest amount of exercise training prevented this deterioration. Moderate-intensity but not vigorous-intensity exercise resulted in a sustained reduction in very-low-density lipoprotein (VLDL)-triglycerides over 15 days of detraining (P < 0.05). The high-amount group had significant improvements in high-density lipoprotein (HDL)-cholesterol, HDL particle size, and large HDL levels that were sustained for 15 days after exercise stopped. In conclusion, physical inactivity has profound negative effects on lipoprotein metabolism. Modest exercise prevented this. Moderate-intensity but not vigorous-intensity exercise resulted in sustained VLDL-triglyceride lowering. Thirty minutes per day of vigorous exercise, like jogging, has sustained beneficial effects on HDL metabolism.  相似文献   

6.
Non-alcoholic fatty liver disease (NAFLD) is a condition defined by significant lipid accumulation (5–10%) in hepatic tissue in the absence of significant chronic alcohol consumption. We aim to detect frequency of fatty liver among overweight/obese adults and children and associated clinical; anthropological measures; biochemical; genetic and imaging studies. Eighty three consecutive adults and 72 children included in the study. All patients underwent clinical measurements of height, body weight, body mass index (BMI), waist and hip circumference. Biochemical investigations were done to all subjects including liver function tests; lipid profile; fasting blood glucose; insulin resistance (IR); high sensitivity C reactive protein (hs-CRP); adiponectin and genotyping of adiponectin genes. Abdominal ultrasonography was done to search for fatty liver; to measure subcutaneous fat thickness (SFT) and visceral fat thickness (VFT). Fatty liver was detected in 47 (65.3%) children and in 52 (62.7%) adults. Correlation analysis in both groups revealed that enlarged liver was highly positively correlated to age; BMI, systolic blood pressure (SBP), diastolic blood pressure (DBP); waist circumference; hip circumference, subcutaneous fat thickness (SFT) and Visceral fat thickness (VFT), alanine aminotransferase (ALT), aspartate aminotransferase/alanine aminotransferase (AST/ALT). In addition in adults to fasting blood glucose, cholesterol, triglycerides (TG), low density lipoprotein (LDL), IR and hs-CRP. Homozygous T adiponectin genotype at position +276 was significantly increased among children with enlarged liver size and hs-CRP. NAFLD affects a substantial portion of adults and children; it is associated with the metabolic syndrome.  相似文献   

7.
We examined the independent relationships among various visceral and abdominal subcutaneous adipose tissue (AT) depots, glucose tolerance, and insulin sensitivity in 89 obese men. Measurements included an oral glucose tolerance test (OGTT), glucose disposal by euglycemic clamp, and abdominal and nonabdominal (e.g., peripheral) AT by magnetic resonance imaging (MRI). OGTT glucose and glucose disposal rates were related (P < 0.05) to visceral AT (r = 0.50 and -0.41, respectively). These observations remained significant (P < 0.05) after control for nonabdominal and abdominal subcutaneous AT, and maximal O(2) consumption (VO(2 max)). Abdominal subcutaneous AT was not a significant correlate (P > 0.05) of any metabolic variable after control for nonabdominal and visceral AT and VO(2 max). Division of abdominal subcutaneous AT into deep and superficial depots and visceral AT into intra- and extraperitoneal AT depots did not alter the observed relationships. Further analysis matched two groups of men for abdominal subcutaneous AT but also for low and high visceral AT. Men with high visceral AT had higher OGTT glucose values and lower glucose disposal rates compared with those with low visceral AT values (P < 0.05). A similar analysis performed on two groups of men matched for visceral AT but also for high and low abdominal subcutaneous AT revealed no statistically different values for any metabolic variable (P > 0.10). In conclusion, visceral AT alone is a strong correlate of insulin resistance independent of nonabdominal and abdominal subcutaneous AT and cardiovascular fitness. Subdivision of visceral and abdominal subcutaneous AT by MRI did not provide additional insight into the relationship between abdominal obesity and metabolic risk in obese men.  相似文献   

8.
It is unclear whether chronic exercise without caloric restriction or weight loss is a useful strategy for obesity reduction in obese men with and without Type 2 diabetes (T2D). We examined the effects of exercise without weight loss on total and regional adiposity and skeletal muscle mass and composition in lean men and in obese men with and without T2D. Twenty-four men participated in 13 wk of supervised aerobic exercise, five times per week for 60 min at a moderate intensity (approximately 60% peak oxygen uptake). Total and regional body composition was measured by magnetic resonance imaging. Skeletal muscle composition was determined using computed tomography. Cardiorespiratory fitness was assessed using a graded maximal treadmill test. Body weight did not change within any group in response to exercise (P > 0.1). Significant reductions in total, abdominal subcutaneous, and visceral fat were observed within each group (P < 0.01). The reduction in total and abdominal subcutaneous fat was not different (P > 0.1) between groups; however, the reduction in visceral fat was greater (P < 0.01) in the obese and T2D groups by comparison to the lean group. A significant (P < 0.01) increase in total skeletal muscle, high-density muscle area, and mean muscle attenuation was observed independent of group, and these changes were not different between groups (P > 0.1). Accordingly, whole body fat-to-muscle ratio was increased (P < 0.01) independent of groups. In conclusion, regular exercise without weight loss is associated with a substantial reduction in total and visceral fat and in skeletal muscle lipid in both obesity and T2D.  相似文献   

9.
We tested the hypothesis that reductions in total body and abdominal visceral fat with energy restriction would be associated with increases in cardiovagal baroreflex sensitivity (BRS) in overweight/obese older men. To address this, overweight/obese (25 < or = body mass index < or = 35 kg/m(2)) young (OB-Y, n = 10, age = 32.9 +/- 2.3 yr) and older (OB-O, n = 6, age = 60 +/- 2.7 yr) men underwent 3 mo of energy restriction at a level designed to reduce body weight by 5-10%. Cardiovagal BRS (modified Oxford technique), body composition (dual-energy X-ray absorptiometry), and abdominal fat distribution (computed tomography) were measured in the overweight/obese men before weight loss and after 4 wk of weight stability at their reduced weight and compared with a group of nonobese young men (NO-Y, n = 13, age = 21.1 +/- 1.0 yr). Before weight loss, cardiovagal BRS was approximately 35% and approximately 60% lower (P < 0.05) in the OB-Y and OB-O compared with NO-Y. Body weight (-7.8 +/- 1.1 vs. -7.3 +/- 0.7 kg), total fat mass (-4.1 +/- 1.0 vs. -4.4 +/- 0.8 kg), and abdominal visceral fat (-27.6 +/- 6.9 vs. -43.5 +/- 10.1 cm(2)) were reduced (all P < 0.05) after weight loss, but the magnitude of reduction did not differ (all P > 0.05) between OB-Y and OB-O, respectively. Cardiovagal BRS increased (11.5 +/- 1.9 vs. 18.5 +/- 2.6 ms/mmHg and 6.7 +/- 1.2 vs. 12.8 +/- 4.2 ms/mmHg) after weight loss (both P < 0.05) in OB-Y and OB-O, respectively. After weight loss, cardiovagal BRS in the obese/overweight young and older men was approximately 105% and approximately 73% (P > 0.05) of NO-Y (17.5 +/- 2.2 ms/mmHg). Therefore, the results of this study indicate that weight loss increases the sensitivity of the cardiovagal baroreflex in overweight/obese young and older men.  相似文献   

10.
The purpose was to determine the relationship between insulin resistance (IR) and risk of gaining body fat percentage (BF%), body weight, and abdominal fat over 18 months. A prospective cohort study was conducted using a sample of 226 women. IR was assessed using fasting blood insulin and glucose levels to calculate homeostatic model assessment (HOMA). Participants were divided into High (4th quartile) Moderate (2nd and 3rd quartiles), and Low (1st quartile) HOMA categories. BF% was estimated using plethysmography (Bod Pod), weight was measured in a standard swimsuit, and abdominal fat was indexed using the average of two circumferences taken at the umbilicus. Participants wore accelerometers and completed weighed food logs for 7 consecutive days to control for the effect of physical activity (PA) and energy intake, respectively. On average, women in the High HOMA group decreased in BF% (-0.48 ± 3.60), whereas those in the Moderate (0.40 ± 3.66) and Low HOMA (1.17 ± 3.15) groups gained BF% (F = 5.4, P = 0.0211). Changes in body weight showed a similar dose-response relationship (F = 4.7, P = 0.0317). However, baseline IR was not predictive of changes in abdominal fat (F = 0.8, P = 0.3635). Controlling for several covariates had little effect on gains in BF% and weight, but adjusting for initial BF% and/or initial weight nullified changes in BF% and weight across the IR groups. In conclusion, women with High HOMA tend to gain significantly less BF% and weight than women with low or moderate HOMA. The decreased risk appears unrelated to several covariates, except initial BF% and weight levels, which seem to play key roles in the relationships.  相似文献   

11.
The purpose of this study was to determine the effects of exercise training on ventricular epicardial fat thickness in obese men and to investigate the relationship of the change in epicardial fat thickness to changes in abdominal fat tissue following exercise training. Twenty-four obese middle-aged men [age, 49.4 +/- 9.6 yr; weight, 87.7 +/- 11.2 kg; body mass index (BMI), 30.7 +/- 3.3 kg/m(2); peak oxygen consumption, 28.4 +/- 7.2 ml.kg(-1).min(-1); means +/- SD] participated in this study. Each participant completed a 12-wk supervised exercise training program (60-70% of the maximal heart rate; 60 min/day, 3 days/wk) and underwent a transthoracic echocardiography. The epicardial fat thickness on the free wall of the right ventricle was measured from both parasternal long- and short-axis views. The visceral adipose tissue (VAT) and subcutaneous adipose tissues were measured by computed tomography. Following exercise training, the epicardial fat thickness was significantly decreased (P < 0.001). The percentage change of epicardial fat thickness was twice as high compared with those of waist, BMI, and body weight of original values (P <0.05). There was a significant relationship (r = 0.525, P = 0.008) between changes in the epicardial fat thickness and VAT with exercise training. Stepwise multiple regression analysis revealed that the change in VAT, change in systolic blood pressure, and change in quantitative insulin sensitivity check index were independently related to the change epicardial fat thickness (P < 0.05). The ventricular epicardial fat thickness is reduced significantly after aerobic exercise training and is associated with a decrease in VAT. These results suggest that aerobic exercise training may be an effective nonpharmacological strategy for decreasing the ventricular epicardial fat thickness and visceral fat area in obese middle-aged men.  相似文献   

12.
Background  Monocyte chemoattractant protein-1 (MCP-1) is an inflammatory chemokine known to induce adipocyte dedifferentiation and insulin resistance. Inflammation, insulin resistance, and obesity have been implicated in the pathogenesis of non-alcoholic fatty liver disease (NAFLD).
Methods  Fasting plasma from 43 baboons were assayed for MCP-1, insulin, glucose, alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Adipocyte number and volume were measured via biopsies of omental adipose tissue. The homeostatic model assessment method (HOMA) was used to estimate systemic insulin resistance.
Results  Sex and age adjusted correlations were significant for MCP-1 with adipocyte number (r = −0.42; P  = 0.01), adipocyte volume (r = 0.38; P  = 0.02), HOMA (r = 0.45; P  = 0.004), ALT (r = 0.46; P  = 0.03) and AST (r = 0.45; P  = 0.03).
Conclusions  These results suggest that MCP-1 is related with adipocyte dedifferentiation and systemic insulin resistance, thereby potentially contributing to the development of NAFLD.  相似文献   

13.
目的:研究2型糖尿病患者内脏脂肪含量与胰岛β细胞功能及胰岛素抵抗的关系。方法:对65例初诊2型糖尿病患者采用256 CT平脐经L4、5水平进行扫描并测量皮下及内脏脂肪含量,并以BMI不同进行分组,即体重正常组、超重组、肥胖组。采用稳态模式评估法(HOMA)计算胰岛素抵抗指数、胰岛B细胞分泌功能,测量入组患者的相关人体指标、空腹血生化检查指标。结果:超体重组、肥胖组患者腰围、体重指数(body mass index, BMI)、甘油三酯(triglyceride, TG)、低密度脂蛋白胆固醇(low density lipoprotein cholesterol, LDL-C)、空腹血糖,(fasting blood-glucose, FBG)、空腹胰岛素(fasting insulin, FINS)INS、稳态模型胰岛素抵抗指数(Homeostatic Model Assessment for Insulin Resistance, HOMA-IR)、胰岛β细胞功能指数(Homeostasis model assessment-β,HOMA-β)指标肥胖组、超重组均明显高于正常体重组(P0.05),超体重组、肥胖组内脏脂肪含量、内脏脂肪面积、皮下脂肪含量、脂肪总含量、脂肪百分比,超重组、肥胖组均明显高于正常体重组(P0.05),且肥胖组各项指标明显高于超重组(P0.05)。多元回归分析显示腹部脂肪总含量、内脏脂肪含量、皮下脂肪含量、内脏脂肪面积、BMI与胰岛素抵抗呈正相关,而其中内脏脂肪含量及面积关系最密切。结论:内脏脂肪含量是2型糖尿病胰岛素抵抗及B细胞功能变化的独立影响因素。  相似文献   

14.
Our purpose was to elucidate effects of acute exercise and training on blood lipids-lipoproteins, and high-sensitivity C-reactive protein (hsCRP) in overweight/obese men (n = 10) and women (n = 8); age, BMI, body fat percentage, and VO(2)max were (mean ± SEM): 45 ± 2.5 years, 31.9 ± 1.4 kg·m(-2), 41.1 ± 1.5%, and 25.2 ± 1.3 mlO(2)·kg(-1)·min(-1). Before exercise training subjects performed an acute exercise session on a treadmill (70% VO(2)max, 400 kcal energy expenditure), followed by 12 weeks of endurance exercise training (land-based or aquatic-based treadmill): 3 sessions·week(-1), progressing to 500 kcal·session(-1) during which subjects maintained accustomed dietary habits. After training, the acute exercise session was repeated. Blood samples, obtained immediately before and 24 h after acute exercise sessions, were analyzed for serum lipids, lipoproteins, and hsCRP adjusted for plasma volume shifts. Exercise training increased VO(2)max (+3.67 mlO(2)·kg(-1)·min(-1), P < 0.001) and reduced body weight (-2.7 kg, P < 0.01). Training increased high-density lipoprotein (HDL) and HDL(2b)-cholesterol (HDL-C) concentrations (+3.7 and +2.4 mg·dl(-1), P < 0.05) and particle numbers (+588 and +206 nmol·l(-1), P < 0.05) in men. In women despite no change in total HDL-C, subfractions shifted from HDL(3)-C (-3.2, P < 0.01) to HDL(2b)-C (+3.5, P < 0.05) and HDL(2a)-C (+2.2 mg·dl(-1), P < 0.05), with increased HDL(2b) particle number (+313 nmol·l(-1), P < 0.05). Training reduced LDL(3) concentration and particle number in women (-1.6 mg·dl(-1) and -16 nmol·l(-1), P < 0.05). Acute exercise reduced the total cholesterol (TC): HDL-C ratio in men (-0.16, P < 0.01) and increased hsCRP in all subjects (+0.05 mg·dl(-1), P < 0.05), regardless of training. Training did not affect acute exercise responses. Our data support the efficacy of endurance training, without dietary intervention, to elicit beneficial changes in blood lipids-lipoproteins in obese men and women.  相似文献   

15.
Exercise improves glucose metabolism and delays the onset and/or reverses insulin resistance in the elderly by an unknown mechanism. In the present study, we examined the effects of exercise training on glucose metabolism, abdominal adiposity, and adipocytokines in obese elderly. Sixteen obese men and women (age = 63 +/- 1 yr, body mass index = 33.2 +/- 1.4 kg/m2) participated in a 12-wk supervised exercise program (5 days/wk, 60 min/day, treadmill/cycle ergometry at 85% of heart rate maximum). Visceral fat (VF), subcutaneous fat, and total abdominal fat were measured by computed tomography. Fat mass and fat-free mass were assessed by hydrostatic weighing. An oral glucose tolerance test was used to determine changes in insulin resistance. Exercise training increased maximal oxygen consumption (21.3 +/- 0.8 vs. 24.3 +/- 1.0 ml.kg(-1).min(-1), P < 0.0001), decreased body weight (P < 0.0001) and fat mass (P < 0.001), while fat-free mass was not altered (P > 0.05). VF (176 +/- 20 vs. 136 +/- 17 cm2, P < 0.0001), subcutaneous fat (351 +/- 34 vs. 305 +/- 28 cm2, P < 0.03), and total abdominal fat (525 +/- 40 vs. 443 +/- 34 cm2, P < 0.003) were reduced through training. Circulating leptin was lower (P < 0.003) after training, but total adiponectin and tumor necrosis factor-alpha remained unchanged. Insulin resistance was reversed by exercise (40.1 +/- 7.7 vs. 27.6 +/- 5.6 units, P < 0.01) and correlated with changes in VF (r = 0.66, P < 0.01) and maximal oxygen consumption (r = -0.48, P < 0.05) but not adipocytokines. VF loss after aerobic exercise training improves glucose metabolism and is associated with the reversal of insulin resistance in older obese men and women.  相似文献   

16.
We determined whether acquired obesity is associated with increases in liver or intra-abdominal fat or impaired insulin sensitivity by studying monozygotic (MZ) twin pairs discordant and concordant for obesity. We studied nineteen 24- to 27-yr-old MZ twin pairs, with intrapair differences in body weight ranging from 0.1 to 24.7 kg [body mass index (BMI) range 20.0-33.9 kg/m2], identified from a population-based FinnTwin16 sample. Fat distribution was determined by magnetic resonance imaging, percent body fat by dual-energy X-ray absorptiometry, liver fat by proton spectroscopy, insulin sensitivity by measuring the fasting insulin concentration, and whole body insulin sensitivity by the euglycemic insulin clamp technique. Intrapair differences in BMI were significantly correlated with those in intra-abdominal fat (r = 0.82, P < 0.001) and liver fat (r = 0.57, P = 0.010). Intrapair differences in fasting insulin correlated with those in subcutaneous abdominal (r = 0.60, P = 0.008), intra-abdominal (r = 0.75, P = 0.0001) and liver (r = 0.49, P = 0.048) fat. Intrapair differences in whole body insulin sensitivity correlated with those in subcutaneous abdominal (r = -0.72, P = 0.001) and intra-abdominal (r = -0.55, P = 0.015) but not liver (r = -0.20, P = 0.20) fat. We conclude that acquired obesity is associated with increases in intra-abdominal and liver fat and insulin resistance, independent of genetic factors.  相似文献   

17.
Abnormal liver tests, as well as morphological changes in the liver, are frequent among obese patients. Other frequent disturbances are visceral fat accumulation, insulin resistance, non-insulin-dependent diabetes mellitus (NIDDM), hypertriglyceridemia, and hypertension; these are a set of aberrations known as the metabolic syndrome. In order to investigate a possible relationship between the metabolic syndrome and impaired liver status we examined associations between liver tests, metabolic variables (insulin, glucose, and triglycerids), body composition and nutrition in 1083 men (BMI 28.8–63.8 kg/m2) and 1367 women (BMI 26.7–68.0 kg/m2) in the ongoing intervention study of Swedish Obese Subjects (SOS). Standard biochemical techniques were used to assess liver status and metabolic variables. Lean body mass (LBM) and masses of visceral and subcutaneous adipose tissue (AT) were estimated by means of computed tomography (CT) calibrated anthropometric equations. In both genders aspartate aminotransferase and alanine aminotransferase were, or tended to be, positively correlated to fasting serum insulin, visceral AT (women), and alcohol intake. In women, the aminotransferases were also correlated with fasting blood glucose. In both genders alkaline phosphatase was, or tended to be, positively associated with visceral AT, insulin (women), and glucose. Bilirubin was negatively correlated to insulin and visceral AT in men and women. Additional multivariate analyses indicated that alcohol had less explanatory power than serum insulin for the examined liver tests, especially among women. These results suggest that pathological liver tests in the obese may represent an expression of the metabolic syndrome.  相似文献   

18.
19.
The aim of the present study was to determine the relationship between body fat distribution, adipocytokines, inflammatory markers, fat intake and ectopic fat content of liver and pancreas in obese men and women. A total of 12 lean subjects (mean age 47.25 ± 14.88 years and mean BMI 22.85 ± 2), 38 obese subjects (18 men and 20 women) with mean age 49.1 ± 13.0 years and mean BMI 34.96 ± 4.21 kg/m2 were studied. Measurements: weight, height, BMI, waist circumference, as well as glucose, insulin, HOMA (homeostasis model assessment of insulin resistance), cholesterol, triglycerides, high-density lipoprotein cholesterol, high sensitivity C-reactive protein, daily energy intake, leptin, and adiponectin. Magnetic resonance was used to evaluate visceral, subcutaneous adipose tissue (SCAT) as well as liver and pancreas lipid content using in-phase and out-of-phase magnetic resonance imaging (MRI) sequence. Obese subjects had significantly higher weight, waist circumference, SCAT, deep SCAT, visceral adipose tissue (VAT), liver and pancreatic lipid content than lean subjects. Obese women had significantly lower VAT, liver and pancreas lipid content regardless of same BMI. In multiple regression analyses, the variance of liver lipid content explained by gender and VAT was 46%. When HOMA was added into a multiple regression, a small increase in the proportion of variance explained was observed. A 59.2% of the variance of pancreas lipid content was explained by gender and VAT. In conclusion, obese men show higher VAT and ectopic fat deposition in liver and pancreas than obese women despite same BMI. Independent of overall adiposity, insulin resistance, adiponectin and fat intake, VAT, measured with MRI, is the main predictor of ectopic fat deposition in both liver and pancreas.  相似文献   

20.
We assessed the effects of aerobic and/or resistance training on thermoregulatory responses in older men and analyzed the results in relation to the changes in peak oxygen consumption rate (VO(2 peak)) and blood volume (BV). Twenty-three older men [age, 64 +/- 1 (SE) yr; VO(2 peak), 32.7 +/- 1.1 ml. kg(-1). min(-1)] were divided into three training regimens for 18 wk: control (C; n = 7), aerobic training (AT; n = 8), and resistance training (RT; n = 8). Subjects in C were allowed to perform walking of ~10,000 steps/day, 6-7 days/wk. Subjects in AT exercised on a cycle ergometer at 50-80% VO(2 peak) for 60 min/day, 3 days/wk, in addition to the walking. Subjects in RT performed a resistance exercise, including knee extension and flexion at 60-80% of one repetition maximum, two to three sets of eight repetitions per day, 3 days/wk, in addition to the walking. After 18 wk of training, VO(2 peak) increased by 5.2 +/- 3.4% in C (P > 0.07), 20.0 +/- 2.5% in AT (P < 0.0001), and 9.7 +/- 5.1% in RT (P < 0.003), but BV remained unchanged in all trials. In addition, the esophageal temperature (T(es)) thresholds for forearm skin vasodilation and sweating, determined during 30-min exercise of 60% VO(2 peak) at 30 degrees C, decreased in AT (P < 0.02) and RT (P < 0.02) but not in C (P > 0.2). In contrast, the slopes of forearm skin vascular conductance/T(es) and sweat rate/T(es) remained unchanged in all trials, but both increased in subjects with increased BV irrespective of trials with significant correlations between the changes in the slopes and BV (P < 0.005 and P < 0.0005, respectively). Thus aerobic and/or resistance training in older men increased VO(2 peak) and lowered T(es) thresholds for forearm skin vasodilation and sweating but did not increase BV. Furthermore, the sensitivity of the increase in skin vasodilation and sweating at a given increase in T(es) was more associated with BV than with VO(2 peak).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号